Loading [MathJax]/jax/output/HTML-CSS/jax.js

LUO Leyan, XU Shiming, WU Xi, JIA Yong. Treatment of emulsified oil wastewater by the coupling system of reverse electrodialysis stack and electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1234-1242. doi: 10.12030/j.cjee.202301083
Citation: LUO Leyan, XU Shiming, WU Xi, JIA Yong. Treatment of emulsified oil wastewater by the coupling system of reverse electrodialysis stack and electrocoagulation[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1234-1242. doi: 10.12030/j.cjee.202301083

Treatment of emulsified oil wastewater by the coupling system of reverse electrodialysis stack and electrocoagulation

  • Corresponding author: XU Shiming, xsming@dlut.edu.cn
  • Received Date: 22/01/2023
    Available Online: 10/04/2023
  • Based on an experimental study using the RED-EC coupling system powered by SGE energy to treat simulated emulsified oil wastewater, the impacts of the electrode material, plate spacing, supporting electrolyte concentration, initial pH and temperature of the wastewater on the removal rate were investigated. The results show that the coupled wastewater treatment system using iron anode material had higher oil removal rate than the aluminum anode material. The oil removal rate of coupled wastewater treatment system was affected by the variations of plate spacing and oily wastewater parameters (conductivity, initial pH and temperature). Too large or too small plate spacing was bad for the oil removal rate of the system, in the studied system, the best plate spacing of the electrocoagulation was 1 cm.When the conductivity of wastewater was very low, the oil removal rate of the system was also low, and appropriate addition of supporting electrolytes could quickly increase the oil removal rate of the system. The oil removal rate was higher under neutral or slightly alkaline conditions. The higher the temperature, the higher the oil removal rate of the system. In the experimental range, the oil removal rate of 2 L simulated emulsified oil wastewater with a mass concentration of 1 g·L−1 could reach 98.39% after 60 min electrocoagulation treatment .
  • 随着铁路深埋隧道需求量的增加,高温高氟地下水涌出问题越来越突出,如果施工过程中产生的高温高氟废水处理不当,不仅会对当地环境造成严重影响[1],还会对当地居民的饮用水安全造成隐患[2]。氟是人体内必需的微量元素之一,人体日常饮用水的含氟量为0.4~0.6 mg·L−1[3],当超过人体正常需求量时,会引起全身性中毒疾病(即地氟病)。世界卫生组织(WHO)规定,饮用水中氟离子质量浓度上限为1.5 mg·L−1。长期接触和摄入高剂量(>1.5 mg·L−1)的氟化物会导致氟斑牙、免疫缺陷等疾病[4],甚至可能损害神经系统、内分泌系统、生殖系统、肝脏等的功能,从而对人体健康产生危害,还会影响食物链和生态系统的平衡[5]。因此,控制高氟水中氟的含量对保护自然环境和人体健康具有十分重要的意义。

    目前处理含氟废水方法主要有沉淀法[6]、膜分离法[7]、离子交换法[8]和吸附法[9]。吸附法因材料成本低、操作条件可控、不产生2次污染、具有再利用潜力和再生可能性等优点[10],被认为是目前应用最广泛的除氟方法。国内外常用的吸附剂有活性氧化铝[11]、活性炭[12]、活性锯末[13]、活性椰壳炭[14]、骨炭[15]、细菌[16]、土壤吸附剂[17]、稀土氧化物[18]、活性粘土[19]、赤泥、废催化剂和飞灰等固体工业废物[20-21]、生物炭[22-23]、钢渣[24]等,其中钢渣具有来源丰富、成本低廉、疏松多孔、耐腐蚀抗冲刷等优点,可作为一种优异的环境功能除氟材料。但钢渣自身的物理性质和化学活性低的性能限制了其吸附性能,需制备一种新型且高效的改性钢渣吸附剂用以处理隧道施工排放的高氟废水。

    张龙强[25]利用钢渣做吸附剂,研究了其对水中的铅离子和铬离子的吸附特征,结果表明,初始pH和温度对钢渣吸附重金属离子的影响不大,且钢渣能够适应废水的变化。张峻搏[26]以钢渣为原料对其进行改性,制备出一种多层状金属氢氧化物,研究其对含磷废水的吸附效果,结果表明,钢渣对生物池出水和湿地系统中总磷的去除率较高。纪鹏华[27]以钢渣为基材,通过添加改性剂、粘接剂和扩孔剂对钢渣进行改性,制备出具有易于分离且除磷效果好等优点的吸附剂。刘平[28]利用盐酸和硫酸对钢渣进行改性,发现利用改性钢渣除氟时,可以有效的提高钢渣的除氟效率,但相较于其他材料,除氟效果稍差(吸附容量为0.86 mg·g−1)。基于此,本研究采用与硬碱的氟离子具有强配位能力的硬酸La3+对钢渣进行改性,制备一种新型高效除氟吸附剂,并探究改性钢渣吸附水中氟离子的热力学和动力学性能,以期最大限度地发挥钢渣资源的回收利用价值。

    主要试剂为:硝酸镧(La(NO3)3·6H2O)、氢氧化钠(NaOH)、碳酸氢钠(NaHCO3)(优级纯)、无水硫酸钠(Na2SO4)、柠檬酸三钠(C6H5Na3O7·2H2O)、硝酸钠盐酸均为购于成都市科隆化学品有限公司。氟化钠购于成都金山化学试剂有限公司。无水氯化镁购于天津百伦斯生物技术有限公司。以上试剂除碳酸氢钠外均为分析纯。去离子水实验室自制。

    主要仪器为:DHG系列电热鼓风干燥箱(上海一恒科学仪器有限公司),SHA-B型水浴恒温振荡器(上海力辰邦西仪器科技有限公司)、LC-85DL型隔膜真空泵(上海力辰邦西仪器科技有限公司),DZS-706型雷磁多参数分析仪(上海仪电科学仪器有限公司)。

    改性钢渣的制备。称取一定量的清洗并烘干后的钢渣,以固液比为1:10加入硝酸镧溶液中,以200 r·min−1振荡。将改性后的钢渣清洗、过滤、烘干后密封保存备用。改性过程中其余反应条件:硝酸镧的质量浓度分别为0、12.996、25.992、64.98、129.96、259.92 g·L−1;振荡时间分别为3、6、12、24、36 h。

    缓冲溶液的配制:将57 mL HAc、58.0 g NaCl和58.8 g C6H5Na3O7·2H2O加入500 mL去离子水中,搅拌溶解。将烧杯置于冷水浴中,搅拌过程中缓慢加入240 g·L−1NaOH,调节该过程pH在5.0~5.5,定容至1 L。F储备液的配制:氟化钠于110 ℃下干燥2 h,备用。准确称取上述0.221 g NaF溶解于500 mL去离子水中,定容至1 L,保存于干净的聚乙烯试剂瓶中备用。取上述溶液100 mL定容至1 L,得10 mg·L−1氟化钠标准溶液。

    使用雷磁多参数水质分析仪测量溶液中F 浓度,根据标准曲线、稀释倍数及测量电位,计算溶液中F 浓度。含氟溶液浓度的测定:吸取适量样品于塑料烧杯中,用稀盐酸或乙酸钠溶液调节pH至中性,加入20 mL总离子强度缓冲溶液,定容至100 mL,摇匀后移入塑料烧杯中测量。采用扫描电子显微镜SEM(INSPECT-F50,美国)、比表面积测试仪BET(F-Sorb 2 400,北京)、射线电子能谱EDS、X射线衍射分析(XRD)及傅里叶红外光谱(FTIR)对改性前后钢渣进行表征。

    1)初始pH对除氟效果的影响。改性钢渣吸附剂对氟离子的吸附与溶液pH有关,将0.2 g改性钢渣加入10 mL质量浓度为10 mg·L−1的氟化钠溶液中调节pH分别为3、5、7、9、11,在25 ℃恒温水浴环境下,以200 r·min−1振荡40 min,静置1 h,取上清液测定氟离子浓度,探究pH对吸附性能的影响。

    2)吸附热力学实验。将0.8 g改性钢渣加入10 mL含不同质量浓度的氟离子溶液中,调节pH至3,分别在30、45和60 ℃恒温水浴环境下,以200 r·min−1振荡40 min,静置1 h,取上清液测定氟离子浓度。采用式(1)计算F吸附率,采用式(2)计算吸附容量。采用Langmuir模型(式(3))、Freundlich模型(式(4))和Temkin模型(式(5))拟合改性钢渣吸附剂对F的等温吸附过程。

    η=(C0Ct)C0×100% (1)
    qe=(C0Ct)Vm (2)

    式中:η%qe为吸附容量,mg·g−1C0为吸附前浓度,mg·L−1Ct为吸附平衡后的浓度,mg·L−1V为溶液体积,L;m为吸附剂质量,g。

    qe=qmaxbCe1+bCe (3)
    qe=kfC1/ne (4)
    qe=RTbTln(aTCe) (5)

    式中:qmax为最大吸附容量,mg·g−1b为吸附常数,L·g−1Ce为吸附平衡时的氟离子浓度,mg·L−1KF为反映吸附量吸附常数,L·g−1n为吸附强度指数;R为热力学常数 8.314×10−3 kJ·(mol·K)−1T为热力学温度,K;bT为与吸附热有关的常数,kJ·mol−1aT为平衡键能常数,L·g−1

    3)吸附动力学实验。将0.8 g改性钢渣加入氟离子质量浓度为10、50、100 mg·L−1的溶液中。调节pH至3,在30 ℃恒温水浴环境下,以200 r·min−1分别振荡5、10、30、60、120、240、360、1 440、2 160 min取样,静置1 h,取上清液测定氟离子质量浓度。为了描述改性钢渣对氟的吸附特征,探讨其吸附机理,分别以伪一级动力学模型(式(6))、伪二级动力学模型(式(7))对实验数据进行拟合。

    lg(qeqt)=lgqek1t2.303 (6)
    tqt=1k2q2e+tqe (7)

    式中:qe为平衡时刻的吸附量,mg·g−1qtt时刻的吸附量,mg·g−1t为吸附时间,min;k1为伪一级吸附反应速率常数,min−1k2为伪二级吸附反应速率常数,g·(mg·min)−1

    改性钢渣对氟离子的吸附效率,除了与吸附剂本身的性质和pH有关外,还与溶液中共存阴离子有关。基于此,本研究根据当地水质情况,在氟离子溶液中加入不同质量浓度的氯离子、硫酸根离子和碳酸氢根离子,研究共存离子对除氟效率的影响,具体操作方法是将0.8 g改性钢渣加入到不同浓度含共存阴离子的50 mg·L−1的氟化钠溶液中。调节pH至3,在45 ℃恒温水浴环境下,以200 r·min−1振荡40 min,静置1 h,取上清液测定氟离子质量浓度。

    改性钢渣的除氟效率与改性时间、硝酸镧的用量、吸附剂的投加量及吸附时间有关。将0.2 g钢渣加入10 mL离子质量浓度为10 mg·L−1的氟离子溶液中。如图1(a)所示,当改性时间达到12 h时,除氟率较改性6 h明显提高,达到25.71%。随着时间的增加,除氟率继续提高,当改性时间为36 h时,除氟率达到41.70%。随着时间的延长,更多La负载到钢渣表面,可增加La的吸附位点。将0.2 g钢渣加入10 mL氟离子质量浓度为10 mg·L−1的溶液中。如图1(b)所示,随着硝酸镧质量浓度的增加,改性钢渣的除氟率在整体上先增大后减小,在硝酸镧质量浓度为129.96 g·L−1时达到峰值,为49.33%。因为硝酸镧质量浓度的增加,更多的La元素留在了钢渣表面,提供了更多的活性点位,但硝酸镧质量浓度过高时,使钢渣在浸渍过程中不稳定,一方面可能引起了钢渣内部的坍塌导致孔隙和通道的堵塞,阻碍其与F的接触;另一方面可能形成了过多的硝酸镧晶体充斥在材料内部孔隙及通道中,阻碍了F在内部孔隙和通道中的扩散,导致除氟效率下降。因此,综合考虑吸附效率和经济成本,以固液比为1∶10时,选择硝酸镧质量浓度为64.98 g·L−1对钢渣进行改性,能够达到较好的除氟效果。图1(c)为吸附剂投加量对吸附效果的影响,改性钢渣的除氟效果呈现出随投加量的增加而升高的趋势,并在投加量为160 g·L−1时达到峰值,此时的除氟率为81.33%。ERIC等[29]指出,随着吸附剂量的增加,溶液中吸附F 的活性点位增多。相应地,随着投加量的增加,吸附材料的吸附容量由0.199 mg·g−1,下降至0.046 mg·g−1。因为吸附剂投加量增加,吸附材料对F 吸附不饱和,单位质量的吸附剂吸附F 的质量下降,吸附剂效率降低。由图1(d)可见,选择经制备条件优化后的钢渣,将0.8 g吸附剂加入10 mL氟离子质量浓度为10 mg·L−1的溶液中,随着吸附时间的增加,其除氟率先增大再减小。吸附过程十分迅速,在4 s内就能达到80.98%的除氟率,之后除氟率继续上升,在2 min时达到最大值,为99.58%,在10 min左右达到吸附平衡。

    图 1  镧浓度、改性时间、吸附剂投加量、吸附时间对氟离子吸附效率的影响
    Figure 1.  Effects of modification time, lanthanum concentration, adsorbent dosage and adsorption time on adsorption efficiency

    图2(a)、图2(b)分别为镧改性后钢渣的SEM图;图2(c)、图2(d)分别为未改性钢渣的SEM图。可见,改性前,钢渣的形状不规则,粒径大小各异。大块的钢渣表面有不平整的凸起;在改性后,小粒径钢渣的比例升高,钢渣表面的附着物与凸起增多,增大了表面粗糙度及比表面积。

    图 2  钢渣改性前后SEM图
    Figure 2.  SEM images of steel slag before and after modification

    图3(a)和图3(b)分别为钢渣改性前后的能谱图,表1是钢渣改性前后的元素组成。从表中可以看出,未改性钢渣主要由氧、钙、碳、硅等元素组成,而改性后的钢渣,大部分元素的含量发生变化,如硅、铝、镁元素含量增加,以及钙、铁和锰减少,可能由于改性时发生的离子反应引起的[30]。La元素的能谱出现,含量大约为2.63%。说明通过改性可成功的将镧负载于钢渣表面。

    图 3  改性前后钢渣的EDS能谱图
    Figure 3.  EDS spectra of steel slag before and after modification
    表 1  改性前后钢渣的元素组成及百分含量
    Table 1.  Elemental composition of steel slags before and after modification %
    样品COMgAlSiKCaTiMnFeLa
    改性前14.1535.753.874.399.090.5520.778.291.022.11
    改性后45.8513.9327.733.570.862.662.782.78
     | Show Table
    DownLoad: CSV

    钢渣改性前后的BET结果表明,比表面积由0.549 9 m2·g−1增大到23.367 5 m2·g−1,平均孔径估算值由0.934 nm减小到0.135 1 nm。根据SEM扫描结果,改性后的钢渣表面突起增多,表面粗糙度增大,这与BET表征结果一致。根据查阅对比国际纯化学与应用化学联盟的规定,微孔大小<2 nm,介孔为2~50 nm,大孔>50 nm[31]。本研究中的改性钢渣是以微孔为主的吸附材料。

    钢渣改性前后的XRD谱图如图4所示。用JADE软件分析该钢渣的物相,主要有Ca(TiO3)、CaO、MgO、Ca2Mg(Si2O7)、Al2O3等,钢渣的成分十分复杂,但所含的元素类型与EDS测定的结果一致。在30°~35°的位置有较高且尖锐的峰,钢渣的物相组成主要取决于其化学成分,特别是其碱度(CaO/SiO2)[32]。改性后的钢渣与PDF标准卡对比发现在2θ为20.07o、23.24o、33.14o、47.52o、59.35o处出现(La0.4Ca0.6)(MnO3)的特征峰。以上结果证明镧元素被成功地负载于钢渣表面,为吸附除氟提供了更多的吸附位点。此外,改性前后XRD谱图变化不大,说明钢渣改性后的晶体结构并没有发生变化。

    图 4  钢渣改性前后XRD图
    Figure 4.  XRD patterns of steel slag before and after modification

    图5可见,在3 440 cm−1处出现的吸收峰是由O—H振动引起的,1 632 cm−1附近为—OH键的弯曲振动吸收峰,1 490~1 350 cm−1为C—H的弯曲振动峰[33]。865 cm−1左右处为AlO45−的非对称伸缩振动峰[34]。在1 200~800 cm−1对应Si—O—Si伸缩振动峰, 800~600 cm−1区域的吸收带对应是(TO4)四面体的T—O—T(T=Si,Al)对称振动峰[35],464 cm−1左右处是Si—O—Si(SiO4四面体)的弯曲振动峰[36]。对比改性钢渣吸附氟离子前后的谱图发现,改性钢渣吸附氟离子前后的图谱几乎没有变化。这说明改性钢渣对水体中的氟离子吸附量非常小,进一步说明改性钢渣除氟可能是基于钢渣表面负载的镧水化后的化合物部分进入液相,与氟离子结合生成沉淀而去除。

    图 5  钢渣改性前后FT-IR图
    Figure 5.  FT-IR spectra of steel slag before and after modification

    图6所示,溶液中F的去除效率受溶液pH的影响较为明显,因pH影响F在水溶液中的存在形式,且溶液pH的改变能直接影响改性钢渣的表面电荷及表面官能团的质子化或去质子化过程。由图6可见,改性钢渣的除氟效果随着初始pH的增加而降低。溶液初始pH为强酸性时,改性钢渣的除氟率较高,达到80%左右;当pH=5.0~9.0,除氟率变化不大;当溶液为强碱性时,改性钢渣的除氟率明显下降,这一结论与刘平的研究相似[28]。这是因为在酸性条件下,带负电荷的钢渣与H+和F形成一个电离层复合层,可促进钢渣对F的吸附;另一方面,改性钢渣表面的活性点位发生质子化作用带正电,有利于对F的吸附。在碱性环境中时,溶液中含有较多的OH与F存在竞争吸附,影响其吸附效率[37],而当pH上升至超过钢渣等电点时,电荷吸附作用减弱或消失,不利于对氟离子的去除。另外钢渣能够使吸附除氟后的溶液pH升高,吸附饱和后的钢渣可以用于肥料和水泥的生产,因此,处理污水的成本也未必升高。

    图 6  初始pH对除氟率的影响
    Figure 6.  Effect of initial pH on fluorine removal rate

    Langmuir吸附等温线和Freundlich吸附等温方程的拟合结果如图7表2所示。Langmuir吸附数据表明,R2最高为0.991,这表明在吸附过程中,存在大多数单分子层吸附。吸附剂的理论最大单层分子吸附量为1.230 mg·g−1。Freundlich吸附数据表明,1/n的值最高为0.394,所以吸附反应过程能够进行,R2最高为0.976,表明吸附过程也不是标准的单层吸附,可能存在多层吸附[38]。Temkin吸附等温模型拟合结果如图8表2所示。由R2值可知,Temkin吸附等温线拟合吸附过程准确度较高。根据拟合结果得到的bT的值分别为15.048、12.301、15.113 kJ·mol−1,表明吸附过程主要以化学吸附过程。

    图 7  Langmuir 和Freundlich 吸附等温线模型拟合
    Figure 7.  Langmuir and Freundlich adsorption isotherm model fitting
    表 2  吸附等温线模型拟合参数
    Table 2.  Fitting parameters of adsorption isotherm model
    温度/ ℃LangmuirFreundlichTemkin
    qmax/(mg·g−1)B/(L·mg−1)R21/nKF/(mg·g−1)R2aT/(L·g−1)bT/(kJ·mol−1)R2
    300.9800.6610.9700.2770.3650.8939.66215.0480.961 2
    451.2300.2870.9910.3940.3260.9705.71912.3010.971 3
    601.1010.2790.9710.3690.2940.9766.76415.1130.968 4
     | Show Table
    DownLoad: CSV
    图 8  Temkin吸附等温线模型拟合
    Figure 8.  Temkin adsorption isotherm model fitting

    吉布斯自由能(ΔG0)、焓变(ΔH0)和熵变(ΔS0)之间的关系如式(8)、式(9)和式(10)所示。

    ΔG0=RTlnKa (8)
    Ka=qeCe (9)
    ΔG0=ΔH0TΔS0 (10)

    式中:ΔG0为吉布斯自由能变,KJ·mol−1R为理想气体常数,kJ·(mol·K)−1T为温度,K;Ka为吸附平衡常数[39]qe为平衡吸附量,mg·g−1Ce为氟离子的平衡浓度,mg·L−1ΔH0为焓变,kJ·mol−1ΔS0为熵变,J·mol−1

    Ka随温度的上升而降低,表明该过程为放热过程,即温度升高会阻碍吸附的进行。做ΔG0T的拟合线,通过计算截距和斜率可分别求得ΔH0ΔS0(表3)。结果表明,随着温度的增加,体系的ΔG0升高,证明在吸附过程中,温度的增加会使吸附反应受阻。拟合线的截距得到ΔH0<0(-23.804 kJ·mol−1),说明该反应过程放热。根据Le Chatelier原理,升高温度会降低反应速率。拟合线的斜率得到ΔS0<0(-0.083 kJ·(mol·K)−1),表明在吸附过程中固体溶解水平的自由度下降[40]ΔS0<0可能由于在较高温度下反应效率降低导致的[41];同理与未改性钢渣对比发现,由拟合截距得到ΔH0>0,说明未改性的钢渣除氟反应过程为吸热过程,而拟合斜率得ΔS0<0,表明未改性钢渣在吸附过程固体溶解水平的自由度也下降。

    表 3  热力学参数计算结果
    Table 3.  Calculation results of thermodynamic parameters
    吸附剂温度/KKa/(mL·g−1)ΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(kJ·(mol·K)−1)
    改性钢渣303.150.6611.043−23.80430.68
    318.150.2873.302
    333.150.2793.536
    未改性钢渣303.151.202−0.009−0.083−1.038 2
    318.154.404−3.921
    333.151.459−3.124
     | Show Table
    DownLoad: CSV

    表4可见,伪二级动力学模型的拟合结果优于伪一级动力学模型。因此,使用伪二级动力学模型可以更好地描述改性钢渣吸附F的过程,表明吸附过程主要为化学吸附,而表面吸附是动力学控制的主要步骤[39]。随着初始氟浓度的上升,F更容易与吸附剂上的活性点位结合,吸附速率上升,速率常数k2增大。

    表 4  吸附动力学模型参数
    Table 4.  Parameters of adsorption kinetics model
    初始氟浓度/(mg·L−1)伪一级动力学伪二级动力学
    qe1/(mg·g−1)k1/min−1R2qe2/(mg·g−1)k2/(g·(mg·min)−1)R2
    100.002−0.000 4790.0170.062−4.2930.999 7
    500.015−0.000 7620.1130.262−20.8721
    1000.069−0.000 1080.0670.47476.8580.999 9
     | Show Table
    DownLoad: CSV

    图9所示,Cl浓度的增加对改性钢渣除氟效率的影响并不明显。这是由于Cl本身的选择性比F低,难以和F进行有效竞争。低浓度的SO42−对钢渣除氟效果的影响不大,但当SO42−的浓度大于或等于0.048 g·L−1时,钢渣的除氟效率明显受到抑制。这可能是因为随SO42−浓度的增加,其会与钢渣表面的铝、钙等物质形成少量难溶物,一方面会堵塞材料内部通道,另一方面会减少表面的吸附位点,从而影响除氟效果。HCO3浓度的增加对改性钢渣除氟效率的影响一开始并不明显,但在其浓度达到0.3 g·L−1时抑制除氟过程,可能是因大量HCO3的存在可改变溶液pH。同时,在酸性条件下HCO3反应生成碳酸根离子(CO32−),高价阴离子会与F 产生竞争吸附,使F在改性钢渣吸附剂表面的吸附位点大幅度减少,从而影响改性钢渣的除氟效果。

    图 9  共存离子对除氟率的影响
    Figure 9.  Influence of coexisting ions on fluorine removal rate

    1)使用30 g·L−1硝酸镧对钢渣改性36 h后得到改性钢渣,控制投加量为160 g·L−1,pH=3,吸附含氟浓度为10 mg·L−1的溶液。氟离子去除率达到81.33%。在吸附过程中,温度过高会抑制吸附。

    2)改性钢渣对氟离子的去除率在4 s内达到80.98%,2 min时达到最高,为99.58%,约10 min达到吸附平衡。随着共存离子浓度的增大,除Cl对氟吸附的影响不明显外,SO42−、HCO3均会不同程度地抑制氟的吸附。镧改性钢渣的比表面积为23.367 5 m2·g−1,表面空隙以微孔为主。

    3)准二级动力学模型能更好地描述吸附过程,说明化学吸附是主要的吸附过程。氟的初始浓度越高,F越容易与钢渣表面的活性点位结合,从而提高吸附速率。Temkin吸附等温线模型拟合结果表明,吸附机理主要以化学吸附为主。由Langmuir吸附等温线模型的结果得到最大理论氟吸附容量为1.230 mg·g−1

  • [1] 郭研, 肖尊东. 乳化状含油废水难处理的物化原因探析[J]. 吉林省教育学院学报, 2015(1): 149-150.

    Google Scholar Pub Med

    [2] DUAN C T, ZHU T, GUO J, et al. Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophohie/superoleophilie particles[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10475-10481.

    Google Scholar Pub Med

    [3] 张玲玲, 陈强, 殷梦辉, 等. 膜分离技术在乳化态含油废水处理中的应用研究进展[J]. 应用化工, 2021, 50(10): 2791-2796. doi: 10.3969/j.issn.1671-3206.2021.10.035

    CrossRef Google Scholar Pub Med

    [4] 陈文博, 耿安朝, 廖德祥. 吸附法分步处理含油废水研究[J]. 科技咨询导报, 2012(22): 14-14.

    Google Scholar Pub Med

    [5] 商连. 絮凝剂处理含乳化油废水试验研究[D]. 西安: 长安大学, 2005.

    Google Scholar Pub Med

    [6] 崔明玉, 王栋, 曹同川. 絮凝-电气浮法处理乳化油废水[J]. 环境技术, 2005, 23(2): 29-31.

    Google Scholar Pub Med

    [7] 徐士鸣, 吴曦, 冷强. 一种利用低品位热能氧化降解有机废水的方法: CN201711384061.2[P]. 2018-05-29.

    Google Scholar Pub Med

    [8] 王偲雪, 徐士鸣, 吴曦, 等. 溶液浓差能驱动的REDR阴/阳极独立环路降解废水中的苯酚[J]. 环境工程学报, 2021, 15(3): 886-897.

    Google Scholar Pub Med

    [9] 徐士鸣, 徐志杰, 吴曦, 等. 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018, 38(12): 4642-4651.

    Google Scholar Pub Med

    [10] 冷强, 徐士鸣, 吴曦, 等. 逆电渗析反应器降解模拟甲基橙染料废水实验[J]. 环境科学学报, 2021, 41(8): 3157-3165.

    Google Scholar Pub Med

    [11] 徐士鸣, 冷强, 吴曦, 等. 逆电渗析反应器阴、阳极联合降解酸性橙Ⅱ实验研究[J]. 环境科学学报, 2019, 39(7): 2163-2171.

    Google Scholar Pub Med

    [12] XU S M, LENG Q, JIN D X, et al. Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy[J]. Desalination, 2020, 49: 114541.

    Google Scholar Pub Med

    [13] 徐士鸣, 吴曦, 吴德兵, 等. 从吸收制冷到逆向电渗析发电-溶液浓差能应用新技术[J]. 制冷技术, 2017, 37(2): 8-13.

    Google Scholar Pub Med

    [14] PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660. doi: 10.1038/174660a0

    CrossRef Google Scholar Pub Med

    [15] ZHANG W H, ZHOU Y, HU C Z, et al. Electricity generation from salinity gradient to remove chromium using reverse electrodialysis coupled with electrocoagulation[J]. Electrochimica Acta, 2021, 379: 138153. doi: 10.1016/j.electacta.2021.138153

    CrossRef Google Scholar Pub Med

    [16] TROMPETTE J L, VERGNES H, COUFORT C. Enhanced electrocoagulation efficiency of lyophobic colloids in the presence of ammonium electrolytes[J]. Colloids and Surfaces A, 2008, 315: 66-73. doi: 10.1016/j.colsurfa.2007.07.024

    CrossRef Google Scholar Pub Med

    [17] CHEN X M, CHEN G H, PO L Y. Separation of pollutants from restaurant wastewater by electrocoagulation[J]. Separation and Purification Technology, 2000, 19: 65-76. doi: 10.1016/S1383-5866(99)00072-6

    CrossRef Google Scholar Pub Med

    [18] HU J L, CHEN J Q, ZHANG X, et al. Dynamic demulsification of oil-in-water emulsions with electroco alescence: Diameter distribution of oil droplets[J]. Separation and Purification Technology, 2021, 254: 117631. doi: 10.1016/j.seppur.2020.117631

    CrossRef Google Scholar Pub Med

    [19] DUTCHER C S, WOEHL T J, TALKEN N H, et al. Hexatic-to-disorder transition in colloidal crystal near electrodes: Rapid annealing of polycrystalline domains[J]. Physical Review Letters, 2013, 111: 128302. doi: 10.1103/PhysRevLett.111.128302

    CrossRef Google Scholar Pub Med

    [20] Moussa D T, El-Naas M H, Nasser M, et al. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges[J]. Journal of Environmental Management, 2017, 186: 24-41.

    Google Scholar Pub Med

    [21] KOBYA M, DEMIRBAS E, CAN O T, et al. Treatment of levafix orange textile dye solution by electrocoagulation[J]. Journal of Hazardous Materials B, 2006, 132: 183-188. doi: 10.1016/j.jhazmat.2005.07.084

    CrossRef Google Scholar Pub Med

    [22] DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100: 475-502.

    Google Scholar Pub Med

    [23] GHERNAOUT D, BADIS A, KELLIL A, et al. Application of electrocoagulation in Escherichia coli culture and two surface waters[J]. Desalination, 2008, 219: 118-125. doi: 10.1016/j.desal.2007.05.010

    CrossRef Google Scholar Pub Med

    [24] PAZENKO T Y, KHALTURINA T I, KOLOVA A F, et al. Electrocoagulation treatment of oil-containing wastewaters[J]. Journal of Applied Chemistry of the USSR, 1986, 58: 11.

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2427) PDF downloads(118) Cited by(0)

Access History

Treatment of emulsified oil wastewater by the coupling system of reverse electrodialysis stack and electrocoagulation

Abstract: Based on an experimental study using the RED-EC coupling system powered by SGE energy to treat simulated emulsified oil wastewater, the impacts of the electrode material, plate spacing, supporting electrolyte concentration, initial pH and temperature of the wastewater on the removal rate were investigated. The results show that the coupled wastewater treatment system using iron anode material had higher oil removal rate than the aluminum anode material. The oil removal rate of coupled wastewater treatment system was affected by the variations of plate spacing and oily wastewater parameters (conductivity, initial pH and temperature). Too large or too small plate spacing was bad for the oil removal rate of the system, in the studied system, the best plate spacing of the electrocoagulation was 1 cm.When the conductivity of wastewater was very low, the oil removal rate of the system was also low, and appropriate addition of supporting electrolytes could quickly increase the oil removal rate of the system. The oil removal rate was higher under neutral or slightly alkaline conditions. The higher the temperature, the higher the oil removal rate of the system. In the experimental range, the oil removal rate of 2 L simulated emulsified oil wastewater with a mass concentration of 1 g·L−1 could reach 98.39% after 60 min electrocoagulation treatment .

  • 随着石油工业、机械加工、食品加工与餐饮业的不断发展,含油废水的排放量日益增大。不经处理的含油废水直接排放会对周边环境造成严重的危害。含油废水中的油可分为浮油、分散油、乳化油和溶解油4种[1]。其中乳化油因其油滴尺寸较小,油水二元体系稳定性强,难以通过重力、气浮等方式实现油水分离,是最难处理的一类含油废水[2]。目前,乳化油废水处理方法包括:膜分离法、吸附法、絮凝法等[3-5]。其中的电絮凝法具有除油能力强、操作简便、自动化程度高、无需添加化学药剂等优点,是一种高效、经济、环保的含油污水处理方法[6]。电絮凝法的缺点在于废水处理过程需要消耗大量电能,导致其水处理成本相对较高。

    为了降低废水处理过程的电能消耗,降低废水处理成本。近些年来提出了一种利用工作溶液盐/浓差能驱动的逆电渗析(reverse electrodialysis,RED)技术来处理各种有机/无机废水的技术[7-12]。工作溶液盐/浓差能即可来自于自然界(海水/盐湖水与入海/入盐湖的河水之间的盐差),也可以来自盐/海水分离副产物(浓盐/海水与自然盐/海水之间的盐差),还可以通过废热转换(溶液热分离)获得[13]

    1954年PATTLE[14]首次提出利用自然界盐差能的RED发电技术以来,对该技术的研究逐渐深入,各国学者发表了大量有关RED技术的研究论文。RED电堆/反应器的结构和工作原理类似。他们都是由端板、阴/阳电极,交错布置的阴/阳离子交换膜(AEM/CEM)及隔垫所构成。当浓/稀盐溶液分别流经由膜隔垫所隔两电极会产生得失电子的氧化还原反应。电子通过外部电路从阳极流向阴极,从而在外电路中产生电流。发电用的RED电堆与水处理用的RED反应器不同之处在于:电极液在RED电堆内作可逆的闭式循环,而废水作为电极液流经RED反应器电极流道并因电极的氧化还原反应生成各种反应物来降解废水中的污染物。不同的电极材料和废水成分在RED反应器电极氧化还原反应过程中会生成不同的反应物。理论上而言,若RED反应器阳极选用铁或铝作为牺牲阳极时,RED反应器可以产生电絮凝效果来处理一些难以生化降解的有机或无机废水[15]

    但实际上,因在使用过程中牺牲阳极会被不断消耗而需要定期换新,导致需要不断拆装RED反应器造成使用不便。另外,在处理含油废水过程时电极表面易被油膜污染,减弱含油废水的处理效果。为此,本课题组提出了一种如图1所示的RED电堆与常规电絮凝器耦合的乳化油废水处理系统。该系统由工作溶液的盐差能驱动RED电堆发电,电絮凝器作为负载连接在电堆的外部电路中。由于盐差能驱动的RED电堆属于内生电源。在RED电堆结构参数确定的条件下,其输出电参数(电压与电流)与外部电路负载(电絮凝器)电阻有关。而电极材料、电极间隙、处理时间、阳极钝化、含油废水参数(初始pH、电导率和温度)等变化会影响电絮凝器电阻,进而影响其工作效率。因此,本研究采用单因素法,在RED电堆结构和操作参数不变的条件下,考察电絮凝器电极材料、电极间距、支撑电解质浓度、含油废水初始pH及温度对耦合系统的乳化油废水处理效果的影响。

    • 逆电渗析电堆与电絮凝器耦合系统合处理乳化油废水实验系统流程如图1所示。由图1可见,RED电堆与电絮凝器构成一串联电路。实验所用的RED电堆和电絮凝器均为自制。RED电堆由离子交换膜、丝网隔垫及电极构成,离子交换膜有40张CEM以及41张AEM(最外两侧膜采用AEM),均购自日本富士公司,型号为type 10,厚度为0.12 mm;丝网隔垫厚度为0.38 mm,孔隙率为80%;2个10 cm×10 cm×1.5 cm的钛镀钌铱板构成电极。电絮凝器由有机玻璃(透明亚克力板)制成,电解槽尺寸为20 cm×10 cm×15 cm。槽内壁设有0.3 cm宽的竖直凹槽,用来放置电极板(10 cm×10 cm×0.3 cm)。凹槽下端距电解槽底面1 cm,电极板实际有效浸没面积为90 cm2。电解槽放置在磁力搅拌器上,转子以400 r·min−1的速度不断搅拌电解槽内的含油废水,以使其保持油水均匀状态。选择这个搅拌速度值,是因为它促进了胶体和不稳定物质之间的相遇,而不会在所使用的实验装置内造成任何可察觉的聚合体破裂[16]

    • 人工配置浓度分别为0.03 mol·L−1和3 mol·L−1的稀/浓NaCl水溶液作为工作溶液并储存在相应的玻璃瓶内(5和7)。0.1 mol·L−1 的铁氰化钾水溶液作为电极液储存在避光的玻璃瓶(3)内。2台蠕动泵(6和8)泵送稀/浓溶液工作溶液流经RED电堆(11)。在稀/浓溶液盐差的作用下,浓溶液中的盐分跨膜迁移到稀溶液中,使得浓溶液浓度降低,稀溶液浓度升高。流出RED电堆的稀/浓溶液分别储存在其相应的玻璃瓶内(9和10)。一台蠕动泵(4)泵送电极液,并在RED阴/阳极回路内作循环流动,以将电荷快速转移到RED正/负极。RED电堆输出电能驱动电絮凝器工作。RED阴/阳(正/负)极与电絮凝器对应的阳/阴极用铜导线相接,构成外部电路。利用数字万用表(12和13)在线检测RED电堆输出电流和电压。RED电堆的理论开路电压可按能斯特(Nernst)方程(式(1))计算[13]。离子活度系数可用扩展的 Debye-Hückel方程(式(2))表示。

      式中:U为理论开路电压,V;α为离子交换膜的选择性透过系数;Nm为膜对(membrane pair)数;z为离子价数;R为通用气体常数,8.314 J·(mol·K)−1T为温度,K;F为法拉第常数,96 485 C·mol−1γ为离子活度系数;C为浓度,mol·L−1。下标CEM、AEM分别代表阴、阳离子交换膜;CS和DS分别为浓和稀溶液。

      式中:z为离子化合价;A为有效水合离子半径(ANa+=450pmACl=300pm);Λ为离子浓度,mol·L−1

      由于流经RED电堆的浓、稀溶液浓度会发生变化,因此RED电堆理论开路电压需按浓、稀溶液平均浓度计算。本次实验固定RED电堆结构和操作参数[浓溶液浓度为3 mol·L−1,稀溶液浓度恒定为0.03 mol·L−1,过膜流速均为0.35 cm·s−1(稀/浓溶液流率均为0.134 4 L·min−1)]不变,计算得理论开路电压为6.335 V。RED电堆输出(端)电压为式(3)计算值,在RED输出电能的驱动下,电絮凝器的阳极和阴极发生的电化学反应如式(4)~式(6)所示

      式中:Ri为RED电堆的内电阻,Ω,其由膜电阻,稀/浓溶液流道电阻和电极液流道及电极电阻所组成。

      反应生成的单体和聚合氢氧化物作为絮凝剂具有高吸附性能,它与废水中分散的颗粒和溶解的污染物具有很强的亲和力。因此,可以通过絮凝作用去除废水中的污染物。絮凝后的产物可以通过漂浮或沉淀的方法从水相中分离出来。阴极还原反应所产生的氢气气泡可促进污染物聚结过程,有助于采用浮选去除乳化油废水中的油组份。氢气泡尺寸越小,絮凝体的截留面积越大,污染物与水的分离效果也越好[17]。此外,电场也被证明是一种有效的破乳方法。在电场力的驱动下,油滴沿着电场的方向运动,然后聚集并破乳[18]。油滴在电场中极化,导致相邻油滴之间的静电吸引力增强[19]

    • 以自制乳化油废水作为研究对象。乳化油制备过程为:每升水中含40 g15#机油(购自德国德殻石化(中国)发展有限公司)并添加8 g十二烷基苯磺酸钠作为稳定剂。采用磁力搅拌器以1 000 r·min−1的速度搅拌30 min,形成稳定的油水乳状液。去除表面浮油后的乳化油再作进一步稀释。稀释后取2 L含油量为1 g·L−1的含油废水进行实验研究。利用氢氧化钠和硫酸来调节含油废水的初始pH,并通过添加支撑电解质(Na2SO4)来调节含油废水的电导率。

      实验中各种溶液配制所需的溶剂水为去离子水,所用的盐/电解质购自天津大茂化学试剂厂,为分析纯级,其所含杂质可以忽略。

      实验所用的仪器有,紫外可见分光光度计(UV1780,日本岛津有限公司);蠕动泵(BT100-2J,保定兰格恒流泵有限公司);蠕动泵(KCP PRO-2-N16,卡默尔流体科技(上海)有限公司);电子天平(JJ1023BC,G电子秤有限公司);数字万用表(KEITHLEY 2110-220,美国泰克科技有限公司);低速离心机(LSC-20,上海秋佐科学有限公司);热力磁力搅拌器(EMS-9A,天津欧诺仪器股份有限公司);电导率仪(FE38,梅特勒托利多科技(中国)有限公司);pH测试仪(PXSJ-226,上海雷磁仪器有限公司)。

    • 每次实验前,铁或铝阳极先要在稀硫酸溶液中浸泡15 min,捞出后用砂纸打磨再用去离子水冲洗,去除表面氧化层。在实验过程中,含油废水处理时长为60 min,每隔10 min抽取电解槽(18)中的水样。对所有水样进行离心处理,将电絮凝过程中形成的絮凝物从水相中分离出来。在每份水样中取1 mL加入氯化钠进行破乳。氯化钠投加量为总体积的5%。然后用10 mL石油醚萃取水样中的油以便测量。测量时通过紫外可见分光光度仪测试水样的吸光度,通过依据绘制的标准曲线反推其浓度。按式(7)计算除油率。为了探索操作参数变化对含油废水处理效果的影响,采用单一变量法进行实验。相同的实验重复2次。

      式中:C0为含油废水中油初始质量浓度,mg·L−1Ct为絮凝处理t时间后测得含油废水中油质量浓度(乳化后的含油废水紫外光吸收波长峰值λ=225 nm),mg·L−1

    2.   结果与讨论
    • 电絮凝器电极选用不锈钢-铁、不锈钢-铝、石墨-铁、石墨-铝、钛镀钌铱-铁、钛镀钌铱-铝6种阴-阳极材料组合,用以考察不同阴-阳材料组合对乳化油废水去除效果的影响。图2给出了不同电极组合下极板间电压及除油率随时间的变化关系。其中,实验条件为:极板间距1 cm、含油废水中添加0.1 mol·L−1硫酸钠,pH为7.8 (pH不为7的原因是配备的乳化油中添加了支撑电解质Na2SO4,SO42-离子可以少量结合H+离子,间接引起pH升高),温度20 ℃。

      图2(a)可见,采用铝阳极时极板间电压远高于采用铁阳极,而RED的输出电压与电絮凝器采用何种阳极材料关联不大。此外,实验还发现采用铝阳极时串联电路的电流远低于采用铁阳极时的电流,因此,虽然采用铝阳极时极板间电压较高,但采用铁阳极絮凝时,RED电堆可以输出更大的电流。

      根据法拉第电解定律,通过的总电荷越多,电极产生的混凝剂也越多。一方面,电流密度越大,产生的絮凝剂越多[20];另一方面,电流密度越大,阴极还原生成的氢气气泡量越大且气泡尺寸越小[21],导致气泡密度的增加,更多的小气泡也为油微粒附着于絮凝剂提供了更大的表面积,使得油水分离效率提高。

      图2(b)可见,采用铁阳极对乳化油废水的处理效果要优越于铝阳极。一方面是因为采用铁阳极可以获得较大的电流密度,有利于产生更多的絮凝剂;另一方面,铝阳极氧化过程中易形成致密的表面氧化层,导致电极电阻增大。由于表面氧化层在pH为4~10内的水溶液中非常稳定,氧化层后的铝不易被氧化成铝离子,使得铝离子与氢氧根结合生成的絮凝剂Al(OH)3量减小,絮凝效率变差。

      从实验结果可以发现,采用不锈钢-铁电极组合处理含油废水的除油率最高,石墨-铁电极以及钛镀辽铱-铁电极组合处理效果次之,采用铝阳极组合电极处理含油废水的除油率最差。因此,后续均采用不锈钢-铁电极组合进行实验。

    • 图3给出了不同极板间距下极板间电压及除油率随时间的变化关系。除电极间距外,其他操作参数与电极材料实验时的操作条件相同。由图3(a)可见,随着时间的延长,极板间电压均会降低。其原因在于,电解过程中电极的氧化还原反应均产生阴、阳离子且溶于废水中,会使废水的电导率逐渐增大,废水的电阻减小,极板间电压降低。由图3(a)还可见,随着极板间距的增大,电极间的电压随之增大。这是由于在相同的废水电导率下,极板间距越大,废水的电阻就越大。因此,用来克服溶液间的电阻的电压也就越大。

      图3(b)可见,当极板间距由1 cm增大至2.5 cm时,系统的除油率降低。其原因在于,絮凝器电极电阻增大,导致电流密度降低。然而,当极板间距由0.5 cm增大至1 cm时,系统的除油率反而上升。其原因在于,当絮凝器电极间距较小时,适当增大电极间距有利于改善电极间溶液的混合状态,减轻极板附近的浓差极化现象,进而有利于金属离子的溶出,形成絮凝体。

      由于需要处理的乳化油废水电导率较低,采用较小的极板间距可以降低用于克服溶液电阻所损失的电压。但极板间距过小时,电极氧化还原反应过程的浓差极化现象较为严重。通过实验发现,对于所研究的RED-EC耦合废水处理系统,采用1 cm的极板间距较为合适。因此,后续实验中极板间距均为1 cm。

    • 支撑电解质浓度变化会影响废水电导率变化,进而会影响电絮凝器电极间废水电阻值,从而影响RED电堆的输出电流和系统的除油率。为了考察支撑电解质浓度变化对除油率的影响,在模拟乳化油废水中添加不同浓度的硫酸钠。图4给出了不同支撑电解质浓度下,极板间电压及除油率随时间的变化关系(除废水中支撑电解质浓度外,其他操作参数与电极材料实验时的操作参数条件相同)。

      比较图4(a)和图4(b)可见,当模拟乳化油废水中不添加支撑电解质(硫酸钠浓度为0 mol·L−1)时,极板电压很高,RED电堆的输出电流很小,除油率较低,仅为36.7%。其原因在于,配制的不含支撑电解质的模拟乳化油废水的电导率很低,溶液电阻很大,导致极板间废水所损失的电压很大,RED电堆输出电流减小,除油率降低。当向模拟乳化油废水加入少量支撑电解质(硫酸钠浓度为0.05 mol·L−1)后,废水的电导率会迅速增加,废水的电阻迅速降低,电极电压也随之降低,RED电堆的输出电流随之增加,除油率也随之增大。如果继续增加废水中的支撑电解质浓度,尽管废水电导率会增大,但增大的幅度逐渐变小,对电絮凝器电极电压的影响也会逐渐降低,除油率增速逐渐减小。因此,在采用电絮凝法处理含油废水时,可根据废水的实际电导率来添加支撑电解质量。

    • 由于含油废水初始pH会影响影响金属氢氧化物(絮凝剂)的形成。因此,该值变化对电絮凝过程会产生较大的影响[22]。为了探索不同初始pH对实验系统除油率的影响,在其它操作参数不变的情况下,通过添加氢氧化钠或硫酸调节废水初始pH(初始pH为3~11),考察初始pH对RED-EC耦合废水处理系统的除油率的影响关系。

      图5给出了在不同初始pH条件下,含油废水pH随处理时间的变化情况。由图5可见,当含油废水初始pH较低时,随着处理时间的增加,废水的pH也会随之增加。其原因是由于在电絮凝过程中阴极还原反应产生了氢氧根(OH)((5))。但随着含油废水初始pH的增大,随着处理时间而变化的废水pH增速逐渐减小。当初始pH为11时,废水的pH不再随处理时间的变化而变化,几乎保持恒定。

      图6给出了不同初始pH条件下,极板间电压及除油率随时间的变化关系。由图6(a)可见,当初始pH偏离7(中性)越多,电极电压相对越低,相应的RED电堆输出电流也就相对越大。其原因在于,添加的酸或碱都属于强电解质,其浓度越高废水的电导率越大,极板间溶液电阻越小,极板间电压越小。当废水初始pH为3时,极板间电压随着处理时间的延长而增大。其原因在于,电絮凝反应产生的部分OH与酸中的H+中和成水,废水的pH升高(图5),电导率降低所致。而当废水初始pH为中性或弱碱性时,极板间电压随着处理时间的延长而减小,原因在上述分析中已有阐述。

      图6(b)可见,当废水初始pH为中性时,耦合系统的除油率最高。而初始pH太低或太高均对耦合系统的除油率不利。影响耦合系统电絮凝除油效果是多方面的。从预防电极钝化的思路考虑,当pH较低时,电极氧化膜易于溶解,使得电极钝化现象得到延缓。而从絮凝的角度看,中性偏碱性条件更有利于Fe(OH)3絮体形成,以达到较好的絮凝效果[23]。正是由于这两种相互矛盾关系的影响,初始pH在5~9内含油废水经耦合系统处理60 min后的除油率可达到80%以上。

    • 电絮凝处理含油废水时,废水温度变化会对除油率产生影响。在电极为不锈钢-铁电极、极板间距1 cm、支撑电解质浓度0.1 mol·L−1、pH为7.8的条件下,不同温度下极板间电压及除油率随时间的变化情况如图7所示。由图7(a)可见,随着电解槽内的含油废水温度升高,电极板间的工作电压降低,RED电堆输出电流增加。其原因在于,随着废水温度的升高,溶解于废水中的金属盐溶质“颗粒”的布朗运动强度增加,溶液电导率增大,电极板间的溶液电阻减小,使得电极电压降低。PAZENKO等[24]研究了废水温度对电絮凝法处理含油废水的影响,得出温度越高,电导率越高,能耗越低的结论。由图7(b)可见,在相同的处理时间内,耦合系统对含油废水的除油率随温度的升高而增加,验证了PAZENKO文献[24]得出的结论。因此,在有条件时,适当提高含油废水温度有利于提高耦合系统处理效率。

    3.   结论
    • 1)与采用铝阳极材料相比,采用铁阳极材料的耦合废水处理系统具有更高的除油率。

      2)极板间距和含油废水参数(电导率、初始pH和温度)变化会对耦合废水处理系统的除油率产生影响。过大或过小的极板间距均对系统的除油率不利,在所研究的系统中,电絮凝器极板间距为1 cm时最佳;当废水的电导率很低时,系统的除油率很小,适当增加废水的电导率可以迅速提高系统的除油率;中性或微碱性条件下系统的除油率较高;温度越高,系统的除油率也越高。

      3)采用不锈钢-铁电极,1 cm电极间距,0.1 mol·L−1支撑电解质(Na2SO4)浓度,pH 7.8和40 ℃的实验条件下,经耦合废水处理系统处理60分钟后的含油废水除油率可达到98.39%。

    Figure (7)  Reference (24)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  改性前后钢渣的元素组成及百分含量
    Table 1.  Elemental composition of steel slags before and after modification %
    样品COMgAlSiKCaTiMnFeLa
    改性前14.1535.753.874.399.090.5520.778.291.022.11
    改性后45.8513.9327.733.570.862.662.782.78
     | Show Table
    DownLoad: CSV
  • 表 2  吸附等温线模型拟合参数
    Table 2.  Fitting parameters of adsorption isotherm model
    温度/ ℃LangmuirFreundlichTemkin
    qmax/(mg·g−1)B/(L·mg−1)R21/nKF/(mg·g−1)R2aT/(L·g−1)bT/(kJ·mol−1)R2
    300.9800.6610.9700.2770.3650.8939.66215.0480.961 2
    451.2300.2870.9910.3940.3260.9705.71912.3010.971 3
    601.1010.2790.9710.3690.2940.9766.76415.1130.968 4
     | Show Table
    DownLoad: CSV
  • 表 3  热力学参数计算结果
    Table 3.  Calculation results of thermodynamic parameters
    吸附剂温度/KKa/(mL·g−1)ΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(kJ·(mol·K)−1)
    改性钢渣303.150.6611.043−23.80430.68
    318.150.2873.302
    333.150.2793.536
    未改性钢渣303.151.202−0.009−0.083−1.038 2
    318.154.404−3.921
    333.151.459−3.124
     | Show Table
    DownLoad: CSV
  • 表 4  吸附动力学模型参数
    Table 4.  Parameters of adsorption kinetics model
    初始氟浓度/(mg·L−1)伪一级动力学伪二级动力学
    qe1/(mg·g−1)k1/min−1R2qe2/(mg·g−1)k2/(g·(mg·min)−1)R2
    100.002−0.000 4790.0170.062−4.2930.999 7
    500.015−0.000 7620.1130.262−20.8721
    1000.069−0.000 1080.0670.47476.8580.999 9
     | Show Table
    DownLoad: CSV