砷甜菜碱的合成途径和代谢过程

张伟, 叶紫君, 黄莉萍, 赵芊瑜. 砷甜菜碱的合成途径和代谢过程[J]. 生态毒理学报, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
引用本文: 张伟, 叶紫君, 黄莉萍, 赵芊瑜. 砷甜菜碱的合成途径和代谢过程[J]. 生态毒理学报, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
Zhang Wei, Ye Zijun, Huang Liping, Zhao Qianyu. Biosynthesis Pathways and Metabolic Processes of Arsenobetaine[J]. Asian journal of ecotoxicology, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
Citation: Zhang Wei, Ye Zijun, Huang Liping, Zhao Qianyu. Biosynthesis Pathways and Metabolic Processes of Arsenobetaine[J]. Asian journal of ecotoxicology, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001

砷甜菜碱的合成途径和代谢过程

    作者简介: 张伟(1982—),女,博士,副教授,研究方向为环境污染物的生态毒理学、环境过程-暴露机制-生态健康、去除技术原理与应用,E-mail: zh_wei@gzhu.edu.cn
    通讯作者: 张伟, E-mail: zh_wei@gzhu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(21876180);广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目

  • 中图分类号: X171.5

Biosynthesis Pathways and Metabolic Processes of Arsenobetaine

    Corresponding author: Zhang Wei, zh_wei@gzhu.edu.cn
  • Fund Project:
  • 摘要: 砷污染问题引起全球高度关注,在中国、南亚和东南亚等地尤为严重。砷通过食物链传递对生态系统以及人类健康造成潜在危害。研究发现海洋鱼类具有独特的高砷甜菜碱(arsenobetaine, AsB)富集能力,人类通过摄食海洋鱼类会摄取大量的AsB,可能造成潜在的健康危害。然而,AsB在不同生物体内的生物转化(合成和降解)过程尚不清楚。本文对已知和推测的AsB合成和降解过程进行综述,探究海洋生物体内高AsB富集原因和可能的合成途径,哺乳动物体内的AsB代谢过程,以及环境中微生物在AsB降解过程中发挥的作用,加深我们对AsB沿食物链传递和代谢过程的认识,为防治砷污染,降低砷污染对生态与人体健康的风险提供理论依据,促进砷生态毒理学的发展。
  • 加载中
  • Acharyya S K, Chakraborty P, Lahiri S, et al. Arsenic poisoning in the Ganges delta[J]. Nature, 1999, 401(6753): 545-547
    Stokstad E. Bangladesh. Agricultural pumping linked to arsenic[J]. Science, 2002, 298(5598): 1535-1537
    Rodríguez-Lado L, Sun G F, Berg M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868
    Lin M C, Liao C M. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan[J]. Food and Chemical Toxicology, 2008, 46(2): 701-709
    Moe B, Peng H Y, Lu X F, et al. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing[J]. Journal of Environmental Sciences, 2016, 49: 113-124
    Luvonga C, Rimmer C A, Yu L L, et al. Organoarsenicals in seafood: Occurrence, dietary exposure, toxicity, and risk assessment considerations - A review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 943-960
    Fontcuberta M, Calderon J, Villalbí J R, et al. Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10013-10022
    Zhang W, Wang W X. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters[J]. Journal of Hazardous Materials, 2012, 215-216: 65-74
    Zhang W, Wang W X, Zhang L. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China Estuary[J]. Ecotoxicology, 2013, 22(4): 671-682
    Amlund H, Ingebrigtsen K, Hylland K, et al. Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of[14C]arsenobetaine[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2006, 143(2): 171-178
    Sele V, Sloth J J, Lundebye A K, et al. Arsenolipids in marine oils and fats: A review of occurrence, chemistry and future research needs[J]. Food Chemistry, 2012, 133(3): 618-630
    Wolle M M, Conklin S D. Speciation analysis of arsenic in seafood and seaweed: Part Ⅰ—Evaluation and optimization of methods[J]. Analytical and Bioanalytical Chemistry, 2018, 410(22): 5675-5687
    Sakurai T, Kojima C, Ochiai M, et al. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood[J]. International Immunopharmacology, 2004, 4(2): 179-184
    Caumette G, Koch I, Reimer K J. Arsenobetaine formation in plankton: A review of studies at the base of the aquatic food chain[J]. Journal of Environmental Monitoring, 2012, 14(11): 2841-2853
    Molin M, Ulven S M, Meltzer H M, et al. Arsenic in the human food chain, biotransformation and toxicology-Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2015, 31: 249-259
    Thomas D J, Bradham K. Role of complex organic arsenicals in food in aggregate exposure to arsenic[J]. Journal of Environmental Sciences, 2016, 49: 86-96
    Taylor V, Goodale B, Raab A, et al. Human exposure to organic arsenic species from seafood[J]. Science of the Total Environment, 2017, 580: 266-282
    Food and Agriculture Organization of the United Nations (FAO). The State of the World Fisheries and Aquaculture: Meeting the Sustainable Development Goals[R]. Rome: Food and Agriculture Organization of the United Nations, 2018: 6
    Francesconi K A, Hunter D A, Bachmann B, et al. Uptake and transformation of arsenosugars in the shrimp Crangon crangon[J]. Applied Organometallic Chemistry, 1999, 13(10): 669-679
    Francesconi K A, Khokiattiwong S, Goessler W, et al. A new arsenobetaine from marine organisms identified by liquid chromatography-mass spectrometry[J]. Chemical Communications, 2000(12): 1083-1084
    Madsen A D, Goessler W, Pedersen S N, et al. Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(6): 657-662
    Anita G, Somkiat K, Walter G, et al. Identification of the new arsenic-containing betaine, trimethylarsoniopropionate, in tissues of a stranded sperm whale Physeter catodon[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82(1): 165-168
    Grotti M, Soggia F, Lagomarsino C, et al. Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica[J]. Environmental Chemistry, 2008, 5(3): 171-175
    Taylor V F, Jackson B P, Siegfried M, et al. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents[J]. Environmental Chemistry, 2012, 9(2): 130-138
    Maher W A, Foster S, Krikowa F, et al. Thio arsenic species measurements in marine organisms and geothermal waters[J]. Microchemical Journal, 2013, 111: 82-90
    Hoffmann T, Warmbold B, Smits S H J, et al. Arsenobetaine: An ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes[J]. Environmental Microbiology, 2018, 20(1): 305-323
    Chen J, Garbinski L D, Rosen B, et al. Organoarsenical compounds: Occurrence, toxicology and biotransformation[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(3): 217-243
    Ciardullo S, Aureli F, Raggi A, et al. Arsenic speciation in freshwater fish: Focus on extraction and mass balance[J]. Talanta, 2010, 81(1-2): 213-221
    Zhang W, Guo Z Q, Song D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. The Science of the Total Environment, 2018, 626: 621-629
    杜森, 张黎. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 2019, 14(1): 54-66

    Du S, Zhang L. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 54-66(in Chinese)

    Zhang W, Chen L Z, Zhou Y Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure[J]. Chemosphere, 2016, 147: 297-304
    Zhang W, Guo Z Q, Zhou Y Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish[J]. Aquatic Toxicology, 2016, 179: 65-71
    Zhang W, Wang W X, Zhang L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish[J]. Environmental Science & Technology, 2016, 50(5): 2413-2423
    Zhang W, Huang L M, Wang W X. Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure[J]. Journal of Hazardous Materials, 2012, 221: 162-169
    Bears H, Richards J G, Schulte P M. Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus)[J]. Aquatic Toxicology, 2006, 77(3): 257-266
    赵艳芳, 尚德荣, 宁劲松, 等. 水产品中不同形态砷化合物的毒性研究进展[J]. 海洋科学, 2009, 33(9): 92-96

    Zhao Y F, Shang D R, Ning J S, et al. Researches on the toxicity of arsenic species in seafood[J]. Marine Sciences, 2009, 33(9): 92-96(in Chinese)

    Larsen Erik H, Francesconi Kevin A. Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters[J]. Journal of the Marine Biological Association of the United Kingdom, 2003, 83(2): 283-284
    Clowes L A, Francesconi K A. Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2004, 137(1): 35-42
    Krishnakumar P K, Qurban M A, Stiboller M, et al. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment[J]. The Science of the Total Environment, 2016, 566-567: 1235-1244
    Whaley-Martin K J, Koch I, Reimer K J. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site[J]. Talanta, 2012, 88: 187-192
    Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes[J]. Science of the Total Environment, 2018, 616-617: 594-601
    Zhang W, Song D D, Tan Q G, et al. Physiologically based pharmacokinetic model for the biotransportation of arsenic in marine medaka (Oryzias melastigma)[J]. Environmental Science & Technology, 2020, 54(12): 7485-7493
    Song D D, Chen L Z, Zhu S Q, et al. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia[J]. Environmental Pollution, 2022, 305: 119321
    Xiong H Y, Tan Q G, Zhang J C, et al. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish[J]. Aquatic Toxicology, 2021, 240: 105991
    Popowich A, Zhang Q, Le X C. Arsenobetaine: The ongoing mystery[J]. National Science Review, 2016, 3(4): 451-458
    Kunito T, Kubota R, Fujihara J, et al. Arsenic in marine mammals, seabirds, and sea turtles[J]. Reviews of Environmental Contamination and Toxicology, 2008, 195: 31-69
    Edmonds J S, Francesconi K A, Hansen J A. Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): A likely precursor of arsenobetaine in marine fauna[J]. Experientia, 1982, 38(6): 643-644
    Christakopoulos A, Norin H, Sandström M, et al. Cellular metabolism of arsenocholine[J]. Journal of Applied Toxicology, 1988, 8(2): 119-127
    Cullen W, Reimer K. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89: 713-764
    Francesconi K A, Edmonds J S. Arsenic in the sea[J]. Oceanography and Marine Biology-An Annual Review, 1993, 31: 111-151
    Borak J, Hosgood H D. Seafood arsenic: Implications for human risk assessment[J]. Regulatory Toxicology and Pharmacology, 2007, 47(2): 204-212
    Marafante E, Vahter M, Dencker L. Metabolism of arsenocholine in mice, rats and rabbits[J]. The Science of the Total Environment, 1984, 34(3): 223-240
    Gailer J, Lrgolic K J, Francesconi K A, et al. Metabolism of arsenic compounds by the blue mussel Mytilus edulis after accumulation from seawater spiked with arsenic compounds[J]. Applied Organometallic Chemistry, 1995, 9(4): 341-355
    Kaise T, Horiguchi Y, Fukui S, et al. Acute toxicity and metabolism of arsenocholine in mice[J]. Applied Organometallic Chemistry, 1992, 6: 369-373
    Foster S, Maher W. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ?[J]. Journal of Environmental Sciences (China), 2016, 49: 131-139
    Devesa V, Loos A, Súñer M A, et al. Transformation of organoarsenical species by the microflora of freshwater crayfish[J]. Journal of Agricultural and Food Chemistry, 2005, 53(26): 10297-10305
    Edmonds J S, Francesconi K A. Organoarsenic Compounds in the Marine Environment[M]// Craig P J. ed. Organometallic Compounds in the Environment. New York: Wiley, 2003: 195-222
    Hanaoka K, Uchida K, Tagawa S, et al. Uptake and degradation of arsenobetaine by the microorganisms occurring in sediments[J]. Applied Organometallic Chemistry, 1995, 9(7): 573-579
    Jenkins R O, Ritchie A W, Edmonds J S, et al. Bacterial degradation of arsenobetaine via dimethylarsinoylacetate[J]. Archives of Microbiology, 2003, 180(2): 142-150
    Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3): 173-180
    Kirby J, Maher W. Tissue accumulation and distribution of arsenic compounds in three marine fish species: Relationship to trophic position[J]. Applied Organometallic Chemistry, 2002, 16: 108-115
    Ritchie A W, Edmonds J S, Goessler W, et al. An origin for arsenobetaine involving bacterial formation of an arsenic-carbon bond[J]. FEMS Microbiology Letters, 2004, 235(1): 95-99
    Francesconi K A, Goessler W, Panutrakul S, et al. A novel arsenic containing riboside (arsenosugar) in three species of gastropod[J]. Science of the Total Environment, 1998, 221(2-3): 139-148
    Kirby J, Maher W, Spooner D. Arsenic occurrence and species in near-shore macroalgae-feeding marine animals[J]. Environmental Science & Technology, 2005, 39(16): 5999-6005
    Xi S H, Jin Y P, Lv X Q, et al. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats[J]. Biological Trace Element Research, 2010, 134(1): 84-97
    Kenyon E M, Hughes M F, Adair B M, et al. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water[J]. Toxicology and Applied Pharmacology, 2008, 232(3): 448-455
    Vahter M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181-182: 211-217
    Newcombe C, Raab A, Williams P N, et al. Accumulation or production of arsenobetaine in humans?[J]. Journal of Environmental Monitoring, 2010, 12(4): 832-837
    Vahter M. Species differences in the metabolism of arsenic compounds[J]. Applied Organometallic Chemistry, 1994, 8(3): 175-182
    Vahter M, Marafante E, Dencker L. Metabolism of arsenobetaine in mice, rats and rabbits[J]. The Science of the Total Environment, 1983, 30: 197-211
    Yamauchi H, Kaise T, Yamamura Y. Metabolism and excretion of orally administered arsenobetaine in the hamster[J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(3): 350-355
    Kaise T, Watanabe S, Itoh K. The acute toxicity of arsenobetaine[J]. Chemosphere, 1985, 14: 1327-1332
    Le X C, Ma M S. Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection[J]. Journal of Chromatography A, 1997, 764(1): 55-64
    Choi B S, Choi S J, Kim D W, et al. Effects of repeated seafood consumption on urinary excretion of arsenic species by volunteers[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(1): 222-229
    Kuehnelt D, Goessler W. Organoarsenic Compounds in the Terrestrial Environment[M]// Craig P J. ed. Organometallic Compounds in the Environment. 2nd ed. Chichester, UK: John Wiley, 2003: 223-275
    Yoshida K, Inoue Y, Kuroda K, et al. Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats[J]. Journal of Toxicology and Environmental Health Part A, 1998, 54(3): 179-192
    Yoshida K, Kuroda K, Inoue Y, et al. Metabolites of arsenobetaine in rats: Does decomposition of arsenobetaine occur in mammals?[J]. Applied Organometallic Chemistry, 2001, 15: 271-276
    Ye Z J, Huang L P, Zhang J C, et al. Biodegradation of arsenobetaine to inorganic arsenic regulated by specific microorganisms and metabolites in mice[J]. Toxicology, 2022, 475: 153238
    Harrington C F, Brima E I, Jenkins R O. Biotransformation of arsenobetaine by microorganisms from the human gastrointestinal tract[J]. Chemical Speciation & Bioavailability, 2008, 20(3): 173-180
    Chávez-Capilla T, Beshai M, Maher W, et al. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract[J]. Food Chemistry, 2016, 212: 189-197
    Hanaoka K, Kaise T, Kai N, et al. Arsenobetaine-decomposing ability of marine microorganisms occurring in particles collected at depths of 1100 and 3500 meters[J]. Applied Organometallic Chemistry, 1997, 11: 265-271
    Hanaoka K, Yamamoto H, Kawashima K, et al. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms[J]. Applied Organometallic Chemistry, 1988, 2(4): 371-376
    Sanders J G. Microbial role in the demethylation and oxidation of methylated arsenicals in seawater[J]. Chemosphere, 1979, 8(3): 135-137
    Hanaoka K, Yamamoto H, Kawashima K, et al. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms[J]. Applied Organometallic Chemistry, 1988, 2(4): 371-376
    Khokiattiwong S, Goessler W, Pedersen S N, et al. Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater[J]. Applied Organometallic Chemistry, 2001, 15(6): 481-489
    Lehr C R, Polishchuk E, Radoja U, et al. Demethylation of methylarsenic species by Mycobacterium neoaurum[J]. Applied Organometallic Chemistry, 2003, 17(11): 831-834
    Huang J H, Scherr F, Matzner E. Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils[J]. Water, Air, and Soil Pollution, 2007, 182(1): 31-41
    Kann S, Estes C, Reichard J F, et al. Butylhydroquinone protects cells genetically deficient in glutathione biosynthesis from arsenite-induced apoptosis without significantly changing their prooxidant status[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2005, 87(2): 365-384
    Engström K, Vahter M, Mlakar S, et al. Polymorphisms in arsenic(+Ⅲ oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism[J]. Environmental Health Perspectives, 2010, 119: 182-188
    Zhu Y G, Xue X M, Kappler A, et al. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 2017, 51(13): 7326-7339
  • 加载中
计量
  • 文章访问数:  1748
  • HTML全文浏览数:  1748
  • PDF下载数:  78
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-04
张伟, 叶紫君, 黄莉萍, 赵芊瑜. 砷甜菜碱的合成途径和代谢过程[J]. 生态毒理学报, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
引用本文: 张伟, 叶紫君, 黄莉萍, 赵芊瑜. 砷甜菜碱的合成途径和代谢过程[J]. 生态毒理学报, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
Zhang Wei, Ye Zijun, Huang Liping, Zhao Qianyu. Biosynthesis Pathways and Metabolic Processes of Arsenobetaine[J]. Asian journal of ecotoxicology, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001
Citation: Zhang Wei, Ye Zijun, Huang Liping, Zhao Qianyu. Biosynthesis Pathways and Metabolic Processes of Arsenobetaine[J]. Asian journal of ecotoxicology, 2023, 18(2): 188-197. doi: 10.7524/AJE.1673-5897.20220704001

砷甜菜碱的合成途径和代谢过程

    通讯作者: 张伟, E-mail: zh_wei@gzhu.edu.cn
    作者简介: 张伟(1982—),女,博士,副教授,研究方向为环境污染物的生态毒理学、环境过程-暴露机制-生态健康、去除技术原理与应用,E-mail: zh_wei@gzhu.edu.cn
  • 广州大学环境科学与工程学院, 广州 510006
基金项目:

国家自然科学基金面上项目(21876180);广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目

摘要: 砷污染问题引起全球高度关注,在中国、南亚和东南亚等地尤为严重。砷通过食物链传递对生态系统以及人类健康造成潜在危害。研究发现海洋鱼类具有独特的高砷甜菜碱(arsenobetaine, AsB)富集能力,人类通过摄食海洋鱼类会摄取大量的AsB,可能造成潜在的健康危害。然而,AsB在不同生物体内的生物转化(合成和降解)过程尚不清楚。本文对已知和推测的AsB合成和降解过程进行综述,探究海洋生物体内高AsB富集原因和可能的合成途径,哺乳动物体内的AsB代谢过程,以及环境中微生物在AsB降解过程中发挥的作用,加深我们对AsB沿食物链传递和代谢过程的认识,为防治砷污染,降低砷污染对生态与人体健康的风险提供理论依据,促进砷生态毒理学的发展。

English Abstract

参考文献 (90)

返回顶部

目录

/

返回文章
返回