-
近年来,随着养殖业的规模化与集约化发展,满足了人们日常生活的需要,但产生的养殖废水所造成的环境问题,也越来越引起人们的重视[1]。调查显示,猪场废水中有机物、氨态氮和磷的成分非常高,且采用不同的清粪方式对废水的水质有很大影响。有研究表明,采用水冲式清理粪污,废水中悬浮物的浓度是干清粪的2倍,这主要来源于猪粪和饲料。此外,猪场废水还具有其他特点,如废水的固液混合造成了粘度增大,冲圈时间的集中对废水处理工艺造成较大的冲击负荷等[2-3]。因此,开发经济高效的猪场废水处理工艺,对推动猪场废水无害化处理与资源化利用具有重要意义[4]。
厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)是一种结合了厌氧消化工艺和膜分离技术的新型污水处理工艺[5]。利用膜组件的拦截作用,实现了污泥停留时间和水力停留时间完全分离,避免了厌氧消化过程中污泥流失,使系统保持较高的污泥浓度,提高了厌氧消化的效率和稳定性[6]。目前,对于AnMBR处理猪场养殖废水的研究相对较少,且多为实验室研究,工程应用可借鉴的经验、参数相对缺乏[7]。本研究采用中试规模外部浸没式平板膜生物反应器在中温厌氧条件下处理猪场养殖废水,研究其长期连续运行性能和污染物降解能力,为AnMBR处理猪场养殖废水的实际应用和优化控制等提供参考。
中试厌氧膜生物反应器处理养猪废水
Performance of a pilot anaerobic membrane bioreactor treating swine wastewater
-
摘要: 猪场养殖废水是一类有机污染物浓度高、悬浮物多、性质复杂的废水,在传统厌氧处理中存在消化污泥流失及处理效率低等问题。本研究采用中试规模外部浸没式厌氧膜生物反应器处理猪场实际废水,设计处理水量为1 m3·d−1,在HRT分别为8、5、3 d的3个阶段连续运行4个多月,考察了厌氧膜生物反应器的沼气产量、运行稳定性、污染物去除效果及膜组件运行性能和清洗效果。结果表明,系统运行期间ORP在−486~−545 mV;随着HRT缩短,有机负荷由0.5~1.88 kg·(m3·d)−1升高到5 kg·(m3·d)−1,沼气产量逐渐增大,产率为0.38~0.45 m3·kg−1。在整个运行过程中,VFA/ALK始终小于0.1,系统运行稳定。对TCOD、溶解性COD、氨氮、TN、TP去除率分别达到74%~86%、48%~68%、7%~12.8%、4.6%~16.7%、5%,其中溶解性COD去除率占总COD去除率的55%左右。系统运行期间初始膜通量设定为5 L·(m2·h)−1,在HRT=8 d时,清洗周期为20 d,随后不断缩短,当HRT为3 d时,清洗周期仅为10 d。通过水冲洗与化学清洗相结合的方式可有效缓解膜污染,进而恢复膜通量。以上研究结果可以为厌氧膜生物反应器处理猪场养殖废水工程应用提供参考。Abstract: Swine wastewater is a kind of wastewater with high concentration of organic pollutants, suspended solids and complex properties. Traditional anaerobic treatment has some problems such as loss of digested sludge, low efficiency and so on. In this study, a pilot-scale external submerged anaerobic membrane bioreactor was used to treat the actual wastewater from a pig farm. The designed water treatment capacity was 1 m3·d−1. In three stages of HRT=8 d, 5 d, and 3 d, the bioreactor was operated continuously for more than 4 months. The biogas production of anaerobic membrane bioreactor, operation stability, pollutant removal efficiency, as well as membrane module operation performance and cleaning efficiency were investigated. The results showed that the ORP was between −486 mV and −545 mV during the system operation. With the shortening of HRT, the organic load increased from 0.5~1.88 kg·(m3·d)−1 to 5 kg·(m3·d)−1, and the biogas production increased gradually, the yield was between 0.38 to 0.45 m3 kg−1. The VFA/ALK was always less than 0.1 during the whole process, the system maintained a stable running. The removal efficiencies of TCOD, SCOD, NH3-N, TN, and TP were 74%~86%, 48%~68%, 7%~12.8%, 4.6%~16.7%, and 5%, respectively. The removal efficiency of SCOD accounted for about 55% of TCOD. During the system operation, the initial membrane flux was set to 5L·(m2·h)−1. At HRT of 8 d, the cleaning period was 20 d, and then it was reduced continuously. At HRT of 3 d, the cleaning period was only 10 d. The combination of water washing and chemical cleaning could effectively alleviate membrane fouling and restore membrane flux. The above research results can provide a reference for the engineering application of anaerobic membrane bioreactor to treat swine wastewater.
-
表 1 实验废水与接种污泥基本性质
Table 1. Basic properties of test wastewater and inoculated sludge
g·L−1 项目 氨氮等污染物质量浓度/( g·L−1) pH TCOD SCOD BOD5 SS NH3-N TN TP 实验废水 12.1~15.8 5.1~7.6 4.8~6.2 1.8~3.4 1.3~1.7 1.4~1.8 0.06~0.09 7.2~8.2 接种污泥 14.7~16.9 — — 18.1~20.2 1.4~1.9 1.5~2.1 0.07~0.10 7.1~7.6 -
[1] 吴晓梅, 叶美锋, 吴飞龙. 我国规模化养猪场废水处理技术研究进展[J]. 福建农业科技, 2018(1): 36-40. doi: 10.13651/j.cnki.fjnykj.2018.01.012 [2] 周营, 俞捷径, 戴睿智. 规模化养猪场养殖废水处理案例分析[J]. 中国资源综合利用, 2020, 38(5): 199-201. doi: 10.3969/j.issn.1008-9500.2020.05.061 [3] 单晓明. 猪场养殖废水的工艺案例及探讨[J]. 广东化工, 2019, 46(9): 179-180. doi: 10.3969/j.issn.1007-1865.2019.09.083 [4] 张慧风, 王雅茜. 规模化养猪场废水处理分析及污染治理对策[J]. 中国资源综合利用, 2021, 39(4): 183-185. doi: 10.3969/j.issn.1008-9500.2021.04.055 [5] 孙凯, 陆晓峰, 周保昌. 厌氧膜生物反应器(AnMBR)处理高浓度豆制品废水的研究[J]. 膜科学与技术, 2011, 31(4): 65-69. doi: 10.3969/j.issn.1007-8924.2011.04.013 [6] 白玲, 蓝伟光, 严滨. 废水处理中膜生物反应器的研究进展[J]. 膜科学与技术, 2008, 28(1): 91-96. doi: 10.3969/j.issn.1007-8924.2008.01.019 [7] 刘婉岑, 李赟, 袁京. 厌氧膜生物反应器在畜禽养殖废水处理领域的应用机遇与挑战[J]. 中国沼气, 2020, 38(6): 3-13. doi: 10.3969/j.issn.1000-1166.2020.06.002 [8] LEE S M, JUNG J Y, CHUNG Y C. Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor[J]. Water Research, 2001, 35(2): 471-477. doi: 10.1016/S0043-1354(00)00255-4 [9] 闫林涛, 黄振兴, 肖小兰. 厌氧膜生物反应器处理高浓度有机废水的中试研究[J]. 食品与生物技术学报, 2015, 34(12): 1248-1255. doi: 10.3969/j.issn.1673-1689.2015.12.003 [10] 董良飞, 周凯迪. 新型厌氧膜生物反应器城市污泥消化研究[J]. 常州大学学报(自然科学版), 2018, 30(1): 1-8. [11] S. S M, EUGENIO G G, F. H R. Monitoring of the anaerobic methane fermentation process[J]. Enzyme and Microbial Technology, 1990, 12(10): 722-730. doi: 10.1016/0141-0229(90)90142-D [12] 亓金鹏, 肖小兰, 张瑞娜. AnMBR处理高盐榨菜废水的运行效能及膜污染特性[J]. 环境工程学报, 2021, 15(2): 553-562. doi: 10.12030/j.cjee.202004134 [13] XU, RUI, YANG, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste with different fat, oil, and grease contents: study of reactor performance and extracellular polymeric substances[J]. RSC Advances, 2015, 5(125): 103547-103556. doi: 10.1039/C5RA21459A [14] 王亮. 规模化猪场养殖废水高效脱氮除磷技术探究[D]. 杭州: 浙江大学, 2013. [15] 韩伟铖, 颜成, 周立祥. 规模化猪场废水常规生化处理的效果及原因剖析[J]. 农业环境科学学报, 2017, 36(5): 989-995. doi: 10.11654/jaes.2016-1508 [16] 邵一奇, 王电站, 颜成. 厌氧消化对猪场废水中溶解性和颗粒态有机物的组成与性质的影响[J]. 南京农业大学学报, 2019, 42(4): 713-720. doi: 10.7685/jnau.201810031 [17] JIANG M, WESTERHOLM M, QIAO W, et al. High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor[J]. Energy, 2020, 193(C): 116783. [18] 金鹏康, 刘柯君, 王先宝. 慢速可生物降解有机物的转化特性及利用[J]. 环境工程学报, 2016, 10(5): 2168-2174. doi: 10.12030/j.cjee.201412209 [19] 李扬, 乔亮. 现代化养殖场粪污废水处理技术探讨[J]. 北京农业, 2014(30): 297. doi: 10.3969/j.issn.1000-6966.2014.30.232 [20] DAI W, XU X, LIU B, et al. Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation–anammox for biogas recovery and nitrogen removal[J]. Chemical Engineering Journal, 2015, 279: 725-734. doi: 10.1016/j.cej.2015.05.036 [21] 田林, 吴冰, 戴晓虎. 中温厌氧膜生物反应器处理高浓度有机废水的启动特性研究[J]. 中国科技信息, 2016(Z1): 20-22,14. doi: 10.3969/j.issn.1001-8972.2016.03.003 [22] KATHERINE S, MANUEL A, ESTRELLA A, et al. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing archaea enriched biofilm[J]. Anaerobe, 2004, 10(1): 13-18. doi: 10.1016/j.anaerobe.2003.10.004 [23] 唐崇俭, 郑平, 金仁村. 猪场废水厌氧生物处理FAN抑制及其调控对策的研究[J]. 高校化学工程学报, 2008, 22(4): 697-702. doi: 10.3321/j.issn:1003-9015.2008.04.027 [24] 张树军, 彭永臻, 曾薇. 高氮城市生活垃圾渗滤液短程生物脱氮[J]. 环境科学学报, 2006, 26(5): 751-756. doi: 10.3321/j.issn:0253-2468.2006.05.009 [25] NIU Q, HOJO T, QIAO W, et al. Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure[J]. Chemical Engineering Journal, 2014, 244: 587-596. doi: 10.1016/j.cej.2013.11.074 [26] 宁建凤, 陈家欢, 李盟军. 规模化猪场新建厌氧发酵系统对废水氮、磷养分的处理效应[J]. 广东农业科学, 2015, 42(23): 5-11. doi: 10.3969/j.issn.1004-874X.2015.23.002 [27] 慕银银, 郭新超, 王小林. HRT对厌氧膜生物反应器混合液性质和膜污染的影响[J]. 水处理技术, 2016, 42(1): 110-114. doi: 10.16796/j.cnki.1000-3770.2016.01.024 [28] 牛承鑫, 潘阳, 陆雪琴. 厌氧膜生物反应器(AnMBR)膜污染过程及控制方法研究进展[J]. 环境化学, 2019, 38(12): 2851-2859. doi: 10.7524/j.issn.0254-6108.2019010802 [29] KORNBOONRAKSA T, LEE S H. Factors affecting the performance of membrane bioreactor for piggery wastewater treatment[J]. Bioresource Technology, 2009, 100(12): 2926-2932. doi: 10.1016/j.biortech.2009.01.048 [30] 许美兰, 李元高, 叶茜. 厌氧旋转膜生物反应器处理畜禽养殖废水[J]. 中国给水排水, 2018, 34(23): 91-95. doi: 10.19853/j.zgjsps.1000-4602.2018.23.018 [31] 乔玮, 姜萌萌, SM W. 厌氧平板膜生物反应器连续处理猪场废水研究[J]. 中国环境科学, 2018, 38(12): 4502-4508. doi: 10.3969/j.issn.1000-6923.2018.12.013