有机紫外吸收剂对海洋生物的毒理效应

裴继影, 胡俊杰, 张瑞杰, 余克服. 有机紫外吸收剂对海洋生物的毒理效应[J]. 生态毒理学报, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
引用本文: 裴继影, 胡俊杰, 张瑞杰, 余克服. 有机紫外吸收剂对海洋生物的毒理效应[J]. 生态毒理学报, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
Pei Jiying, Hu Junjie, Zhang Ruijie, Yu Kefu. Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms[J]. Asian journal of ecotoxicology, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
Citation: Pei Jiying, Hu Junjie, Zhang Ruijie, Yu Kefu. Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms[J]. Asian journal of ecotoxicology, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002

有机紫外吸收剂对海洋生物的毒理效应

    作者简介: 裴继影(1989—),女,博士研究生,研究方向为基于质谱代谢组学的环境毒理学研究,E-mail: pjying@gxu.edu.cn
    通讯作者: 余克服, E-mail: kefuyu@scsio.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(21665003,42090041,42030502);广西自然科学基金资助项目(2018GXNSFAA281354,AD17129063,AA17204074)

  • 中图分类号: X171.5

Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms

    Corresponding author: Yu Kefu, kefuyu@scsio.ac.cn
  • Fund Project:
  • 摘要: 有机紫外吸收剂(OUVs)广泛应用于个人护理品及油漆、塑料等工业产品中,并通过海上娱乐活动、陆源径流输入等方式进入海洋环境,对海洋生物产生内分泌干扰、遗传毒性和致畸致死性等危害。本文分别从体内和体外毒性综述了OUVs对海洋生物的毒理效应。在体内毒理实验中,OUVs在个体水平、组织水平和分子水平上均会对海洋生物(鱼类、贝类、甲壳类、棘皮类和珊瑚等)造成毒性效应,包括致死、生长发育毒性、组织病变、酶活性改变、基因变异和代谢异常等。在体外毒理实验中,OUVs影响海洋细菌、海藻及珊瑚细胞的生长,造成贻贝血细胞受损。最后,本文展望了OUVs在海洋生物毒理研究方面仍需努力的方向。
  • 加载中
  • 仝天衡, 杨慧婷, 陈辉辉, 等. 紫外吸收剂在湖泊中的分布及其对底栖动物的毒性效应[J]. 生态毒理学报, 2019, 14(3): 1-17

    Tong T H, Yang H T, Chen H H, et al. Distribution of UV absorbers in lake environment and their toxicological effects on benthic animals[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 1-17(in Chinese)

    Kameda Y, Kimura K, Miyazaki M. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes[J]. Environmental Pollution, 2011, 159(6): 1570-1576
    Tsui M M, Leung H W, Kwan B K, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan[J]. Journal of Hazardous Materials, 2015, 292: 180-187
    Bachelot M, Li Z, Munaron D, et al. Organic UV filter concentrations in marine mussels from French coastal regions[J]. The Science of the Total Environment, 2012, 420: 273-279
    Pegoraro C N, Harner T, Su K, et al. Occurrence and gas-particle partitioning of organic UV-filters in urban air[J]. Environmental Science & Technology, 2020, 54(20): 12881-12889
    Gago-Ferrero P, Alonso M B, Bertozzi C P, et al. First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins[J]. Environmental Science & Technology, 2013, 47(11): 5619-5625
    Peng X Z, Fan Y J, Jin J B, et al. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea[J]. Environmental Pollution, 2017, 225: 55-65
    Mitchelmore C L, He K, Gonsior M, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii[J]. The Science of the Total Environment, 2019, 670: 398-410
    Sang Z Y, Leung K S Y. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters[J]. Science of the Total Environment, 2016, 566-567: 489-498
    Falfushynska H, Sokolov E P, Fisch K, et al. Biomarker-based assessment of sublethal toxicity of organic UV filters (ensulizole and octocrylene) in a sentinel marine bivalve Mytilus edulis[J]. The Science of the Total Environment, 2021, 798: 149171
    Araújo M J, Rocha R J M, Soares A M V M, et al. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858[J]. The Science of the Total Environment, 2018, 628-629: 1395-1404
    Downs C A, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. virgin islands[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(2): 265-288
    Paredes E, Perez S, Rodil R, et al. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata[J]. Chemosphere, 2014, 104: 44-50
    Hong H Z, Wang J X, Shi D L. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus[J]. Aquatic Toxicology, 2021, 232: 105742
    Santonocito M, Salerno B, Trombini C, et al. Stress under the sun: Effects of exposure to low concentrations of UV-filter 4- methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam Ruditapes philippinarum[J]. Aquatic Toxicology, 2020, 221: 105418
    朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6): 2991-3002

    Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments[J]. Environmental Science, 2018, 39(6): 2991-3002(in Chinese)

    刘玮, 李航, 赵欣研, 等. 防晒剂对海洋生态环境的污染及潜在影响[J]. 中华皮肤科杂志, 2021, 54(5): 456-458

    Liu W, Li H, Zhao X Y, et al. Sunscreen pollution of marine ecosystems and its potential impact[J]. Chinese Journal of Dermatology, 2021, 54(5): 456-458(in Chinese)

    Lozano C, Givens J, Stien D, et al. Bioaccumulation and toxicological effects of UV-filters on marine species[J]. Sunscreens in Coastal Ecosystems, 2020, 1: 85-130
    Caloni S, Durazzano T, Franci G, et al. Sunscreens' UV filters risk for coastal marine environment biodiversity: A review[J]. Diversity, 2021, 13(8): 374
    Rainieri S, Barranco A, Primec M, et al. Occurrence and toxicity of musks and UV filters in the marine environment[J]. Food and Chemical Toxicology, 2017, 104: 57-68
    Bakand S, Winder C, Khalil C, et al. Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in vivo to in vitro test methods: A review[J]. Inhalation Toxicology, 2005, 17(13): 775-787
    Wernersson A S, Carere M, Maggi C, et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive[J]. Environmental Sciences Europe, 2015, 27(1): 1-11
    De Baat M L, van der Oost R, van der Lee G H, et al. Advancements in effect-based surface water quality assessment[J]. Water Research, 2020, 183: 116017
    van de Merwe J P, Neale P A, Melvin S D, et al. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides[J]. Aquatic Toxicology, 2018, 199: 263-268
    Al-Ammari A, Zhang L, Yang J Z, et al. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111948
    Hess F D. A Chlamydomonas algal bioassay for detecting growth inhibitor herbicides[J]. Weed Science, 1980, 28(5): 515-520
    Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7): e102108
    Huang Y R, Law J C, Lam T K, et al. Risks of organic UV filters: A review of environmental and human health concern studies[J]. The Science of the Total Environment, 2021, 755(Pt 1): 142486
    Catalano R, Labille J, Gaglio D, et al. Safety evaluation of TiO2 nanoparticle-based sunscreen UV filters on the development and the immunological state of the sea urchin Paracentrotus lividus[J]. Nanomaterials, 2020, 10(11): 2102
    Barmo C, Ciacci C, Canonico B, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 132-133: 9-18
    Xia B, Zhu L, Han Q, et al. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2017, 50: 128-135
    Miller R J, Lenihan H S, Muller E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton[J]. Environmental Science & Technology, 2010, 44(19): 7329-7334
    Nataraj B, Maharajan K, Hemalatha D, et al. Comparative toxicity of UV-filter octyl methoxycinnamate and its photoproducts on zebrafish development[J]. The Science of the Total Environment, 2020, 718: 134546
    Kim S, Jung D, Kho Y, et al. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study[J]. Aquatic Toxicology, 2014, 155: 244-252
    Chen T H, Wu Y T, Ding W H. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens)[J]. Ecotoxicology, 2016, 25(2): 302-309
    Coronado M, de Haro H, Deng X, et al. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish[J]. Aquatic Toxicology, 2008, 90(3): 182-187
    Liu H, Sun P, Liu H X, et al. Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters[J]. Ecotoxicology and Environmental Safety, 2015, 119: 116-122
    Barone A N, Hayes C E, Kerr J J, et al. Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris)[J]. Environmental Science and Pollution Research, 2019, 26(14): 14513-14520
    Colás-Ruiz N R, Ramirez G, Courant F, et al. Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone[J]. The Science of the Total Environment, 2022, 803: 150080
    Carvalhais A, Pereira B, Sabato M, et al. Mild effects of sunscreen agents on a marine flatfish: Oxidative stress, energetic profiles, neurotoxicity and behaviour in response to titanium dioxide nanoparticles and oxybenzone[J]. International Journal of Molecular Sciences, 2021, 22(4): 1567
    Thia E, Chou P H, Chen P J. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity[J]. Water Research, 2020, 185: 116208
    朱新波, 王菊香, 董缪武, 等. 庆大霉素对不同年龄组豚鼠的药动学与耳毒性研究[J]. 中国临床药理学与治疗学, 2004, 9(3): 329-332

    Zhu X B, Wang J X, Dong M W, et al. Experimental study on ototoxicity of gentamycin at therapeutic doses in infant or adult Guinea pigs[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2004, 9(3): 329-332(in Chinese)

    Giraldo A, Montes R, Rodil R, et al. Ecotoxicological evaluation of the UV filters ethylhexyl dimethyl p-aminobenzoic acid and octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(4): 606-611
    Vieira Sanches M, Oliva M, De Marchi L, et al. Ecotoxicological screening of UV-filters using a battery of marine bioassays[J]. Environmental Pollution, 2021, 290: 118011
    Fent K, Kunz P Y, Zenker A, et al. A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnam-ate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor[J]. Marine Environmental Research, 2010, 69: S4-S6
    Mayer P, Reichenberg F. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?[J]. Environmental Toxicology and Chemistry, 2006, 25(10): 2639-2644
    Li V W, Tsui M P, Chen X P, et al. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos[J]. Environmental Science and Pollution Research International, 2016, 23(9): 8275-8285
    Shore E A, Huber K E, Garrett A D, et al. Four plastic additives reduce larval growth and survival in the sea urchin Strongylocentrotus purpuratus[J]. Marine Pollution Bulletin, 2022, 175: 113385
    覃祯俊, 余克服, 王英辉. 珊瑚礁生态修复的理论与实践[J]. 热带地理, 2016, 36(1): 80-86

    Qin Z J, Yu K F, Wang Y H. Review on ecological restoration theories and practices of coral reefs[J]. Tropical Geography, 2016, 36(1): 80-86(in Chinese)

    He T T, Tsui M M P, Tan C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2391-2399
    Wong M, Uppaluri C, Medina A, et al. The four elements of within-group conflict in animal societies: An experimental test using the clown anemonefish, Amphiprion percula[J]. Behavioral Ecology and Sociobiology, 2016, 70(9): 1467-1475
    Chen T H, Hsieh C Y, Ko F C, et al. Effect of the UV-filter benzophenone-3 on intra-colonial social behaviors of the false clown anemonefish (Amphiprion ocellaris)[J]. The Science of the Total Environment, 2018, 644: 1625-1629
    李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059-2069

    Li S, Yu K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059-2069(in Chinese)

    Downs C A, Kramarsky-Winter E, Fauth J E, et al. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata[J]. Ecotoxicology, 2014, 23(2): 175-191
    Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4): 441-447
    Guyon A, Smith K F, Charry M P, et al. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod[J]. Journal of Xenobiotics, 2018, 8(1): 7674
    方春华, 乔琨, 刘智禹, 等. 海洋生物中抗氧化酶的研究进展[J]. 渔业研究, 2016, 38(4): 331-342

    Fang C H, Qiao K, Liu Z Y, et al. The research progress of antioxidant enzymes in marine organisms[J]. Journal of Fisheries Research, 2016, 38(4): 331-342(in Chinese)

    Chaves Lopes F, de Castro M R, Caldas Barbosa S, et al. Effect of the UV filter, benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions[J]. Marine Pollution Bulletin, 2020, 158: 111401
    Cuccaro A, Oliva M, De Marchi L, et al. Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters[J]. Marine Pollution Bulletin, 2022, 178: 113601
    Ziarrusta H, Mijangos L, Picart-Armada S, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone[J]. Chemosphere, 2018, 211: 624-631
    Stien D, Clergeaud F, Rodrigues A M S, et al. Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction[J]. Analytical Chemistry, 2019, 91(1): 990-995
    Stien D, Suzuki M, Rodrigues A M S, et al. A unique approach to monitor stress in coral exposed to emerging pollutants[J]. Scientific Reports, 2020, 10(1): 1-11
    Zhang P, Lu G H, Liu J C, et al. Toxicological responses of Carassius auratus induced by benzophenone-3 exposure and the association with alteration of gut microbiota[J]. The Science of the Total Environment, 2020, 747: 141255
    O'Donovan S, Mestre N C, Abel S, et al. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana[J]. The Science of the Total Environment, 2020, 733: 139102
    Thorel E, Clergeaud F, Jaugeon L, et al. Effect of 10 UV filters on the brine shrimp Artemia salina and the marine microalga Tetraselmis sp.[J]. Toxics, 2020, 8(2): 29
    Bandeira S O. Marine botanical communities in southern Mozambique: Sea grass and seaweed diversity and conservation[J]. Ambio, 1995, 24: 506-509
    Coogan M A, Edziyie R E, La Point T W, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere, 2007, 67(10): 1911-1918
    王娜. 山东青岛近岸海域浮游细菌的生态学研究[D]. 青岛: 中国海洋大学, 2008: 5-6 Wang N. The research on bacterioplankton ecology in coastal water of Qindao in Shandong[D]. Qingdao:Ocean University of China, 2008: 5

    -6(in Chinese)

    赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用[J]. 净水技术, 2008, 27(5): 18-24

    Zhao H N, Wang X J, Xia S Q. Application of aquatic ecotoxicology in assessment of wastewater toxicity[J]. Water Purification Technology, 2008, 27(5): 18-24(in Chinese)

    Lozano C, Matallana-Surget S, Givens J, et al. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation[J]. The Science of the Total Environment, 2020, 722: 137803
    Zhang Q Y, Ma X Y, Dzakpasu M, et al. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity[J]. Ecotoxicology and Environmental Safety, 2017, 142: 338-347
    Liu H, Sun P, Liu H X, et al. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment[J]. Chemosphere, 2015, 135: 182-188
    Tian L, Huang L, Cui H W, et al. The toxicological impact of the sunscreen active ingredient octinoxate on the photosynthesis activity of Chlorella sp.[J]. Marine Environmental Research, 2021, 171: 105469
    Glynn P. Coral reef bleaching: Facts, hypotheses and implications[J]. Global Change Biology, 1996, 2(6): 495-509
    Rumpho M E, Summer E J, Manhart J R. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis[J]. Plant Physiology, 2000, 123(1): 29-38
    Howe P L, Reichelt-Brushett A J, Clark M W. Aiptasia pulchella: A tropical cnidarian representative for laboratory ecotoxicological research[J]. Environmental Toxicology and Chemistry, 2012, 31(11): 2653-2662
    Liang J Y, Yu K F, Wang Y H, et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress[J]. Frontiers in Microbiology, 2017, 8: 979
    Chen B, Yu K F, Liao Z H, et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea[J]. Science of the Total Environment, 2021, 765: 142690
    Canesi L, Lorusso L C, Ciacci C, et al. Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens:in vitro andin vivo studies[J]. Aquatic Toxicology, 2007, 81(1): 36-44
  • 加载中
计量
  • 文章访问数:  1493
  • HTML全文浏览数:  1493
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-06-04
裴继影, 胡俊杰, 张瑞杰, 余克服. 有机紫外吸收剂对海洋生物的毒理效应[J]. 生态毒理学报, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
引用本文: 裴继影, 胡俊杰, 张瑞杰, 余克服. 有机紫外吸收剂对海洋生物的毒理效应[J]. 生态毒理学报, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
Pei Jiying, Hu Junjie, Zhang Ruijie, Yu Kefu. Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms[J]. Asian journal of ecotoxicology, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002
Citation: Pei Jiying, Hu Junjie, Zhang Ruijie, Yu Kefu. Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms[J]. Asian journal of ecotoxicology, 2023, 18(2): 198-211. doi: 10.7524/AJE.1673-5897.20220604002

有机紫外吸收剂对海洋生物的毒理效应

    通讯作者: 余克服, E-mail: kefuyu@scsio.ac.cn
    作者简介: 裴继影(1989—),女,博士研究生,研究方向为基于质谱代谢组学的环境毒理学研究,E-mail: pjying@gxu.edu.cn
  • 1. 广西大学海洋学院, 南宁 530004;
  • 2. 广西南海珊瑚礁研究重点实验室, 南宁 530004
基金项目:

国家自然科学基金资助项目(21665003,42090041,42030502);广西自然科学基金资助项目(2018GXNSFAA281354,AD17129063,AA17204074)

摘要: 有机紫外吸收剂(OUVs)广泛应用于个人护理品及油漆、塑料等工业产品中,并通过海上娱乐活动、陆源径流输入等方式进入海洋环境,对海洋生物产生内分泌干扰、遗传毒性和致畸致死性等危害。本文分别从体内和体外毒性综述了OUVs对海洋生物的毒理效应。在体内毒理实验中,OUVs在个体水平、组织水平和分子水平上均会对海洋生物(鱼类、贝类、甲壳类、棘皮类和珊瑚等)造成毒性效应,包括致死、生长发育毒性、组织病变、酶活性改变、基因变异和代谢异常等。在体外毒理实验中,OUVs影响海洋细菌、海藻及珊瑚细胞的生长,造成贻贝血细胞受损。最后,本文展望了OUVs在海洋生物毒理研究方面仍需努力的方向。

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回