有机紫外吸收剂对海洋生物的毒理效应
Toxicological Effects of Organic Ultraviolet Absorbers on Marine Organisms
-
摘要: 有机紫外吸收剂(OUVs)广泛应用于个人护理品及油漆、塑料等工业产品中,并通过海上娱乐活动、陆源径流输入等方式进入海洋环境,对海洋生物产生内分泌干扰、遗传毒性和致畸致死性等危害。本文分别从体内和体外毒性综述了OUVs对海洋生物的毒理效应。在体内毒理实验中,OUVs在个体水平、组织水平和分子水平上均会对海洋生物(鱼类、贝类、甲壳类、棘皮类和珊瑚等)造成毒性效应,包括致死、生长发育毒性、组织病变、酶活性改变、基因变异和代谢异常等。在体外毒理实验中,OUVs影响海洋细菌、海藻及珊瑚细胞的生长,造成贻贝血细胞受损。最后,本文展望了OUVs在海洋生物毒理研究方面仍需努力的方向。Abstract: Organic ultraviolet absorbers (OUVs) are widely used in personal care products and various industrial products including paints and plastics. They can be released into the marine environment eventually via coastal recreational activities, riverine runoff, etc., and subsequently pose endocrine-disrupting, genotoxic, teratogenic, and lethal effects on marine organisms. The present paper reviewed the in vivo and in vitro toxicity of OUVs to marine organisms. In vivo tests demonstrated OUVs can cause various toxic effects including death, growth and development toxicity, tissue lesions, enzyme activity change, gene variation and metabolic abnormalities, etc. (fish, shellfish, crustaceans, echinoderms, corals, etc.) at the individual, tissue and molecular levels on marine organisms. In vitro tests revealed that OUVs can induce growth inhibition of marine bacteria, algae and coral cells, and damage the hemocyte of mussel. Finally, future directions of toxicity of OUVs on marine organisms are proposed.
-
Key words:
- organic ultraviolet absorbers /
- marine organism /
- toxicity
-
-
仝天衡, 杨慧婷, 陈辉辉, 等. 紫外吸收剂在湖泊中的分布及其对底栖动物的毒性效应[J]. 生态毒理学报, 2019, 14(3): 1-17 Tong T H, Yang H T, Chen H H, et al. Distribution of UV absorbers in lake environment and their toxicological effects on benthic animals[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 1-17(in Chinese)
Kameda Y, Kimura K, Miyazaki M. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes[J]. Environmental Pollution, 2011, 159(6): 1570-1576 Tsui M M, Leung H W, Kwan B K, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan[J]. Journal of Hazardous Materials, 2015, 292: 180-187 Bachelot M, Li Z, Munaron D, et al. Organic UV filter concentrations in marine mussels from French coastal regions[J]. The Science of the Total Environment, 2012, 420: 273-279 Pegoraro C N, Harner T, Su K, et al. Occurrence and gas-particle partitioning of organic UV-filters in urban air[J]. Environmental Science & Technology, 2020, 54(20): 12881-12889 Gago-Ferrero P, Alonso M B, Bertozzi C P, et al. First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins[J]. Environmental Science & Technology, 2013, 47(11): 5619-5625 Peng X Z, Fan Y J, Jin J B, et al. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea[J]. Environmental Pollution, 2017, 225: 55-65 Mitchelmore C L, He K, Gonsior M, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii[J]. The Science of the Total Environment, 2019, 670: 398-410 Sang Z Y, Leung K S Y. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters[J]. Science of the Total Environment, 2016, 566-567: 489-498 Falfushynska H, Sokolov E P, Fisch K, et al. Biomarker-based assessment of sublethal toxicity of organic UV filters (ensulizole and octocrylene) in a sentinel marine bivalve Mytilus edulis[J]. The Science of the Total Environment, 2021, 798: 149171 Araújo M J, Rocha R J M, Soares A M V M, et al. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858[J]. The Science of the Total Environment, 2018, 628-629: 1395-1404 Downs C A, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. virgin islands[J]. Archives of Environmental Contamination and Toxicology, 2016, 70(2): 265-288 Paredes E, Perez S, Rodil R, et al. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata[J]. Chemosphere, 2014, 104: 44-50 Hong H Z, Wang J X, Shi D L. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus[J]. Aquatic Toxicology, 2021, 232: 105742 Santonocito M, Salerno B, Trombini C, et al. Stress under the sun: Effects of exposure to low concentrations of UV-filter 4- methylbenzylidene camphor (4-MBC) in a marine bivalve filter feeder, the Manila clam Ruditapes philippinarum[J]. Aquatic Toxicology, 2020, 221: 105418 朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6): 2991-3002 Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments[J]. Environmental Science, 2018, 39(6): 2991-3002(in Chinese)
刘玮, 李航, 赵欣研, 等. 防晒剂对海洋生态环境的污染及潜在影响[J]. 中华皮肤科杂志, 2021, 54(5): 456-458 Liu W, Li H, Zhao X Y, et al. Sunscreen pollution of marine ecosystems and its potential impact[J]. Chinese Journal of Dermatology, 2021, 54(5): 456-458(in Chinese)
Lozano C, Givens J, Stien D, et al. Bioaccumulation and toxicological effects of UV-filters on marine species[J]. Sunscreens in Coastal Ecosystems, 2020, 1: 85-130 Caloni S, Durazzano T, Franci G, et al. Sunscreens' UV filters risk for coastal marine environment biodiversity: A review[J]. Diversity, 2021, 13(8): 374 Rainieri S, Barranco A, Primec M, et al. Occurrence and toxicity of musks and UV filters in the marine environment[J]. Food and Chemical Toxicology, 2017, 104: 57-68 Bakand S, Winder C, Khalil C, et al. Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in vivo to in vitro test methods: A review[J]. Inhalation Toxicology, 2005, 17(13): 775-787 Wernersson A S, Carere M, Maggi C, et al. The European technical report on aquatic effect-based monitoring tools under the water framework directive[J]. Environmental Sciences Europe, 2015, 27(1): 1-11 De Baat M L, van der Oost R, van der Lee G H, et al. Advancements in effect-based surface water quality assessment[J]. Water Research, 2020, 183: 116017 van de Merwe J P, Neale P A, Melvin S D, et al. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides[J]. Aquatic Toxicology, 2018, 199: 263-268 Al-Ammari A, Zhang L, Yang J Z, et al. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111948 Hess F D. A Chlamydomonas algal bioassay for detecting growth inhibitor herbicides[J]. Weed Science, 1980, 28(5): 515-520 Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro[J]. PLoS One, 2014, 9(7): e102108 Huang Y R, Law J C, Lam T K, et al. Risks of organic UV filters: A review of environmental and human health concern studies[J]. The Science of the Total Environment, 2021, 755(Pt 1): 142486 Catalano R, Labille J, Gaglio D, et al. Safety evaluation of TiO2 nanoparticle-based sunscreen UV filters on the development and the immunological state of the sea urchin Paracentrotus lividus[J]. Nanomaterials, 2020, 10(11): 2102 Barmo C, Ciacci C, Canonico B, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis[J]. Aquatic Toxicology, 2013, 132-133: 9-18 Xia B, Zhu L, Han Q, et al. Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: An integrated biomarker approach[J]. Environmental Toxicology and Pharmacology, 2017, 50: 128-135 Miller R J, Lenihan H S, Muller E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton[J]. Environmental Science & Technology, 2010, 44(19): 7329-7334 Nataraj B, Maharajan K, Hemalatha D, et al. Comparative toxicity of UV-filter octyl methoxycinnamate and its photoproducts on zebrafish development[J]. The Science of the Total Environment, 2020, 718: 134546 Kim S, Jung D, Kho Y, et al. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study[J]. Aquatic Toxicology, 2014, 155: 244-252 Chen T H, Wu Y T, Ding W H. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens)[J]. Ecotoxicology, 2016, 25(2): 302-309 Coronado M, de Haro H, Deng X, et al. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish[J]. Aquatic Toxicology, 2008, 90(3): 182-187 Liu H, Sun P, Liu H X, et al. Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters[J]. Ecotoxicology and Environmental Safety, 2015, 119: 116-122 Barone A N, Hayes C E, Kerr J J, et al. Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris)[J]. Environmental Science and Pollution Research, 2019, 26(14): 14513-14520 Colás-Ruiz N R, Ramirez G, Courant F, et al. Multi-omic approach to evaluate the response of gilt-head sea bream (Sparus aurata) exposed to the UV filter sulisobenzone[J]. The Science of the Total Environment, 2022, 803: 150080 Carvalhais A, Pereira B, Sabato M, et al. Mild effects of sunscreen agents on a marine flatfish: Oxidative stress, energetic profiles, neurotoxicity and behaviour in response to titanium dioxide nanoparticles and oxybenzone[J]. International Journal of Molecular Sciences, 2021, 22(4): 1567 Thia E, Chou P H, Chen P J. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity[J]. Water Research, 2020, 185: 116208 朱新波, 王菊香, 董缪武, 等. 庆大霉素对不同年龄组豚鼠的药动学与耳毒性研究[J]. 中国临床药理学与治疗学, 2004, 9(3): 329-332 Zhu X B, Wang J X, Dong M W, et al. Experimental study on ototoxicity of gentamycin at therapeutic doses in infant or adult Guinea pigs[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2004, 9(3): 329-332(in Chinese)
Giraldo A, Montes R, Rodil R, et al. Ecotoxicological evaluation of the UV filters ethylhexyl dimethyl p-aminobenzoic acid and octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(4): 606-611 Vieira Sanches M, Oliva M, De Marchi L, et al. Ecotoxicological screening of UV-filters using a battery of marine bioassays[J]. Environmental Pollution, 2021, 290: 118011 Fent K, Kunz P Y, Zenker A, et al. A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnam-ate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor[J]. Marine Environmental Research, 2010, 69: S4-S6 Mayer P, Reichenberg F. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?[J]. Environmental Toxicology and Chemistry, 2006, 25(10): 2639-2644 Li V W, Tsui M P, Chen X P, et al. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos[J]. Environmental Science and Pollution Research International, 2016, 23(9): 8275-8285 Shore E A, Huber K E, Garrett A D, et al. Four plastic additives reduce larval growth and survival in the sea urchin Strongylocentrotus purpuratus[J]. Marine Pollution Bulletin, 2022, 175: 113385 覃祯俊, 余克服, 王英辉. 珊瑚礁生态修复的理论与实践[J]. 热带地理, 2016, 36(1): 80-86 Qin Z J, Yu K F, Wang Y H. Review on ecological restoration theories and practices of coral reefs[J]. Tropical Geography, 2016, 36(1): 80-86(in Chinese)
He T T, Tsui M M P, Tan C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2391-2399 Wong M, Uppaluri C, Medina A, et al. The four elements of within-group conflict in animal societies: An experimental test using the clown anemonefish, Amphiprion percula[J]. Behavioral Ecology and Sociobiology, 2016, 70(9): 1467-1475 Chen T H, Hsieh C Y, Ko F C, et al. Effect of the UV-filter benzophenone-3 on intra-colonial social behaviors of the false clown anemonefish (Amphiprion ocellaris)[J]. The Science of the Total Environment, 2018, 644: 1625-1629 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059-2069 Li S, Yu K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059-2069(in Chinese)
Downs C A, Kramarsky-Winter E, Fauth J E, et al. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata[J]. Ecotoxicology, 2014, 23(2): 175-191 Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4): 441-447 Guyon A, Smith K F, Charry M P, et al. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod[J]. Journal of Xenobiotics, 2018, 8(1): 7674 方春华, 乔琨, 刘智禹, 等. 海洋生物中抗氧化酶的研究进展[J]. 渔业研究, 2016, 38(4): 331-342 Fang C H, Qiao K, Liu Z Y, et al. The research progress of antioxidant enzymes in marine organisms[J]. Journal of Fisheries Research, 2016, 38(4): 331-342(in Chinese)
Chaves Lopes F, de Castro M R, Caldas Barbosa S, et al. Effect of the UV filter, benzophenone-3, on biomarkers of the yellow clam (Amarilladesma mactroides) under different pH conditions[J]. Marine Pollution Bulletin, 2020, 158: 111401 Cuccaro A, Oliva M, De Marchi L, et al. Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters[J]. Marine Pollution Bulletin, 2022, 178: 113601 Ziarrusta H, Mijangos L, Picart-Armada S, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone[J]. Chemosphere, 2018, 211: 624-631 Stien D, Clergeaud F, Rodrigues A M S, et al. Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction[J]. Analytical Chemistry, 2019, 91(1): 990-995 Stien D, Suzuki M, Rodrigues A M S, et al. A unique approach to monitor stress in coral exposed to emerging pollutants[J]. Scientific Reports, 2020, 10(1): 1-11 Zhang P, Lu G H, Liu J C, et al. Toxicological responses of Carassius auratus induced by benzophenone-3 exposure and the association with alteration of gut microbiota[J]. The Science of the Total Environment, 2020, 747: 141255 O'Donovan S, Mestre N C, Abel S, et al. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana[J]. The Science of the Total Environment, 2020, 733: 139102 Thorel E, Clergeaud F, Jaugeon L, et al. Effect of 10 UV filters on the brine shrimp Artemia salina and the marine microalga Tetraselmis sp.[J]. Toxics, 2020, 8(2): 29 Bandeira S O. Marine botanical communities in southern Mozambique: Sea grass and seaweed diversity and conservation[J]. Ambio, 1995, 24: 506-509 Coogan M A, Edziyie R E, La Point T W, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere, 2007, 67(10): 1911-1918 王娜. 山东青岛近岸海域浮游细菌的生态学研究[D]. 青岛: 中国海洋大学, 2008: 5-6 Wang N. The research on bacterioplankton ecology in coastal water of Qindao in Shandong[D]. Qingdao:Ocean University of China, 2008: 5 -6(in Chinese)
赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用[J]. 净水技术, 2008, 27(5): 18-24 Zhao H N, Wang X J, Xia S Q. Application of aquatic ecotoxicology in assessment of wastewater toxicity[J]. Water Purification Technology, 2008, 27(5): 18-24(in Chinese)
Lozano C, Matallana-Surget S, Givens J, et al. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation[J]. The Science of the Total Environment, 2020, 722: 137803 Zhang Q Y, Ma X Y, Dzakpasu M, et al. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity[J]. Ecotoxicology and Environmental Safety, 2017, 142: 338-347 Liu H, Sun P, Liu H X, et al. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment[J]. Chemosphere, 2015, 135: 182-188 Tian L, Huang L, Cui H W, et al. The toxicological impact of the sunscreen active ingredient octinoxate on the photosynthesis activity of Chlorella sp.[J]. Marine Environmental Research, 2021, 171: 105469 Glynn P. Coral reef bleaching: Facts, hypotheses and implications[J]. Global Change Biology, 1996, 2(6): 495-509 Rumpho M E, Summer E J, Manhart J R. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis[J]. Plant Physiology, 2000, 123(1): 29-38 Howe P L, Reichelt-Brushett A J, Clark M W. Aiptasia pulchella: A tropical cnidarian representative for laboratory ecotoxicological research[J]. Environmental Toxicology and Chemistry, 2012, 31(11): 2653-2662 Liang J Y, Yu K F, Wang Y H, et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress[J]. Frontiers in Microbiology, 2017, 8: 979 Chen B, Yu K F, Liao Z H, et al. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea[J]. Science of the Total Environment, 2021, 765: 142690 Canesi L, Lorusso L C, Ciacci C, et al. Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens:in vitro andin vivo studies[J]. Aquatic Toxicology, 2007, 81(1): 36-44 -

计量
- 文章访问数: 1489
- HTML全文浏览数: 1489
- PDF下载数: 95
- 施引文献: 0