仝天衡, 杨慧婷, 陈辉辉, 等. 紫外吸收剂在湖泊中的分布及其对底栖动物的毒性效应[J]. 生态毒理学报, 2019, 14(3): 1-17
Tong T H, Yang H T, Chen H H, et al. Distribution of UV absorbers in lake environment and their toxicological effects on benthic animals[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 1-17(in Chinese)
|
Kameda Y, Kimura K, Miyazaki M. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes[J]. Environmental Pollution, 2011, 159(6): 1570-1576
|
Tsui M M, Leung H W, Kwan B K, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan[J]. Journal of Hazardous Materials, 2015, 292: 180-187
|
Bachelot M, Li Z, Munaron D, et al. Organic UV filter concentrations in marine mussels from French coastal regions[J]. The Science of the Total Environment, 2012, 420: 273-279
|
Pegoraro C N, Harner T, Su K, et al. Occurrence and gas-particle partitioning of organic UV-filters in urban air[J]. Environmental Science & Technology, 2020, 54(20): 12881-12889
|
Gago-Ferrero P, Alonso M B, Bertozzi C P, et al. First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins[J]. Environmental Science & Technology, 2013, 47(11): 5619-5625
|
Peng X Z, Fan Y J, Jin J B, et al. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea[J]. Environmental Pollution, 2017, 225: 55-65
|
Mitchelmore C L, He K, Gonsior M, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii[J]. The Science of the Total Environment, 2019, 670: 398-410
|
Sang Z Y, Leung K S Y. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters[J]. Science of the Total Environment, 2016, 566-567: 489-498
|
Falfushynska H, Sokolov E P, Fisch K, et al. Biomarker-based assessment of sublethal toxicity of organic UV filters (ensulizole and octocrylene) in a sentinel marine bivalve Mytilus edulis[J]. The Science of the Total Environment, 2021, 798: 149171
|
Araújo M J, Rocha R J M, Soares A M V M, et al. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858[J]. The Science of the Total Environment, 2018, 628-629: 1395-1404
|
Downs C A, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. virgin islands[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(2): 265-288
|
Paredes E, Perez S, Rodil R, et al. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata[J]. Chemosphere, 2014, 104: 44-50
|
Hong H Z, Wang J X, Shi D L. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus[J]. Aquatic Toxicology, 2021, 232: 105742
|
Santonocito M, Salerno B, Trombini C, et al. Stress under the sun: Effects of exposure to low concentrations of UV-filter 4- methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam Ruditapes philippinarum[J]. Aquatic Toxicology, 2020, 221: 105418
|
朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6): 2991-3002
Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments[J]. Environmental Science, 2018, 39(6): 2991-3002(in Chinese)
|
刘玮, 李航, 赵欣研, 等. 防晒剂对海洋生态环境的污染及潜在影响[J]. 中华皮肤科杂志, 2021, 54(5): 456-458
Liu W, Li H, Zhao X Y, et al. Sunscreen pollution of marine ecosystems and its potential impact[J]. Chinese Journal of Dermatology, 2021, 54(5): 456-458(in Chinese)
|
Lozano C, Givens J, Stien D, et al. Bioaccumulation and toxicological effects of UV-filters on marine species[J]. Sunscreens in Coastal Ecosystems, 2020, 1: 85-130
|
Caloni S, Durazzano T, Franci G, et al. Sunscreens' UV filters risk for coastal marine environment biodiversity: A review[J]. Diversity, 2021, 13(8): 374
|
Rainieri S, Barranco A, Primec M, et al. Occurrence and toxicity of musks and UV filters in the marine environment[J]. Food and Chemical Toxicology, 2017, 104: 57-68
|
Bakand S, Winder C, Khalil C, et al. Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in vivo to in vitro test methods: A review[J]. Inhalation Toxicology, 2005, 17(13): 775-787
|
Wernersson A S, Carere M, Maggi C, et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive[J]. Environmental Sciences Europe, 2015, 27(1): 1-11
|
De Baat M L, van der Oost R, van der Lee G H, et al. Advancements in effect-based surface water quality assessment[J]. Water Research, 2020, 183: 116017
|
van de Merwe J P, Neale P A, Melvin S D, et al. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides[J]. Aquatic Toxicology, 2018, 199: 263-268
|
Al-Ammari A, Zhang L, Yang J Z, et al. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111948
|
Hess F D. A Chlamydomonas algal bioassay for detecting growth inhibitor herbicides[J]. Weed Science, 1980, 28(5): 515-520
|
Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7): e102108
|
Huang Y R, Law J C, Lam T K, et al. Risks of organic UV filters: A review of environmental and human health concern studies[J]. The Science of the Total Environment, 2021, 755(Pt 1): 142486
|
Catalano R, Labille J, Gaglio D, et al. Safety evaluation of TiO2 nanoparticle-based sunscreen UV filters on the development and the immunological state of the sea urchin Paracentrotus lividus[J]. Nanomaterials, 2020, 10(11): 2102
|
Barmo C, Ciacci C, Canonico B, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 132-133: 9-18
|
Xia B, Zhu L, Han Q, et al. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2017, 50: 128-135
|
Miller R J, Lenihan H S, Muller E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton[J]. Environmental Science & Technology, 2010, 44(19): 7329-7334
|
Nataraj B, Maharajan K, Hemalatha D, et al. Comparative toxicity of UV-filter octyl methoxycinnamate and its photoproducts on zebrafish development[J]. The Science of the Total Environment, 2020, 718: 134546
|
Kim S, Jung D, Kho Y, et al. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study[J]. Aquatic Toxicology, 2014, 155: 244-252
|
Chen T H, Wu Y T, Ding W H. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens)[J]. Ecotoxicology, 2016, 25(2): 302-309
|
Coronado M, de Haro H, Deng X, et al. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish[J]. Aquatic Toxicology, 2008, 90(3): 182-187
|
Liu H, Sun P, Liu H X, et al. Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters[J]. Ecotoxicology and Environmental Safety, 2015, 119: 116-122
|
Barone A N, Hayes C E, Kerr J J, et al. Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris)[J]. Environmental Science and Pollution Research, 2019, 26(14): 14513-14520
|
Colás-Ruiz N R, Ramirez G, Courant F, et al. Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone[J]. The Science of the Total Environment, 2022, 803: 150080
|
Carvalhais A, Pereira B, Sabato M, et al. Mild effects of sunscreen agents on a marine flatfish: Oxidative stress, energetic profiles, neurotoxicity and behaviour in response to titanium dioxide nanoparticles and oxybenzone[J]. International Journal of Molecular Sciences, 2021, 22(4): 1567
|
Thia E, Chou P H, Chen P J. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity[J]. Water Research, 2020, 185: 116208
|
朱新波, 王菊香, 董缪武, 等. 庆大霉素对不同年龄组豚鼠的药动学与耳毒性研究[J]. 中国临床药理学与治疗学, 2004, 9(3): 329-332
Zhu X B, Wang J X, Dong M W, et al. Experimental study on ototoxicity of gentamycin at therapeutic doses in infant or adult Guinea pigs[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2004, 9(3): 329-332(in Chinese)
|
Giraldo A, Montes R, Rodil R, et al. Ecotoxicological evaluation of the UV filters ethylhexyl dimethyl p-aminobenzoic acid and octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(4): 606-611
|
Vieira Sanches M, Oliva M, De Marchi L, et al. Ecotoxicological screening of UV-filters using a battery of marine bioassays[J]. Environmental Pollution, 2021, 290: 118011
|
Fent K, Kunz P Y, Zenker A, et al. A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnam-ate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor[J]. Marine Environmental Research, 2010, 69: S4-S6
|
Mayer P, Reichenberg F. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?[J]. Environmental Toxicology and Chemistry, 2006, 25(10): 2639-2644
|
Li V W, Tsui M P, Chen X P, et al. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos[J]. Environmental Science and Pollution Research International, 2016, 23(9): 8275-8285
|
Shore E A, Huber K E, Garrett A D, et al. Four plastic additives reduce larval growth and survival in the sea urchin Strongylocentrotus purpuratus[J]. Marine Pollution Bulletin, 2022, 175: 113385
|
覃祯俊, 余克服, 王英辉. 珊瑚礁生态修复的理论与实践[J]. 热带地理, 2016, 36(1): 80-86
Qin Z J, Yu K F, Wang Y H. Review on ecological restoration theories and practices of coral reefs[J]. Tropical Geography, 2016, 36(1): 80-86(in Chinese)
|
He T T, Tsui M M P, Tan C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2391-2399
|
Wong M, Uppaluri C, Medina A, et al. The four elements of within-group conflict in animal societies: An experimental test using the clown anemonefish, Amphiprion percula[J]. Behavioral Ecology and Sociobiology, 2016, 70(9): 1467-1475
|
Chen T H, Hsieh C Y, Ko F C, et al. Effect of the UV-filter benzophenone-3 on intra-colonial social behaviors of the false clown anemonefish (Amphiprion ocellaris)[J]. The Science of the Total Environment, 2018, 644: 1625-1629
|
李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059-2069
Li S, Yu K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059-2069(in Chinese)
|
Downs C A, Kramarsky-Winter E, Fauth J E, et al. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata[J]. Ecotoxicology, 2014, 23(2): 175-191
|
Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4): 441-447
|
Guyon A, Smith K F, Charry M P, et al. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod[J]. Journal of Xenobiotics, 2018, 8(1): 7674
|
方春华, 乔琨, 刘智禹, 等. 海洋生物中抗氧化酶的研究进展[J]. 渔业研究, 2016, 38(4): 331-342
Fang C H, Qiao K, Liu Z Y, et al. The research progress of antioxidant enzymes in marine organisms[J]. Journal of Fisheries Research, 2016, 38(4): 331-342(in Chinese)
|
Chaves Lopes F, de Castro M R, Caldas Barbosa S, et al. Effect of the UV filter, benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions[J]. Marine Pollution Bulletin, 2020, 158: 111401
|
Cuccaro A, Oliva M, De Marchi L, et al. Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters[J]. Marine Pollution Bulletin, 2022, 178: 113601
|
Ziarrusta H, Mijangos L, Picart-Armada S, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone[J]. Chemosphere, 2018, 211: 624-631
|
Stien D, Clergeaud F, Rodrigues A M S, et al. Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction[J]. Analytical Chemistry, 2019, 91(1): 990-995
|
Stien D, Suzuki M, Rodrigues A M S, et al. A unique approach to monitor stress in coral exposed to emerging pollutants[J]. Scientific Reports, 2020, 10(1): 1-11
|
Zhang P, Lu G H, Liu J C, et al. Toxicological responses of Carassius auratus induced by benzophenone-3 exposure and the association with alteration of gut microbiota[J]. The Science of the Total Environment, 2020, 747: 141255
|
O'Donovan S, Mestre N C, Abel S, et al. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana[J]. The Science of the Total Environment, 2020, 733: 139102
|
Thorel E, Clergeaud F, Jaugeon L, et al. Effect of 10 UV filters on the brine shrimp Artemia salina and the marine microalga Tetraselmis sp.[J]. Toxics, 2020, 8(2): 29
|
Bandeira S O. Marine botanical communities in southern Mozambique: Sea grass and seaweed diversity and conservation[J]. Ambio, 1995, 24: 506-509
|
Coogan M A, Edziyie R E, La Point T W, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere, 2007, 67(10): 1911-1918
|
王娜. 山东青岛近岸海域浮游细菌的生态学研究[D]. 青岛: 中国海洋大学, 2008: 5-6 Wang N. The research on bacterioplankton ecology in coastal water of Qindao in Shandong[D]. Qingdao:Ocean University of China, 2008: 5
-6(in Chinese)
|
赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用[J]. 净水技术, 2008, 27(5): 18-24
Zhao H N, Wang X J, Xia S Q. Application of aquatic ecotoxicology in assessment of wastewater toxicity[J]. Water Purification Technology, 2008, 27(5): 18-24(in Chinese)
|
Lozano C, Matallana-Surget S, Givens J, et al. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation[J]. The Science of the Total Environment, 2020, 722: 137803
|
Zhang Q Y, Ma X Y, Dzakpasu M, et al. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity[J]. Ecotoxicology and Environmental Safety, 2017, 142: 338-347
|
Liu H, Sun P, Liu H X, et al. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment[J]. Chemosphere, 2015, 135: 182-188
|
Tian L, Huang L, Cui H W, et al. The toxicological impact of the sunscreen active ingredient octinoxate on the photosynthesis activity of Chlorella sp.[J]. Marine Environmental Research, 2021, 171: 105469
|
Glynn P. Coral reef bleaching: Facts, hypotheses and implications[J]. Global Change Biology, 1996, 2(6): 495-509
|
Rumpho M E, Summer E J, Manhart J R. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis[J]. Plant Physiology, 2000, 123(1): 29-38
|
Howe P L, Reichelt-Brushett A J, Clark M W. Aiptasia pulchella: A tropical cnidarian representative for laboratory ecotoxicological research[J]. Environmental Toxicology and Chemistry, 2012, 31(11): 2653-2662
|
Liang J Y, Yu K F, Wang Y H, et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress[J]. Frontiers in Microbiology, 2017, 8: 979
|
Chen B, Yu K F, Liao Z H, et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea[J]. Science of the Total Environment, 2021, 765: 142690
|
Canesi L, Lorusso L C, Ciacci C, et al. Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens:in vitro andin vivo studies[J]. Aquatic Toxicology, 2007, 81(1): 36-44
|