[1]
|
亓金鹏, 肖小兰, 张瑞娜, 等. AnMBR 处理高盐榨菜废水的运行效能及膜污染特性[J]. 环境工程学报, 2021, 15(2): 553-562. doi: 10.12030/j.cjee.202004134
CrossRef Google Scholar
Pub Med
|
[2]
|
冯雅丽, 张茜, 李浩然, 等. 铁炭微电解预处理高浓度高盐制药废水[J]. 环境工程学报, 2012, 6(11): 3855-3860.
Google Scholar
Pub Med
|
[3]
|
ZHAO Y, ZHUANG X, AHMAD S, et al. Biotreatment of high-salinity wastewater: current methods and future directions[J]. World Journal of Microbiology and Biotechnology, 2020, 36(3): 1-11.
Google Scholar
Pub Med
|
[4]
|
张彦灼, 李军, 陈光辉, 等. NaCl 对好氧颗粒污泥短程硝化反硝化的影响[J]. 环境科学研究, 2015, 28(5): 823-830.
Google Scholar
Pub Med
|
[5]
|
LI P, CHEN Q, DONG H, et al. Effect of applying potentials on anaerobic digestion of high salinity organic wastewater[J]. Science of the Total Environment, 2022, 822: 153416. doi: 10.1016/j.scitotenv.2022.153416
CrossRef Google Scholar
Pub Med
|
[6]
|
DASTGHEIB S A, SALIH H H. Treatment of highly saline brines by supercritical precipitation followed by supercritical membrane separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3370-3376.
Google Scholar
Pub Med
|
[7]
|
SHI J, HUANG W, HAN H, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493: 114640. doi: 10.1016/j.desal.2020.114640
CrossRef Google Scholar
Pub Med
|
[8]
|
ZHANG W, YANG X, WANG D. Complete removal of organic contaminants from hypersaline wastewater by the integrated process of powdered activated carbon adsorption and thermal Fenton oxidation[J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5765-5771.
Google Scholar
Pub Med
|
[9]
|
张玉浩, 陈彦洁, 付国楷. 电流强度对高盐废水混合生物阴极MFC脱氮及产电的影响[J]. 环境工程学报, 2021, 15(7): 2436-2449. doi: 10.12030/j.cjee.202011122
CrossRef Google Scholar
Pub Med
|
[10]
|
SRIVASTAVA A, PARIDA V K, MAJUMDER A, et al. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105775. doi: 10.1016/j.jece.2021.105775
CrossRef Google Scholar
Pub Med
|
[11]
|
王忠泉. 微电解/曝气生物流化床工艺处理高盐废水的研究[J]. 中国给水排水, 2019, 35(7): 5. doi: 10.19853/j.zgjsps.1000-4602.2019.07.016
CrossRef Google Scholar
Pub Med
|
[12]
|
HE H, CHEN Y, LI X, et al. Influence of salinity on microorganisms in activated sludge processes: A review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527.
Google Scholar
Pub Med
|
[13]
|
HUANG J L, CUI Y W, YAN J L, et al. Occurrence of heterotrophic nitrification-aerobic denitrification induced by decreasing salinity in a halophilic AGS SBR treating hypersaline wastewater[J]. Chemical Engineering Journal, 2022, 431: 134133. doi: 10.1016/j.cej.2021.134133
CrossRef Google Scholar
Pub Med
|
[14]
|
袁建华, 赵天涛, 彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展[J]. 生物工程学报, 2019, 35(6): 942-955. doi: 10.13345/j.cjb.180427
CrossRef Google Scholar
Pub Med
|
[15]
|
PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726
CrossRef Google Scholar
Pub Med
|
[16]
|
FU G, HAN J, YU T, et al. The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities[J]. Journal of Environmental Management, 2019, 238: 1-9.
Google Scholar
Pub Med
|
[17]
|
JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical engineering journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014
CrossRef Google Scholar
Pub Med
|
[18]
|
LIN L, PRATT S, RATTIER M, et al. Individual and combined effect of salinity and nitrite on freshwater Anammox bacteria (FAB)[J]. Water Research, 2020, 169: 114931. doi: 10.1016/j.watres.2019.114931
CrossRef Google Scholar
Pub Med
|
[19]
|
FANG F, YANG M M, WANG H, et al. Effect of high salinity in wastewater on surface properties of anammox granular sludge[J]. Chemosphere, 2018, 210: 366-375. doi: 10.1016/j.chemosphere.2018.07.038
CrossRef Google Scholar
Pub Med
|
[20]
|
MENG Y, YIN C, ZHOU Z, et al. Increased salinity triggers significant changes in the functional proteins of ANAMMOX bacteria within a biofilm community[J]. Chemosphere, 2018, 207: 655-664. doi: 10.1016/j.chemosphere.2018.05.076
CrossRef Google Scholar
Pub Med
|
[21]
|
PATIL P K, BASKARAN V, VINAY T N, et al. Abundance, community structure and diversity of nitrifying bacterial enrichments from low and high saline brackishwater environments[J]. Letters in Applied Microbiology, 2021, 73(1): 96-106. doi: 10.1111/lam.13480
CrossRef Google Scholar
Pub Med
|
[22]
|
殷豪帅, 黄开, 王卿卿, 等. 高盐度环境下某污水处理厂AAO生化系统微生物群落变化分析[J]. 环境工程, 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
CrossRef Google Scholar
Pub Med
|
[23]
|
VYRIDES I, STUCKEY D C. Adaptation of anaerobic biomass to saline conditions: Role of compatible solutes and extracellular polysaccharides[J]. Enzyme and Microbial Technology, 2009, 44(1): 46-51. doi: 10.1016/j.enzmictec.2008.09.008
CrossRef Google Scholar
Pub Med
|
[24]
|
CYPLIK P, PIOTROWSKA-CYPLIK A, MARECIK R, et al. Biological denitrification of brine: The effect of compatible solutes on enzyme activities and fatty acid degradation[J]. Biodegradation, 2012, 23(5): 663-672. doi: 10.1007/s10532-012-9542-0
CrossRef Google Scholar
Pub Med
|
[25]
|
ZHANG Z Z, JI Y X, CHENG Y F, et al. Increased salinity improves the thermotolerance of mesophilic anammox consortia[J]. Science of the Total Environment, 2018, 644: 710-716. doi: 10.1016/j.scitotenv.2018.07.027
CrossRef Google Scholar
Pub Med
|
[26]
|
VYRIDES I, STUCKEY D C. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: A review[J]. Critical Reviews in Biotechnology, 2017, 37(7): 865-879. doi: 10.1080/07388551.2016.1266460
CrossRef Google Scholar
Pub Med
|
[27]
|
ZHANG X, FERREIRA R B, HU J, et al. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system[J]. Bioresource technology, 2014, 162: 384-388. doi: 10.1016/j.biortech.2014.04.005
CrossRef Google Scholar
Pub Med
|
[28]
|
杨振琳, 于德爽, 李津, 等. 海藻糖强化厌氧氨氧化耦合反硝化工艺处理高盐废水的脱氮除碳效能[J]. 环境科学, 2018, 39(10): 4612-4620. doi: 10.13227/j.hjkx.201803218
CrossRef Google Scholar
Pub Med
|
[29]
|
VYRIDES I, SANTOS H, MINGOTE A, et al. Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs)[J]. Environmental Science & Technology, 2010, 44(19): 7437-7442.
Google Scholar
Pub Med
|
[30]
|
BAI L, LI J, LI R, et al. Long‐term nitrogen removal performance and kinetics of anaerobic ammonia oxidation bacteria treating nitrogen‐rich saline wastewater with trehalose addition[J]. Water Environment Research, 2019, 91(11): 1518-1525. doi: 10.1002/wer.1152
CrossRef Google Scholar
Pub Med
|
[31]
|
MA C, JIN R C, YANG G F, et al. Impacts of transient salinity shock loads on Anammox process performance[J]. Bioresource Technology, 2012, 112: 124-130. doi: 10.1016/j.biortech.2012.02.122
CrossRef Google Scholar
Pub Med
|
[32]
|
康宝文, 肖芃颖, 周靖, 等. 生物膜层DO浓度对MABR中异养硝化-好氧反硝化的影响[J]. 环境科学研究, 2021, 34(10): 2397-2404. doi: 10.13198/j.issn.1001-6929.2021.05.19
CrossRef Google Scholar
Pub Med
|
[33]
|
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2012.
Google Scholar
Pub Med
|
[34]
|
罗晓静, 肖芃颖, 康宝文, 等. MABR快速富集HN-AD菌强化处理高氨氮废水[J]. 环境工程, 2020, 38(9): 106-112. doi: 10.13205/j.hjgc.202009018
CrossRef Google Scholar
Pub Med
|
[35]
|
HOU T, ZHAO J, LEI Z, et al. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2021, 314: 127942. doi: 10.1016/j.jclepro.2021.127942
CrossRef Google Scholar
Pub Med
|
[36]
|
DEVPURA N, JAIN K, PATEL A, et al. Metabolic potential and taxonomic assessment of bacterial community of an environment to chronic industrial discharge[J]. International Biodeterioration & Biodegradation, 2017, 123: 216-227.
Google Scholar
Pub Med
|
[37]
|
HE Q, SONG Q, ZHANG S, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: Reactor performance, extracellular polymeric substances and microbial successions[J]. Chemical Engineering Journal, 2018, 331: 841-849. doi: 10.1016/j.cej.2017.09.060
CrossRef Google Scholar
Pub Med
|
[38]
|
HE T, GUAN W, LUAN Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1479-1488. doi: 10.1007/s00253-015-7072-5
CrossRef Google Scholar
Pub Med
|
[39]
|
MA W, HAN Y, MA W, et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 244: 84-91. doi: 10.1016/j.biortech.2017.07.083
CrossRef Google Scholar
Pub Med
|
[40]
|
ALI A, WU Z, LI M, et al. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor[J]. Bioresource Technology, 2021, 333: 125154. doi: 10.1016/j.biortech.2021.125154
CrossRef Google Scholar
Pub Med
|
[41]
|
SONG X, YU D, QIU Y, et al. Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor[J]. Bioresource Technology, 2022, 345: 126540. doi: 10.1016/j.biortech.2021.126540
CrossRef Google Scholar
Pub Med
|
[42]
|
WANG H, GUO L, REN X, et al. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process[J]. Bioresource Technology, 2022, 350: 126891. doi: 10.1016/j.biortech.2022.126891
CrossRef Google Scholar
Pub Med
|
[43]
|
MENG F, HUANG W, LIU D, et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae[J]. Bioresource Technology, 2020, 295: 122291. doi: 10.1016/j.biortech.2019.122291
CrossRef Google Scholar
Pub Med
|
[44]
|
ELIFANTZ H, HORN G, AYON M, et al. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater[J]. FEMS Microbiology Ecology, 2013, 85(2): 348-357. doi: 10.1111/1574-6941.12122
CrossRef Google Scholar
Pub Med
|
[45]
|
SILVA L C F, LIMA H S, SARTORATTO A, et al. Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system[J]. International Biodeterioration & Biodegradation, 2018, 130: 1-7.
Google Scholar
Pub Med
|
[46]
|
LI J, QI M, LAI Q, et al. Pusillimonas maritima sp. nov., isolated from surface seawater[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(5): 3483-3490. doi: 10.1099/ijsem.0.004202
CrossRef Google Scholar
Pub Med
|
[47]
|
ZAINUDIN M H, MUSTAPHA N A, MAEDA T, et al. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw[J]. Waste Management, 2020, 106: 240-249. doi: 10.1016/j.wasman.2020.03.029
CrossRef Google Scholar
Pub Med
|
[48]
|
XIAO P Y, ZHOU J, LUO X, et al. Enhanced nitrogen removal from high-strength ammonium wastewater by improving heterotrophic nitrification-aerobic denitrification process: insight into the influence of dissolved oxygen in the outer layer of the biofilm[J]. Journal of Cleaner Production, 2021, 297: 126658. doi: 10.1016/j.jclepro.2021.126658
CrossRef Google Scholar
Pub Med
|
[49]
|
ZHANG Q, CHEN X, ZHANG Z, et al. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment[J]. Bioresource Technology, 2020, 315: 123813. doi: 10.1016/j.biortech.2020.123813
CrossRef Google Scholar
Pub Med
|
[50]
|
HUANG X, DONG W, WANG H, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978. doi: 10.1016/j.biortech.2017.05.161
CrossRef Google Scholar
Pub Med
|
[51]
|
XU S, ZHANG F, JIANG Y, et al. Characterization of a new heterotrophic nitrification bacterium Pseudomonas sp. strain JQ170 and functional identification of nap gene in nitrite production[J]. Science of the Total Environment, 2022, 806: 150556. doi: 10.1016/j.scitotenv.2021.150556
CrossRef Google Scholar
Pub Med
|
[52]
|
ZHANG Z, GUO Y, GUO L, et al. Elucidating salinity adaptation and shock loading on denitrification performance: focusing on microbial community shift and carbon source evaluation[J]. Bioresource Technology, 2020, 305: 123030. doi: 10.1016/j.biortech.2020.123030
CrossRef Google Scholar
Pub Med
|
[53]
|
HEYLEN K, VANPARYS B, WITTEBOLLE L, et al. Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study[J]. Applied and Environmental Microbiology, 2006, 72(4): 2637-2643. doi: 10.1128/AEM.72.4.2637-2643.2006
CrossRef Google Scholar
Pub Med
|
[54]
|
YOKOI H, ARATAKE T, HIROSE J, et al. Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29[J]. World Journal of Microbiology and Biotechnology, 2001, 17(6): 609-613. doi: 10.1023/A:1012463508364
CrossRef Google Scholar
Pub Med
|
[55]
|
刘洪艳, 王红玉. 潮间带污泥产絮凝细菌W17分离与絮凝性质分析[J]. 环境科学与技术, 2015, 38(8): 127-130.
Google Scholar
Pub Med
|
[56]
|
VALDÉS N, RIVERA-ARAYA J, BIJMAN J, et al. Draft genome sequence of Nitrincola sp. strain A-D6, an arsenic-resistant gammaproteobacterium isolated from a salt flat[J]. Genome Announcements, 2014, 2(6): e01144-14.
Google Scholar
Pub Med
|
[57]
|
张小姗, 温春晓, 何宁. 曝气生物滤池处理城镇污水厂尾水的强化脱氮及微生物群落特征分析[J]. 生态科学, 2021, 40(6): 48. doi: 10.14108/j.cnki.1008-8873.2021.06.006
CrossRef Google Scholar
Pub Med
|
[58]
|
IVANOVA N, ROHDE C, MUNK C, et al. Complete genome sequence of Truepera radiovictrix type strain (RQ-24T)[J]. Standards in Genomic Sciences, 2011, 4(1): 91-99. doi: 10.4056/sigs.1563919
CrossRef Google Scholar
Pub Med
|
[59]
|
LIU C, YAN J, HUANG Q, et al. The addition of sawdust reduced the emission of nitrous oxide in pig manure composting by altering the bacterial community structure and functions[J]. Environmental Science and Pollution Research, 2022, 29(3): 3733-3742. doi: 10.1007/s11356-021-15786-2
CrossRef Google Scholar
Pub Med
|
[60]
|
SMII L, HANIA W B, CAYOL J L, et al. Fusibacter bizertensis sp. nov., isolated from a corroded kerosene storage tank[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 117-121. doi: 10.1099/ijs.0.066183-0
CrossRef Google Scholar
Pub Med
|
[61]
|
郭海娟, 顾一宁, 马放, 等. 好氧颗粒污泥处理市政污水性能与微生物特性研究[J]. 环境科学学报, 2020, 40(10): 3688-3695. doi: 10.13671/j.hjkxxb.2020.0404
CrossRef Google Scholar
Pub Med
|
[62]
|
ZHONG Z P, LIU Y, WANG F, et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(5): 2084-2089. doi: 10.1099/ijsem.0.000997
CrossRef Google Scholar
Pub Med
|
[63]
|
端正花, 潘留明, 陈晓欧, 等. 低温下活性污泥膨胀的微生物群落结构研究[J]. 环境科学, 2016, 37(3): 1070-1074. doi: 10.13227/j.hjkx.2016.03.036
CrossRef Google Scholar
Pub Med
|
[64]
|
HERBST F A, GONÇALVES S C L, BEHR T, et al. Proteogenomic refinement of the Neomegalonema perideroedesT genome annotation[J]. Proteomics, 2019, 19(9): 1800330. doi: 10.1002/pmic.201800330
CrossRef Google Scholar
Pub Med
|
[65]
|
贺雪濛, 丁丽丽, 张璐璐, 等. 氮磷失衡下膨胀污泥性能及膨胀菌群落结构变化[J]. 环境科学, 2018, 39(4): 1782-1793. doi: 10.13227/j.hjkx.201708094
CrossRef Google Scholar
Pub Med
|
[66]
|
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
CrossRef Google Scholar
Pub Med
|
[67]
|
LUQUE-ALMAGRO V M, GATES A J, MORENO-VIVIÁN C, et al. Bacterial nitrate assimilation: Gene distribution and regulation[J]. Biochemical Society Transactions, 2011, 39(6): 1838-1843. doi: 10.1042/BST20110688
CrossRef Google Scholar
Pub Med
|
[68]
|
TAN X, YANG Y L, LIU Y W, et al. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland[J]. Bioresource Technology, 2021, 337: 125449. doi: 10.1016/j.biortech.2021.125449
CrossRef Google Scholar
Pub Med
|
[69]
|
ZHU L, DING W, FENG L, et al. Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem[J]. Bioresource Technology, 2012, 108: 1-7. doi: 10.1016/j.biortech.2011.12.033
CrossRef Google Scholar
Pub Med
|
[70]
|
NAN X, MA B, QIAN W, et al. Achieving nitritation by treating sludge with free nitrous acid: The effect of starvation[J]. Bioresource Technology, 2019, 271: 159-165. doi: 10.1016/j.biortech.2018.09.113
CrossRef Google Scholar
Pub Med
|
[71]
|
YU Q, ZHOU R, WANG Y, et al. Corpse decomposition increases nitrogen pollution and alters the succession of nirK-type denitrifying communities in different water types[J]. Science of the Total Environment, 2020, 747: 141472. doi: 10.1016/j.scitotenv.2020.141472
CrossRef Google Scholar
Pub Med
|
[72]
|
ZOU X, ZHOU Y, GAO M, et al. Effective N2O emission control during the nitritation/denitritation treatment of ammonia rich wastewater[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107234. doi: 10.1016/j.jece.2022.107234
CrossRef Google Scholar
Pub Med
|