微纳米塑料的人体健康风险研究进展

李娇, 陈大岭, 陈玉立, 吴恩荣, 卢坤. 微纳米塑料的人体健康风险研究进展[J]. 生态毒理学报, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
引用本文: 李娇, 陈大岭, 陈玉立, 吴恩荣, 卢坤. 微纳米塑料的人体健康风险研究进展[J]. 生态毒理学报, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
Li Jiao, Chen Daling, Chen Yuli, Wu Enrong, Lu Kun. Effects of Micro/nano Plastics on Human Health: A Review[J]. Asian journal of ecotoxicology, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
Citation: Li Jiao, Chen Daling, Chen Yuli, Wu Enrong, Lu Kun. Effects of Micro/nano Plastics on Human Health: A Review[J]. Asian journal of ecotoxicology, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003

微纳米塑料的人体健康风险研究进展

    作者简介: 李娇(1991—),女,硕士研究生,研究方向为医学检验技术在人体健康风险评估中的应用,E-mail: jiaoliay@163.com
    通讯作者: 吴恩荣, E-mail: 315016488@qq.com 卢坤, E-mail: kunlu@nju.edu.cn
  • 基金项目:

    国家自然科学基金青年项目(21906080);江苏省自然科学基金青年项目(BK20190318);江苏省卫计委科技发展资金立项项目(YKK18272)

  • 中图分类号: X171.5

Effects of Micro/nano Plastics on Human Health: A Review

    Corresponding authors: Wu Enrong, 315016488@qq.com ;  Lu Kun, kunlu@nju.edu.cn
  • Fund Project:
  • 摘要: 塑料制品在人们的日常生活中不可或缺,但是塑料的大量生产和使用,导致其不断地释放至环境中。在多种环境过程的作用下,塑料会发生降解、转化,形成微米甚至纳米塑料。近年来,微纳米塑料作为新污染物,对人体及其他生物体的安全构成了潜在威胁,因此引发的健康风险受到了科学家们的广泛关注。微纳米塑料能够经过多个途径进入人体,并对不同器官产生不同的毒性效应。因此,笔者将重点提供关于微纳米塑料对人体健康影响这一新兴主题的文献概述,系统阐述微纳米塑料对人体肠道、肝脏、肺部以及生殖系统方面的毒性效应以及其分子水平上的致毒机制,并进一步探讨了微纳米塑料的理化性质对其毒性效应的影响,最后探讨了未来微纳米塑料人体健康风险方面的研究方向。
  • 加载中
  • Stark M. Comment on “characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles”[J]. Environmental Science & Technology, 2022, 56(14): 10543-10544
    Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199
    Wu X W, Liu P, Zhao X L, et al. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review[J]. Journal of Hazardous Materials, 2022, 437: 129287
    Yee M S, Hii L W, Looi C K, et al. Impact of microplastics and nanoplastics on human health[J]. Nanomaterials, 2021, 11(2): 496
    Liu P, Zhan X, Wu X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks[J]. Chemosphere, 2020, 242: 125193
    Liu P, Shi Y Q, Wu X W, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics[J]. The Science of the Total Environment, 2021, 768: 144969
    Wu X W, Liu P, Gong Z M, et al. Humic acid and fulvic acid hinder long-term weathering of microplastics in lake water[J]. Environmental Science & Technology, 2021, 55(23): 15810-15820
    Blancho F, Davranche M, Hadri H E, et al. Nanoplastics identification in complex environmental matrices: Strategies for polystyrene and polypropylene[J]. Environmental Science & Technology, 2021, 55(13): 8753-8759
    Alimba C G, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile[J]. Environmental Toxicology and Pharmacology, 2019, 68: 61-74
    Adam V, Yang T, Nowack B. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters[J]. Environmental Toxicology and Chemistry, 2019, 38(2): 436-447
    Liu J, Ma Y N, Zhu D Q, et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain[J]. Environmental Science & Technology, 2018, 52(5): 2677-2685
    Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030-1034
    Wu X W, Liu P, Shi H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater[J]. Water Research, 2021, 188: 116456
    Qi Y L, Ossowicki A, Yang X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711
    Lu F X, Su Y, Ji Y T, et al. Release of zinc and polycyclic aromatic hydrocarbons from tire crumb rubber and toxicity of leachate to Daphnia magna: Effects of tire source and photoaging[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 651-656
    Yonkos L T, Friedel E A, Perez-Reyes A C, et al. Microplastics in four estuarine rivers in the Chesapeake Bay, USA[J]. Environmental Science & Technology, 2014, 48(24): 14195-14202
    Zang H D, Zhou J, Marshall M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148: 107926
    Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: Above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506
    Ma J, Chen F Y, Xu H, et al. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation[J]. Environmental Pollution, 2021, 288: 117748
    Su Y, Hu X, Tang H J, et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85
    Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21): 12300-12310
    Zhang Q, Xu E G, Li J N, et al. A review of microplastics in table salt, drinking water, and air: Direct human exposure[J]. Environmental Science & Technology, 2020, 54(7): 3740-3751
    Mattsson K, Ekvall M T, Hansson L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 2015, 49(1): 553-561
    Lehner R, Weder C, Petri-Fink A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4): 1748-1765
    Welle F, Franz R. Microplastic in bottled natural mineral water - literature review and considerations on exposure and risk assessment[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2018, 35(12): 2482-2492
    Mohamed Nor N H, Kooi M, Diepens N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096
    Yang Y F, Chen C Y, Lu T H, et al. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice[J]. Journal of Hazardous Materials, 2019, 366: 703-713
    Yong C Q Y, Valiyaveettil S, Tang B L. Toxicity of microplastics and nanoplastics in mammalian systems[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1509
    da Costa Araújo A P, Malafaia G. Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish[J]. Journal of Hazardous Materials, 2021, 401: 123263
    Jing J R, Zhang L, Han L, et al. Polystyrene micro-/ nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines[J]. Environment International, 2022, 161: 107131
    Prata J C. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126
    Cox K D, Covernton G A, Davies H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074
    Isobe A, Iwasaki S, Uchida K, et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066[J]. Nature Communications, 2019, 10(1): 417
    Huang S M, Huang X X, Bi R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486
    Li L, Zhao X L, Li Z Y, et al. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks[J]. Journal of Hazardous Materials, 2021, 411: 124955
    Kelly F J, Fussell J C. Toxicity of airborne particles-established evidence, knowledge gaps and emerging areas of importance[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378(2183): 20190322
    Kelly M R, Lant N J, Kurr M, et al. Importance of water-volume on the release of microplastic fibers from laundry[J]. Environmental Science & Technology, 2019, 53(20): 11735-11744
    Hernandez L M, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285
    Cheung P K, Fok L. Evidence of microbeads from personal care product contaminating the sea[J]. Marine Pollution Bulletin, 2016, 109(1): 582-585
    Revel M, Châtel A, Mouneyrac C. Micro(nano)plastics: A threat to human health?[J]. Current Opinion in Environmental Science & Health, 2018, 1: 17-23
    Sykes E A, Dai Q, Tsoi K M, et al. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy[J]. Nature Communications, 2014, 5: 3796
    Mittal A, Raber A S, Schaefer U F, et al. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization[J]. Vaccine, 2013, 31(34): 3442-3451
    Adachi K, Yamada N, Yoshida Y, et al. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin[J]. Experimental Dermatology, 2013, 22(4): 278-283
    Banerjee A, Shelver W L. Micro- and nanoplastic induced cellular toxicity in mammals: A review[J]. Science of the Total Environment, 2021, 755: 142518
    Ebrahimi P, Abbasi S, Pashaei R, et al. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review[J]. Chemosphere, 2022, 289: 133146
    Ding Y F, Zhang R Q, Li B Q, et al. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells[J]. Environmental Pollution, 2021, 280: 116974
    Abbasi S, Soltani N, Keshavarzi B, et al. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf[J]. Chemosphere, 2018, 205: 80-87
    Smith M, Love D C, Rochman C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386
    Bouwmeester H, Hollman P C H, Peters R J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology[J]. Environmental Science & Technology, 2015, 49(15): 8932-8947
    Campanale C, Massarelli C, Savino I, et al. A detailed review study on potential effects of microplastics and additives of concern on human health[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): E1212
    Banerjee A, Shelver W L. Micro- and nanoplastic-mediated pathophysiological changes in rodents, rabbits, and chickens: A review[J]. Journal of Food Protection, 2021, 84(9): 1480-1495
    Kannan K, Vimalkumar K. A review of human exposure to microplastics and insights into microplastics as obesogens[J]. Frontiers in Endocrinology, 2021, 12: 724989
    Gray A D, Weinstein J E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio)[J]. Environmental Toxicology and Chemistry, 2017, 36(11): 3074-3080
    Ebrahimi P, Abbasi S, Pashaei R, et al. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review[J]. Chemosphere, 2022, 289: 133146
    Yacobi N R, Malmstadt N, Fazlollahi F, et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles[J]. American Journal of Respiratory Cell and Molecular Biology, 2010, 42(5): 604-614
    Wu Q, Li G Y, Huo T B, et al. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring[J]. The Science of the Total Environment, 2021, 774: 145766
    Feng Y Y, Yuan H B, Wang W Z, et al. Co-exposure to polystyrene microplastics and lead aggravated ovarian toxicity in female mice via the PERK/eIF2α signaling pathway[J]. Ecotoxicology and Environmental Safety, 2022, 243: 113966
    Jing J R, Zhang L, Han L, et al. Polystyrene micro-/ nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines[J]. Environment International, 2022, 161: 107131
    Qiao J Y, Chen R, Wang M J, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction[J]. Nanoscale, 2021, 13(19): 8806-8816
    Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. The Science of the Total Environment, 2019, 649: 308-317
    Tomlin J, Read N W. Laxative properties of indigestible plastic particles[J]. BMJ (Clinical Research Ed), 1988, 297(6657): 1175-1176
    López de las Hazas M C, Boughanem H, Dávalos A. Un toward effects of micro- and nanoplastics: An expert review of their biological impact and epigenetic effects[J]. Advances in Nutrition, 2021, 13(4): 1310-1323
    Lu L, Luo T, Zhao Y, et al. Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health[J]. The Science of the Total Environment, 2019, 667: 94-100
    Xie S L, Zhou A G, Wei T L, et al. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 640-650
    Luo T, Wang C Y, Pan Z H, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring[J]. Environmental Science & Technology, 2019, 53(18): 10978-10992
    Deng Y F, Yan Z H, Shen R Q, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut[J]. Environment International, 2020, 143: 105916
    Qiao R X, Deng Y F, Zhang S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236: 124334
    Djouina M, Vignal C, Dehaut A, et al. Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice[J]. Environmental Research, 2022, 212(Pt B): 113230
    Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244: 125492
    Yan Z H, Liu Y F, Zhang T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421
    Bai Y L, Xin M G, Lin J M, et al. Banana starch intervention ameliorates diabetes-induced mood disorders via modulation of the gut microbiota-brain axis in diabetic rats[J]. Food and Agricultural Immunology, 2022, 33(1): 377-402
    Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267
    Cryan J F, Dinan T G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour[J]. Nature Reviews Neuroscience, 2012, 13(10): 701-712
    Chen J J, Rao C Y, Yuan R J, et al. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.)[J]. Science of the Total Environment, 2022, 814: 152681
    Deng Y F, Zhang Y, Qiao R X, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus)[J]. Journal of Hazardous Materials, 2018, 357: 348-354
    Huang J N, Wen B, Xu L, et al. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis[J]. Journal of Hazardous Materials, 2022, 421: 126830
    Teng M M, Zhao X L, Wang C J, et al. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain-intestine-microbiota axis[J]. ACS Nano, 2022, 16(5): 8190-8204
    Gasperi J, Wright S L, Dris R, et al. Microplastics in air: Are we breathing it in?[J]. Current Opinion in Environmental Science & Health, 2018, 1: 1-5
    Chen Q Q, Gao J N, Yu H R, et al. An emerging role of microplastics in the etiology of lung ground glass nodules[J].Environmental Sciences Europe, 2022, 34(1): 1-15
    Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907
    Gautam R, Jo J, Acharya M, et al. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines[J]. The Science of the Total Environment, 2022, 838(Pt 2): 156089
    Halimu G, Zhang Q R, Liu L, et al. Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism[J]. Journal of Hazardous Materials, 2022, 430: 128485
    Brown D M, Wilson M R, MacNee W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3): 191-199
    Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. The Science of the Total Environment, 2019, 694: 133794
    Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells[J]. Nanotoxicology, 2019, 13(8): 1117-1132
    Kern D G, Kuhn C, Ely E W, et al. Flock worker's lung: Broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies[J]. Chest, 2000, 117(1): 251-259
    Gallagher L G, Li W J, Ray R M, et al. Occupational exposures and risk of stomach and esophageal cancers: Update of a cohort of female textile workers in Shanghai, China[J]. American Journal of Industrial Medicine, 2015, 58(3): 267-275
    Wright S L, Kelly F J. Plastic and human health: A micro issue?[J]. Environmental Science & Technology, 2017, 51(12): 6634-6647
    Atis S, Tutluoglu B, Levent E, et al. The respiratory effects of occupational polypropylene flock exposure[J]. The European Respiratory Journal, 2005, 25(1): 110-117
    Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199
    Shi J, Deng H P, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics[J]. Chemosphere, 2022, 304: 135321
    Chen X B, Zhuang J S, Chen Q L, et al. Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data[J]. The Science of the Total Environment, 2022, 839: 155984
    Deng Y F, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 46687
    Cheng W, Li X L, Zhou Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids[J]. The Science of the Total Environment, 2022, 806(Pt 1): 150328
    Qiang L Y, Cheng J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 176: 226-233
    Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274
    Hou B L, Wang F Y, Liu T, et al. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice[J]. Journal of Hazardous Materials, 2021, 405: 124028
    Xie X M, Deng T, Duan J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110133
    Wu H, Xu T, Chen T, et al. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice[J]. The Science of the Total Environment, 2022, 838(Pt 2): 155825
    Jin H B, Ma T, Sha X X, et al. Polystyrene microplastics induced male reproductive toxicity in mice[J]. Journal of Hazardous Materials, 2021, 401: 123430
    Deng Y F, Yan Z H, Shen R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus)[J]. Journal of Hazardous Materials, 2021, 406: 124644
    Yang B W, Chen Y, Shi J L. Reactive oxygen species (ROS)-based nanomedicine[J]. Chemical Reviews, 2019, 119(8): 4881-4985
    Bedard K, Krause K H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology[J]. Physiological Reviews, 2007, 87(1): 245-313
    Huang W T, Yin H, Yang Y Y, et al. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota[J]. The Science of the Total Environment, 2021, 778: 146264
    Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857
    Limonta G, Mancia A, Benkhalqui A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1): 15775
    Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science & Technology, 2014, 48(20): 12336-12343
    Pan D, Vargas-Morales O, Zern B, et al. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells[J]. PLoS One, 2016, 11(3): e0152074
    Hollóczki O, Gehrke S. Can nanoplastics alter cell membranes?[J]. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 2020, 21(1): 9-12
    Choi D, Hwang J, Bang J, et al. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis[J]. The Science of the Total Environment, 2021, 752: 142242
    Poma, Vecchiotti G, Colafarina S, et al. In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line[J]. Nanomaterials, 2019, 9(9): E1299
    Li Z L, Feng C H, Pang W, et al. Nanoplastic-induced genotoxicity and intestinal damage in freshwater benthic clams (Corbicula fluminea): Comparison with microplastics[J]. ACS Nano, 2021, 15(6): 9469-9481
    Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1): 85-96
    Wang F J, Bexiga M G, Anguissola S, et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles[J]. Nanoscale, 2013, 5(22): 10868-10876
    Wang F J, Yu L, Monopoli M P, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9(8): 1159-1168
    Hollóczki O, Gehrke S. Nanoplastics can change the secondary structure of proteins[J]. Scientific Reports, 2019, 9(1): 16013
    Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239
  • 加载中
计量
  • 文章访问数:  2467
  • HTML全文浏览数:  2467
  • PDF下载数:  169
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-21
李娇, 陈大岭, 陈玉立, 吴恩荣, 卢坤. 微纳米塑料的人体健康风险研究进展[J]. 生态毒理学报, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
引用本文: 李娇, 陈大岭, 陈玉立, 吴恩荣, 卢坤. 微纳米塑料的人体健康风险研究进展[J]. 生态毒理学报, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
Li Jiao, Chen Daling, Chen Yuli, Wu Enrong, Lu Kun. Effects of Micro/nano Plastics on Human Health: A Review[J]. Asian journal of ecotoxicology, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003
Citation: Li Jiao, Chen Daling, Chen Yuli, Wu Enrong, Lu Kun. Effects of Micro/nano Plastics on Human Health: A Review[J]. Asian journal of ecotoxicology, 2023, 18(2): 175-187. doi: 10.7524/AJE.1673-5897.20220721003

微纳米塑料的人体健康风险研究进展

    通讯作者: 吴恩荣, E-mail: 315016488@qq.com ;  卢坤, E-mail: kunlu@nju.edu.cn
    作者简介: 李娇(1991—),女,硕士研究生,研究方向为医学检验技术在人体健康风险评估中的应用,E-mail: jiaoliay@163.com
  • 1. 南京市栖霞区医院, 南京 210046;
  • 2. 南京医科大学, 南京 210029;
  • 3. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023
基金项目:

国家自然科学基金青年项目(21906080);江苏省自然科学基金青年项目(BK20190318);江苏省卫计委科技发展资金立项项目(YKK18272)

摘要: 塑料制品在人们的日常生活中不可或缺,但是塑料的大量生产和使用,导致其不断地释放至环境中。在多种环境过程的作用下,塑料会发生降解、转化,形成微米甚至纳米塑料。近年来,微纳米塑料作为新污染物,对人体及其他生物体的安全构成了潜在威胁,因此引发的健康风险受到了科学家们的广泛关注。微纳米塑料能够经过多个途径进入人体,并对不同器官产生不同的毒性效应。因此,笔者将重点提供关于微纳米塑料对人体健康影响这一新兴主题的文献概述,系统阐述微纳米塑料对人体肠道、肝脏、肺部以及生殖系统方面的毒性效应以及其分子水平上的致毒机制,并进一步探讨了微纳米塑料的理化性质对其毒性效应的影响,最后探讨了未来微纳米塑料人体健康风险方面的研究方向。

English Abstract

参考文献 (117)

返回顶部

目录

/

返回文章
返回