[1] 郭研, 肖尊东. 乳化状含油废水难处理的物化原因探析[J]. 吉林省教育学院学报, 2015(1): 149-150.
[2] DUAN C T, ZHU T, GUO J, et al. Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophohie/superoleophilie particles[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10475-10481.
[3] 张玲玲, 陈强, 殷梦辉, 等. 膜分离技术在乳化态含油废水处理中的应用研究进展[J]. 应用化工, 2021, 50(10): 2791-2796. doi: 10.3969/j.issn.1671-3206.2021.10.035
[4] 陈文博, 耿安朝, 廖德祥. 吸附法分步处理含油废水研究[J]. 科技咨询导报, 2012(22): 14-14.
[5] 商连. 絮凝剂处理含乳化油废水试验研究[D]. 西安: 长安大学, 2005.
[6] 崔明玉, 王栋, 曹同川. 絮凝-电气浮法处理乳化油废水[J]. 环境技术, 2005, 23(2): 29-31.
[7] 徐士鸣, 吴曦, 冷强. 一种利用低品位热能氧化降解有机废水的方法: CN201711384061.2[P]. 2018-05-29.
[8] 王偲雪, 徐士鸣, 吴曦, 等. 溶液浓差能驱动的REDR阴/阳极独立环路降解废水中的苯酚[J]. 环境工程学报, 2021, 15(3): 886-897.
[9] 徐士鸣, 徐志杰, 吴曦, 等. 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018, 38(12): 4642-4651.
[10] 冷强, 徐士鸣, 吴曦, 等. 逆电渗析反应器降解模拟甲基橙染料废水实验[J]. 环境科学学报, 2021, 41(8): 3157-3165.
[11] 徐士鸣, 冷强, 吴曦, 等. 逆电渗析反应器阴、阳极联合降解酸性橙Ⅱ实验研究[J]. 环境科学学报, 2019, 39(7): 2163-2171.
[12] XU S M, LENG Q, JIN D X, et al. Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy[J]. Desalination, 2020, 49: 114541.
[13] 徐士鸣, 吴曦, 吴德兵, 等. 从吸收制冷到逆向电渗析发电-溶液浓差能应用新技术[J]. 制冷技术, 2017, 37(2): 8-13.
[14] PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660. doi: 10.1038/174660a0
[15] ZHANG W H, ZHOU Y, HU C Z, et al. Electricity generation from salinity gradient to remove chromium using reverse electrodialysis coupled with electrocoagulation[J]. Electrochimica Acta, 2021, 379: 138153. doi: 10.1016/j.electacta.2021.138153
[16] TROMPETTE J L, VERGNES H, COUFORT C. Enhanced electrocoagulation efficiency of lyophobic colloids in the presence of ammonium electrolytes[J]. Colloids and Surfaces A, 2008, 315: 66-73. doi: 10.1016/j.colsurfa.2007.07.024
[17] CHEN X M, CHEN G H, PO L Y. Separation of pollutants from restaurant wastewater by electrocoagulation[J]. Separation and Purification Technology, 2000, 19: 65-76. doi: 10.1016/S1383-5866(99)00072-6
[18] HU J L, CHEN J Q, ZHANG X, et al. Dynamic demulsification of oil-in-water emulsions with electroco alescence: Diameter distribution of oil droplets[J]. Separation and Purification Technology, 2021, 254: 117631. doi: 10.1016/j.seppur.2020.117631
[19] DUTCHER C S, WOEHL T J, TALKEN N H, et al. Hexatic-to-disorder transition in colloidal crystal near electrodes: Rapid annealing of polycrystalline domains[J]. Physical Review Letters, 2013, 111: 128302. doi: 10.1103/PhysRevLett.111.128302
[20] Moussa D T, El-Naas M H, Nasser M, et al. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges[J]. Journal of Environmental Management, 2017, 186: 24-41.
[21] KOBYA M, DEMIRBAS E, CAN O T, et al. Treatment of levafix orange textile dye solution by electrocoagulation[J]. Journal of Hazardous Materials B, 2006, 132: 183-188. doi: 10.1016/j.jhazmat.2005.07.084
[22] DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100: 475-502.
[23] GHERNAOUT D, BADIS A, KELLIL A, et al. Application of electrocoagulation in Escherichia coli culture and two surface waters[J]. Desalination, 2008, 219: 118-125. doi: 10.1016/j.desal.2007.05.010
[24] PAZENKO T Y, KHALTURINA T I, KOLOVA A F, et al. Electrocoagulation treatment of oil-containing wastewaters[J]. Journal of Applied Chemistry of the USSR, 1986, 58: 11.