砷甜菜碱的合成途径和代谢过程
Biosynthesis Pathways and Metabolic Processes of Arsenobetaine
-
摘要: 砷污染问题引起全球高度关注,在中国、南亚和东南亚等地尤为严重。砷通过食物链传递对生态系统以及人类健康造成潜在危害。研究发现海洋鱼类具有独特的高砷甜菜碱(arsenobetaine, AsB)富集能力,人类通过摄食海洋鱼类会摄取大量的AsB,可能造成潜在的健康危害。然而,AsB在不同生物体内的生物转化(合成和降解)过程尚不清楚。本文对已知和推测的AsB合成和降解过程进行综述,探究海洋生物体内高AsB富集原因和可能的合成途径,哺乳动物体内的AsB代谢过程,以及环境中微生物在AsB降解过程中发挥的作用,加深我们对AsB沿食物链传递和代谢过程的认识,为防治砷污染,降低砷污染对生态与人体健康的风险提供理论依据,促进砷生态毒理学的发展。Abstract: Arsenic pollution, a serious environmental problem especially in China, South Asia and Southeast Asia, has aroused great concern worldwide. Arsenic is transmitted through the food chain and results in potential risk to the ecosystems and human health. It has been reported that marine fish have a unique enrichment capacity of high concentration of arsenobetaine (AsB), and human uptake a large amount of AsB through consumption of marine fish. However, the process of AsB biotransformation (biosynthesis and degradation) in different organisms is not clear. In this review, the biosynthetic and degradation processes of AsB were summarized to explore the reasons of high AsB enrichment in marine organisms and possible synthetic pathways. We also reviewed the potential AsB metabolic processes in mammals, and the involvement of microorganisms in AsB degradation was also included. All these information should provide a theoretical basis for understanding the transmission and metabolism process of AsB along the food chain, and promote the development of arsenic ecotoxicology. Better understanding of the biosynthetic and metabolic process of AsB not only supply fundamental information in making strategies to prevent and control arsenic pollution, but also in reducing the risk of arsenic pollution to the ecology and human health.
-
Key words:
- arsenobetaine /
- marine organisms /
- mammal /
- biotransformation /
- synthesis /
- degradation
-
-
Acharyya S K, Chakraborty P, Lahiri S, et al. Arsenic poisoning in the Ganges delta[J]. Nature, 1999, 401(6753): 545-547 Stokstad E. Bangladesh. Agricultural pumping linked to arsenic[J]. Science, 2002, 298(5598): 1535-1537 Rodríguez-Lado L, Sun G F, Berg M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868 Lin M C, Liao C M. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan[J]. Food and Chemical Toxicology, 2008, 46(2): 701-709 Moe B, Peng H Y, Lu X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49: 113-124 Luvonga C, Rimmer C A, Yu L L, et al. Organoarsenicals in seafood: Occurrence, dietary exposure, toxicity, and risk assessment considerations - A review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 943-960 Fontcuberta M, Calderon J, Villalbí J R, et al. Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10013-10022 Zhang W, Wang W X. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters[J]. Journal of Hazardous Materials, 2012, 215-216: 65-74 Zhang W, Wang W X, Zhang L. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China Estuary[J]. Ecotoxicology, 2013, 22(4): 671-682 Amlund H, Ingebrigtsen K, Hylland K, et al. Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of[14C]arsenobetaine[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2006, 143(2): 171-178 Sele V, Sloth J J, Lundebye A K, et al. Arsenolipids in marine oils and fats: A review of occurrence, chemistry and future research needs[J]. Food Chemistry, 2012, 133(3): 618-630 Wolle M M, Conklin S D. Speciation analysis of arsenic in seafood and seaweed: Part Ⅰ—Evaluation and optimization of methods[J]. Analytical and Bioanalytical Chemistry, 2018, 410(22): 5675-5687 Sakurai T, Kojima C, Ochiai M, et al. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood[J]. International Immunopharmacology, 2004, 4(2): 179-184 Caumette G, Koch I, Reimer K J. Arsenobetaine formation in plankton: A review of studies at the base of the aquatic food chain[J]. Journal of Environmental Monitoring, 2012, 14(11): 2841-2853 Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology-Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2015, 31: 249-259 Thomas D J, Bradham K. Role of complex organic arsenicals in food in aggregate exposure to arsenic[J]. Journal of Environmental Sciences, 2016, 49: 86-96 Taylor V, Goodale B, Raab A, et al. Human exposure to organic arsenic species from seafood[J]. Science of the Total Environment, 2017, 580: 266-282 Food and Agriculture Organization of the United Nations (FAO). The State of the World Fisheries and Aquaculture: Meeting the Sustainable Development Goals[R]. Rome: Food and Agriculture Organization of the United Nations, 2018: 6 Francesconi K A, Hunter D A, Bachmann B, et al. Uptake and transformation of arsenosugars in the shrimp Crangon crangon[J]. Applied Organometallic Chemistry, 1999, 13(10): 669-679 Francesconi K A, Khokiattiwong S, Goessler W, et al. A new arsenobetaine from marine organisms identified by liquid chromatography-mass spectrometry[J]. Chemical Communications, 2000(12): 1083-1084 Madsen A D, Goessler W, Pedersen S N, et al. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(6): 657-662 Anita G, Somkiat K, Walter G, et al. Identification of the new arsenic-containing betaine, trimethylarsoniopropionate, in tissues of a stranded sperm whale Physeter catodon[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82(1): 165-168 Grotti M, Soggia F, Lagomarsino C, et al. Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica[J]. Environmental Chemistry, 2008, 5(3): 171-175 Taylor V F, Jackson B P, Siegfried M, et al. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents[J]. Environmental Chemistry, 2012, 9(2): 130-138 Maher W A, Foster S, Krikowa F, et al. Thio arsenic species measurements in marine organisms and geothermal waters[J]. Microchemical Journal, 2013, 111: 82-90 Hoffmann T, Warmbold B, Smits S H J, et al. Arsenobetaine: An ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes[J]. Environmental Microbiology, 2018, 20(1): 305-323 Chen J, Garbinski L D, Rosen B, et al. Organoarsenical compounds: Occurrence, toxicology and biotransformation[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(3): 217-243 Ciardullo S, Aureli F, Raggi A, et al. Arsenic speciation in freshwater fish: Focus on extraction and mass balance[J]. Talanta, 2010, 81(1-2): 213-221 Zhang W, Guo Z Q, Song D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. The Science of the Total Environment, 2018, 626: 621-629 杜森, 张黎. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 2019, 14(1): 54-66 Du S, Zhang L. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 54-66(in Chinese)
Zhang W, Chen L Z, Zhou Y Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure[J]. Chemosphere, 2016, 147: 297-304 Zhang W, Guo Z Q, Zhou Y Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish[J]. Aquatic Toxicology, 2016, 179: 65-71 Zhang W, Wang W X, Zhang L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish[J]. Environmental Science & Technology, 2016, 50(5): 2413-2423 Zhang W, Huang L M, Wang W X. Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure[J]. Journal of Hazardous Materials, 2012, 221: 162-169 Bears H, Richards J G, Schulte P M. Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus)[J]. Aquatic Toxicology, 2006, 77(3): 257-266 赵艳芳, 尚德荣, 宁劲松, 等. 水产品中不同形态砷化合物的毒性研究进展[J]. 海洋科学, 2009, 33(9): 92-96 Zhao Y F, Shang D R, Ning J S, et al. Researches on the toxicity of arsenic species in seafood[J]. Marine Sciences, 2009, 33(9): 92-96(in Chinese)
Larsen Erik H, Francesconi Kevin A. Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters[J]. Journal of the Marine Biological Association of the United Kingdom, 2003, 83(2): 283-284 Clowes L A, Francesconi K A. Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2004, 137(1): 35-42 Krishnakumar P K, Qurban M A, Stiboller M, et al. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment[J]. The Science of the Total Environment, 2016, 566-567: 1235-1244 Whaley-Martin K J, Koch I, Reimer K J. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site[J]. Talanta, 2012, 88: 187-192 Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes[J]. Science of the Total Environment, 2018, 616-617: 594-601 Zhang W, Song D D, Tan Q G, et al. Physiologically based pharmacokinetic model for the biotransportation of arsenic in marine medaka (Oryzias melastigma)[J]. Environmental Science & Technology, 2020, 54(12): 7485-7493 Song D D, Chen L Z, Zhu S Q, et al. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia[J]. Environmental Pollution, 2022, 305: 119321 Xiong H Y, Tan Q G, Zhang J C, et al. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish[J]. Aquatic Toxicology, 2021, 240: 105991 Popowich A, Zhang Q, Le X C. Arsenobetaine: The ongoing mystery[J]. National Science Review, 2016, 3(4): 451-458 Kunito T, Kubota R, Fujihara J, et al. Arsenic in marine mammals, seabirds, and sea turtles[J]. Reviews of Environmental Contamination and Toxicology, 2008, 195: 31-69 Edmonds J S, Francesconi K A, Hansen J A. Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): A likely precursor of arsenobetaine in marine fauna[J]. Experientia, 1982, 38(6): 643-644 Christakopoulos A, Norin H, Sandström M, et al. Cellular metabolism of arsenocholine[J]. Journal of Applied Toxicology, 1988, 8(2): 119-127 Cullen W, Reimer K. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89: 713-764 Francesconi K A, Edmonds J S. Arsenic in the sea[J]. Oceanography and Marine Biology-An Annual Review, 1993, 31: 111-151 Borak J, Hosgood H D. Seafood arsenic: Implications for human risk assessment[J]. Regulatory Toxicology and Pharmacology, 2007, 47(2): 204-212 Marafante E, Vahter M, Dencker L. Metabolism of arsenocholine in mice, rats and rabbits[J]. The Science of the Total Environment, 1984, 34(3): 223-240 Gailer J, Lrgolic K J, Francesconi K A, et al. Metabolism of arsenic compounds by the blue mussel Mytilus edulis after accumulation from seawater spiked with arsenic compounds[J]. Applied Organometallic Chemistry, 1995, 9(4): 341-355 Kaise T, Horiguchi Y, Fukui S, et al. Acute toxicity and metabolism of arsenocholine in mice[J]. Applied Organometallic Chemistry, 1992, 6: 369-373 Foster S, Maher W. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ?[J]. Journal of Environmental Sciences (China), 2016, 49: 131-139 Devesa V, Loos A, Súñer M A, et al. Transformation of organoarsenical species by the microflora of freshwater crayfish[J]. Journal of Agricultural and Food Chemistry, 2005, 53(26): 10297-10305 Edmonds J S, Francesconi K A. Organoarsenic Compounds in the Marine Environment[M]// Craig P J. ed. Organometallic Compounds in the Environment. New York: Wiley, 2003: 195-222 Hanaoka K, Uchida K, Tagawa S, et al. Uptake and degradation of arsenobetaine by the microorganisms occurring in sediments[J]. Applied Organometallic Chemistry, 1995, 9(7): 573-579 Jenkins R O, Ritchie A W, Edmonds J S, et al. Bacterial degradation of arsenobetaine via dimethylarsinoylacetate[J]. Archives of Microbiology, 2003, 180(2): 142-150 Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3): 173-180 Kirby J, Maher W. Tissue accumulation and distribution of arsenic compounds in three marine fish species: Relationship to trophic position[J]. Applied Organometallic Chemistry, 2002, 16: 108-115 Ritchie A W, Edmonds J S, Goessler W, et al. An origin for arsenobetaine involving bacterial formation of an arsenic-carbon bond[J]. FEMS Microbiology Letters, 2004, 235(1): 95-99 Francesconi K A, Goessler W, Panutrakul S, et al. A novel arsenic containing riboside (arsenosugar) in three species of gastropod[J]. Science of the Total Environment, 1998, 221(2-3): 139-148 Kirby J, Maher W, Spooner D. Arsenic occurrence and species in near-shore macroalgae-feeding marine animals[J]. Environmental Science & Technology, 2005, 39(16): 5999-6005 Xi S H, Jin Y P, Lv X Q, et al. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats[J]. Biological Trace Element Research, 2010, 134(1): 84-97 Kenyon E M, Hughes M F, Adair B M, et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water[J]. Toxicology and Applied Pharmacology, 2008, 232(3): 448-455 Vahter M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181-182: 211-217 Newcombe C, Raab A, Williams P N, et al. Accumulation or production of arsenobetaine in humans?[J]. Journal of Environmental Monitoring, 2010, 12(4): 832-837 Vahter M. Species differences in the metabolism of arsenic compounds[J]. Applied Organometallic Chemistry, 1994, 8(3): 175-182 Vahter M, Marafante E, Dencker L. Metabolism of arsenobetaine in mice, rats and rabbits[J]. The Science of the Total Environment, 1983, 30: 197-211 Yamauchi H, Kaise T, Yamamura Y. Metabolism and excretion of orally administered arsenobetaine in the hamster[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(3): 350-355 Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine[J]. Chemosphere, 1985, 14: 1327-1332 Le X C, Ma M S. Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection[J]. Journal of Chromatography A, 1997, 764(1): 55-64 Choi B S, Choi S J, Kim D W, et al. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(1): 222-229 Kuehnelt D, Goessler W. Organoarsenic Compounds in the Terrestrial Environment[M]// Craig P J. ed. Organometallic Compounds in the Environment. 2nd ed. Chichester, UK: John Wiley, 2003: 223-275 Yoshida K, Inoue Y, Kuroda K, et al. Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats[J]. Journal of Toxicology and Environmental Health Part A, 1998, 54(3): 179-192 Yoshida K, Kuroda K, Inoue Y, et al. Metabolites of arsenobetaine in rats: Does decomposition of arsenobetaine occur in mammals?[J]. Applied Organometallic Chemistry, 2001, 15: 271-276 Ye Z J, Huang L P, Zhang J C, et al. Biodegradation of arsenobetaine to inorganic arsenic regulated by specific microorganisms and metabolites in mice[J]. Toxicology, 2022, 475: 153238 Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3): 173-180 Chávez-Capilla T, Beshai M, Maher W, et al. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract[J]. Food Chemistry, 2016, 212: 189-197 Hanaoka K, Kaise T, Kai N, et al. Arsenobetaine-decomposing ability of marine microorganisms occurring in particles collected at depths of 1100 and 3500 meters[J]. Applied Organometallic Chemistry, 1997, 11: 265-271 Hanaoka K, Yamamoto H, Kawashima K, et al. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms[J]. Applied Organometallic Chemistry, 1988, 2(4): 371-376 Sanders J G. Microbial role in the demethylation and oxidation of methylated arsenicals in seawater[J]. Chemosphere, 1979, 8(3): 135-137 Hanaoka K, Yamamoto H, Kawashima K, et al. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms[J]. Applied Organometallic Chemistry, 1988, 2(4): 371-376 Khokiattiwong S, Goessler W, Pedersen S N, et al. Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater[J]. Applied Organometallic Chemistry, 2001, 15(6): 481-489 Lehr C R, Polishchuk E, Radoja U, et al. Demethylation of methylarsenic species by Mycobacterium neoaurum[J]. Applied Organometallic Chemistry, 2003, 17(11): 831-834 Huang J H, Scherr F, Matzner E. Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils[J]. Water, Air, and Soil Pollution, 2007, 182(1): 31-41 Kann S, Estes C, Reichard J F, et al. Butylhydroquinone protects cells genetically deficient in glutathione biosynthesis from arsenite-induced apoptosis without significantly changing their prooxidant status[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2005, 87(2): 365-384 Engström K, Vahter M, Mlakar S, et al. Polymorphisms in arsenic(+Ⅲ oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism[J]. Environmental Health Perspectives, 2010, 119: 182-188 Zhu Y G, Xue X M, Kappler A, et al. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 2017, 51(13): 7326-7339 -

计量
- 文章访问数: 1748
- HTML全文浏览数: 1748
- PDF下载数: 78
- 施引文献: 0