自20世纪50年代发明塑料后,塑料制品迅速在多个领域得到了广泛的应用[1-2]。然而,随着塑料制品的大量生产和广泛使用,将不可避免地导致环境中的塑料垃圾不断增加。据估计,到2060年塑料垃圾大约有1.55~2.65亿t[3-4]。人们发现释放到环境中的块状塑料(粒径>5 mm)经过多个物理、化学过程(如机械摩擦、光照射、氧化和水合作用等)后,能够降解成粒径更小的塑料颗粒(粒径<5 mm)[3,5-6],如图1所示。这种粒径<5 mm的塑料碎屑和颗粒于2004年首次在Science杂志上被定义为“微塑料(microplastic, MPs)”[7]。随着MPs检测技术的发展,近年来人们发现了粒径更小的塑料颗粒,即纳米塑料。有学者将粒径<100 nm的塑料颗粒定义为纳米塑料(nanoplastics, NPs)[8],但大部分研究者将粒径<1 μm的塑料颗粒定义为NPs[9]。实际上,在真实环境中,MPs和NPs是共存的,而这些微纳米塑料(micro/nanoplastics, MNPs)具有环境持久性[10]、潜在的生物毒性以及可以作为载体携带其他环境污染物等[11-12],使得塑料污染成为了一种全球健康危机[3-4]。
图1 多作用方式下微纳米塑料(MNPs)的释放
Fig. 1 The release of micro/nano plastics (MNPs) under different conditions
研究表明MPs和NPs可以直接从塑料制品中释放出来,这些塑料制品包括涂料、化妆品、生物医药产品和织物软化剂等[1]。MNPs也可以通过块状塑料的老化和降解产生[13]。此外,塑料制品如轮胎、塑料袋或塑料瓶、餐盒和农业生产中的塑料薄膜等在运输和使用过程中也会通过机械摩擦、损耗等方式释放出MNPs[13-15],如图1所示。此前,人们主要是在环境介质中检测到了MNPs的存在。例如,在河口、海湾、近海、深海及海洋沉积物中检测到了大量MNPs[16]。此外,不断有研究报道MNPs也能够在淡水体系和土壤环境中被检测出[17-18]。近年来,随着MPs检测技术的不断发展,研究人员发现人们的日常生活用品中也能够检测出MNPs。例如,Ma等[19]在口罩的浸出物中检测出了大量的MNPs。Su等[20]利用光学-光热红外显微光谱技术识别出了尺寸低至600 nm的塑料颗粒,进而证明了婴幼儿使用的奶嘴在蒸汽消毒或沸水消毒的过程中也会释放出MNPs。另一项研究表明人们在使用茶包泡茶的过程中,也会伴随着MNPs的释放[21]。例如,茶包在冲泡温度(95 ℃)下,能够释放约1.16×1010个MPs和3.1×109个NPs[21]。以上研究结果表明,人们的生活用品在日常使用过程中也会不可避免地释放出MNPs[22]。
通常情况下,MNPs可以通过以下3种暴露途径进入人体内:(1)直接摄入;(2)呼吸暴露;(3)皮肤暴露(图2)。其中,直接摄入被认为是微纳米塑料进入人体的最主要路径[22]。例如,人们可以通过摄食被MNPs污染的海鲜食物(例如鱼、贝类等)而摄入MNPs[23-24]。此外,包装材料(如奶瓶、硅橡胶婴儿奶嘴和茶包)在使用过程中,也会有MPs和NPs的浸出,从而进入到人类食物和饮料中被人们所摄取[20-21]。有研究发现通过食用海鲜、糖、盐、蜂蜜、酒精以及自来水和瓶装水等食品,每日的MPs摄入量约为106~142个[25]。最近的一项研究利用生理学的药代动力学模型,估计了儿童和成人通过海鲜、自来水、瓶装水、盐、啤酒和牛奶等方式在体内累积的MPs(1~10 μm)含量,结果表明儿童和成人人均摄入量的中位数分别为553 粒·d-1和883 粒·d-1,且成年人到70岁之前体内累积的MPs个数高达5.01×104[26]。实际上,MNPs通过摄食,经胃部进入人体肠道内后,未被消化的MNPs很大程度上将直接通过粪便排泄出去[27],但是较小尺寸的NPs则可能进入血液循环[28-29]。进入血液循环之前,较小尺寸的塑料颗粒首先与肠道上皮细胞相互作用。因此,不规则的塑料颗粒可能通过物理作用损伤肠道上皮细胞,也可能引起肠道炎症反应[30]。一旦NPs穿透肠壁后,将会进入血液循环,通过门静脉输送至肝脏部位[28-30]。此外,尽管到目前为止,还并未有研究报道在大脑组织中能够检测到MNPs,但是有研究表明MNPs的暴露能够引起神经紊乱、免疫缺陷等疾病[4],这可能是由于MNPs的暴露干扰了肠道微生物群落的组成和代谢功能,进而对肠道-微生物-脑轴以及肠道-微生物-肝轴造成了影响(图2)[10]。呼吸暴露通常为职业人群的主要暴露方式之一[31]。例如,从事塑料制品生产的工人可能会吸入含MNPs的气溶胶[16]。由于具有较小的尺寸和密度,MNPs可以较为容易地悬浮在空气中,因此人们也可以通过呼吸作用直接摄入空气中的MNPs。有研究预测,平均每人每年可以吸入5.37×104个MPs[32]。大气中的小颗粒物质(例如PM2.5),也会成为MNPs的载体,导致MNPs随着PM2.5的吸入进入人体肺部[33]。最近的一项研究在人们的痰液中检测到了MPs[34]。此外,随着全球新冠疫情的暴发,口罩成为了人们的生物必需品,已有研究表明人们通过戴口罩也会吸入微塑料[35]。进入到肺部的MNPs可能会导致慢性炎症反应。实际上,空气中微小颗粒(<2.5 μm)污染也有类似的情况。例如,柴油尾气中的微粒能够穿越细胞膜,引发氧化应激和炎症,并与心血管疾病、呼吸道疾病或肺癌死亡风险的增加有关[36]。这种类似的现象为探究关于MNPs的潜在风险提供了充足的信息。皮肤暴露主要是通过使用个人护理品而使得MNPs通过皮肤进行吸收并进入人体[37-38]。例如,有研究表明MNPs被广泛用于个人护理品,包括磨砂膏和去角质皂、沐浴露、防晒霜、剃须泡沫、洗发水、护肤霜和液体化妆品[39]。但是通常情况下,通过与皮肤直接接触而摄入微塑料被认为是一种不太重要的接触途径,主要原因是MPs很难穿透皮肤屏障[40]。但有研究表明当纳米材料的粒径<100 nm时,其可以通过毛囊进入皮肤内[41-43],因此推测NPs也可以通过皮肤暴露的方式进入体内。
图2 MNPs进入人体的路径及引起的人体健康风险
Fig. 2 The pathway of MNPs entering the human body and the resulting human health risks
实际上,与其他合成纳米材料类似,MNPs的理化性质也会对其进入生物体内的方式、路径以及在生物体内的转化行为产生影响,进而影响其毒性效应和致毒机制[44-45]。尽管有研究表明MPs很难通过内吞、胞饮等方式进入细胞,但是由于MPs可能被转化为NPs,进而被细胞所摄取,因此MNPs的粒径大小是仍然是影响其在生物体内的累积和分布特征的一个重要因素,这是因为不同粒径的MNPs在胃肠道、肺泡和上皮细胞的吸收速率不同[46]。例如,Abbasi等[47]探究了水相暴露下不同粒径MPs在鱼和虾体内的分布特征,结果表明较大粒径的MPs(250~5 000 μm)主要累积在鳃和胃肠道中,而较小粒径的MPs(<250 μm)则主要累积在皮肤、肌肉和肝脏中。类似的现象在小鼠暴露实验中也有发现。例如,通过饮食摄入的MPs,当粒径>150 μm时,很难穿过肠道上皮细胞,导致几乎90%MPs将通过粪便排出体外[48]。此外,有研究表明,粒径范围在0.1~10 μm的MPs可以穿过血脑屏障和胎盘[49],<150 μm的MPs可以穿过胃肠道上皮细胞,<2.5 μm的MPs可以通过内吞作用进入体内循环系统[50]。人体细胞和啮齿动物暴露实验结果也表明,<10 μm的MPs可以从肠道转移到循环系统并在肝脏、肾脏和大脑中积累[51]。除了粒径以外,MNPs的形状、表面特性等理化性质也会影响其在生物体内的累积和分布规律[52]。例如,有研究发现纤维状的MPs比球形的MPs在体内滞留的时间更长[53]。由于表面电荷能够显著影响附着在MNPs表面的生物分子种类和含量,因此表面电荷对MNPs在生物体内的转运也起着至关重要的作用[54]。例如Yacobi等[55]研究发现与表面带负电荷的聚苯乙烯NPs相比,酰胺化的聚苯乙烯NPs在大鼠肺泡上皮细胞中的累积量提高了20倍~40倍。此外,另一个不可忽视的影响因素就是与MNPs共存的环境污染物。有研究表明有机污染物和重金属等能够吸附在MNPs的表面,由于污染物在MNPs表面存在着吸附与解析平衡,因此MNPs能够改变污染物在生物体内的转运、代谢和生物可利用性,继而改变其毒性效应[56-57]。以上结果表明,MNPs在人们的生活中无处不在,而这些MNPs可以通过多种路径进入人体内,并且MNPs的理化性质(如尺寸、材质、形状和表面特性等)能够显著影响其进入细胞的过程以及在生物体内的分布特征,进而对人体健康造成不同程度的危害(图2)。因此,我们将从以下几个方面综述MNPs对人体健康潜在风险的研究进展。
已有研究表明通过饮食摄入的MNPs,大部分累积在肠道中[58-59]。因此,MNPs对肠道的潜在危害不容忽视。有研究表明MNPs能够诱导肠道细胞毒性,导致黏液分泌减少[60-61]。例如,雄性小鼠暴露于MPs 5~6周之后,其肠道黏液分泌量显著减少,进而导致肠道的屏障作用减弱[60-61]。例如,有研究表明当给健康的志愿者食用15 g直径<2 mm的MPs后,志愿者排泄的粪便量比未食用MPs的正常人多了3倍,志愿者的排便频率显著增加,并且粪便从整个肠道排泄的速率大大降低,这可能是由于MPs的暴露激活了肠道上皮的黏膜受体[61]。此外,MNPs也可以干扰肠道细胞的代谢功能,导致脂肪酸和氨基酸的代谢紊乱等[62-63]。考虑到代谢网络具有深度互联性,代谢物浓度的改变可能会引起相关特异性酶和代谢物运载体的缺乏,也可能会改变与代谢路径紧密相关的酶的活性[64-65]。例如,聚苯乙烯MPs和NPs能够被人结肠细胞摄取,摄取后的MNPs能够在短期和长期暴露下导致细胞代谢发生改变[64-65]。此外,这些细胞表现出4种代谢性癌症特征:(1)在氧气充足的情况下,通过乳酸盐增加葡萄糖的氧化;(2)线粒体活性降低;(3)营养物质(葡萄糖和谷氨酰胺)解耦;(4)谷氨酰胺的还原性羧化。因此,这一研究结果表明MNPs的摄入可能会导致肠道细胞发生代谢重组,且长期暴露下可能会诱发人类患癌症的风险。
肠道菌群是人体肠道内环境的一种重要组成部分。通常情况下,肠道菌群在人体肠道内是一个稳定的群落,在生物屏障、维持肠上皮屏障功能的完整性等方面起着重要作用[66]。目前越来越多的研究表明MNPs的暴露能够引起生物体内肠道微生物群落结构、多样性以及功能的改变[67]。例如,有研究表明雄性小鼠在暴露聚苯乙烯MPs 5周后,其肠道微生物群落结构发生明显变化,即厚壁菌门和α变形杆菌门的相对丰度降低,同时伴随肠道微生物种类的改变[67]。相反,Djouina等[68]的研究发现聚苯乙烯MPs暴露后,小鼠肠道内的放线菌门丰度增加,而变形菌门和厚壁菌门丰度变化不明显。Li等[69]探究了不同浓度的聚乙烯MPs对小肠肠道菌群的影响,发现暴露5周后,小鼠肠道内的厚壁菌门、美拉菌门和葡萄球菌属的丰度增加,而拟杆菌门和拟杆菌属的丰度降低。以上研究结果表明MNPs的暴露能够改变肠道微生物群落的组成,并且不同的材质能够影响MNPs诱导的肠道微生物群落的变化特征。
近年来,越来越多的研究表明肠道微生物与人体健康密切相关。例如,最近的一项研究表明MPs的暴露与炎症性肠病(inflammatory bowel disease, IBD)患者的严重程度紧密相关[70]。通过分析IBD和健康人群的粪便中MPs的特征,发现IBD患者的粪便MPs浓度(41.8 个·g-1,以干质量计)明显高于健康人(28.0 个·g-1,以干质量计),进一步采用线性回归和Pearson相关分析发现粪便MPs浓度与IBD的严重程度之间存在显著正相关关系。此外,有研究发现肠道与大脑之间存着双向的交流机制[71-73]。肠道内的微生物代谢活动可以产生不同种类的生物活性物质,包括神经递质、短链脂肪酸和肠道激素等[74]。这些物质可以进入循环系统,参与大脑信号的传递过程。因此肠道微生物的稳态被打破,也可能会引起其他器官疾病[75-76]。例如,Teng等[77]探究了聚苯乙烯NPs对模式生物斑马鱼脑-肠-微生物轴和胚胎幼体发育的影响,发现暴露30 d后,斑马鱼的生长受到抑制。此外,聚苯乙烯NPs诱导肠道产生炎症反应并对肠道通透性产生不利影响。基于靶向代谢组学分析结果,发现了42种与神经传递有关的代谢物会发生改变。其中3,4-二羟基苯乙酸的会在NPs暴露后的斑马鱼体内降低,且呈现剂量依赖性关系。与对照组相比,14种代谢物的变化与变形菌门、厚壁菌门和拟杆菌门等3个微生物组的变化有关。8种代谢物的改变与变形菌门呈显著正相关,而组胺和氯化乙酰胆碱则与变形菌门呈显著负相关。因此,该项研究表明NPs的暴露会引起斑马鱼肠道炎症、生长抑制和发育受限,而这些也与脑肠菌群轴的调节紊乱密切相关。此外,Huang等[76]进一步探究了不同尺寸的MNPs对铁饼鱼脑-肠-微生物轴的影响,发现NPs能够激活乙酰胆碱酯酶活性,而MPs却抑制乙酰胆碱酯酶活性。此外,MPs和NPs都能够导致脑内神经递质(乙酰胆碱、多巴胺和γ-氨基丁酸)浓度升高和肠道内神经递质浓度降低。而对于肠道菌群而言,MPs的暴露增加了变形菌门相对含量,而NPs却减少了变形菌门的相对含量。脑转录组结果显示7个上调基因(HTR3、S1PR4、CHRNG、PLG、CREB3、CHRM4和GLYT)和4个下调基因(ARR3、HCRTR2、POMC和ADRA1B)[76]。其中,神经活性配体-受体相互作用的通路和5-羟色胺能突触的通路在MPs和NPs暴露组中均有富集,而多巴胺能突触通路仅在MPs中富集[76]。该研究结果表明MNPs的尺寸对其诱导的脑-肠-微生物轴改变以及神经行为毒性的影响不可忽视。综上所述,以上研究充分揭示了MNPs对脑-肠-微生物轴的调控和干扰,证明了MNPs的潜在健康风险。
通过呼吸作用摄入的MNPs能够沉积在肺部[78-79]。例如,利用微尺度红外光谱分析技术在肺部组织的整个区域内都识别出了MPs,其中主要是聚丙烯和聚对苯二甲酸乙二醇酯纤维类的MPs[80]。目前关于MNPs诱导肺毒性方面的研究还相对较少,但是有研究表明沉积在肺部的MNPs可能会对肺部造成炎症反应、细胞毒性和细胞损伤等[81]。例如,Halimu等[82]探究了MPs在人类肺上皮细胞(A549)的内化规律及MPs诱导产生的细胞毒性效应,发现A549细胞内较小粒径的MPs累积量高于较大粒径的MPs,同时较小粒径的MPs诱导的细胞毒性效应远远高于较大粒径MPs诱导的毒性效应,这表明MNPs的细胞毒性呈现显著的粒径相关性。Brown等[83]也探究了不同尺寸的聚苯乙烯NPs对大鼠的肺毒性效应,发现与较大尺寸的NPs(202~535 nm)相比,小尺寸的NPs(50~100 nm)导致肺部更多的中性粒细胞内流,说明小尺寸的NPs诱导的肺毒性效应显著高于大尺寸诱导的肺毒性效应。另有研究表明MNPs颗粒可使A549细胞周期发生明显的S期阻滞,并诱导细胞凋亡现象,且具有时间依赖性[84]。蛋白表达和基因表达结果显示MPs可诱导促炎症细胞因子IL-6、IL-8、NF-κB和TNF-α转录水平的显著上调,并且诱导促凋亡蛋白DR5、caspase 3、caspase 8、caspase 9和Cytochrome C的表达水平的显著上升,同时增强了活性氧(reactive oxygen species, ROS)的水平[84]。也有研究表明MNPs仅在高浓度下具有细胞毒性,例如会诱导人支气管上皮细胞系的代谢变化和内质网应激效应[85]。以上研究主要都是基于体外细胞实验,并且暴露浓度远远高于实际情况下MNPs在人体肺部的累积浓度[74]。因此有必要探究实际暴露环境下,MNPs对人体肺部产生的潜在风险。
尽管目前没有关于在实际环境暴露条件下通过呼吸作用进入到人体肺部的MNPs诱导的毒性效应的报道,但是有研究表明,从事纺织工作的人群在长期作业过程中,可通过呼吸作用不断摄取空气中的团块状的纤维颗粒,这导致工人患慢性间质性肺炎疾病的风险大大增加[86]。Gallagher等[87]发现纺织工人在工厂工作期间吸入纤维状MPs可能导致某些癌症,但是Wright和Kelly[88]的研究却发现纺织工人患癌症的风险并没有增加,但是患呼吸道刺激疾病的概率大大提高。另外,通过高分辨CT成像技术发现从事纺织工作的工人的支气管周围增厚并伴随弥漫性磨砂玻璃样变[89]。然而,这些纤维颗粒的尺寸远远大于MNPs的尺寸,有研究表明MPs的尺寸能够显著影响其在肺部中的分布和转移规律[83]。因此,有必要深入探究不同尺寸的MNPs通过呼吸作用摄入到肺部后,在肺部组织中的分布特征和迁移、转化规律,并探究诱导肺部疾病的内在机制。
无论是通过饮食摄入还是呼吸摄入,MNPs都有可能进入到血液循环中,尤其是对于NPs。已有大量研究表明小尺寸的NPs能够穿透肠壁进入血液中。例如,Leslie等[90]在血液中检测到了MNPs。进入血液循环后,MNPs作为外源物质,很容易被肝脏中的吞噬细胞(如Kupffer细胞)所吞噬,进而对肝脏造成潜在的影响。例如,进入肝脏的MNPs能够引起肝脏炎症、脂质累积和脂质代谢的改变。Shi等[91]研究发现,MPs暴露1周后小鼠肝组织整体结构略异常,少量炎性细胞发生浸润现象。暴露2周后,小鼠肝组织整体结构明显异常、肝细胞结构疏松,部分肝细胞轻度水肿,组织内炎性细胞浸润。这些结果表明,暴露后小鼠的肝脏受到了不同程度的损伤。利用组学分析技术发现,MPs能够导致小鼠肝脏代谢发生紊乱,类似的现象也在海水青鳉鱼中发现[92]。有研究发现10 μm和200 μm的聚苯乙烯MPs暴露分别导致青鳉鱼体内的33个和28个代谢通路发生显著变化。例如,青鳉鱼肝脏中大部分的单糖(如:葡萄糖、甘露糖和核糖)、有机酸(如:乳酸、富马酸和苹果酸)和氨基酸(如:丙氨酸、丝氨酸和亮氨酸)含量显著下降,而大部分的脂肪酸、脂肪酸甲酯和乙酯含量则显著增加,这表明MPs的暴露抑制了青鳉鱼肝脏中单糖代谢、三羧酸循环、糖酵解、戊糖磷酸途径和氨基酸代谢,而诱发了脂肪酸、脂肪酸甲酯和乙酯蓄积。同时,这也说明了MNPs尺寸在其诱导的毒性效应方面起着重要的作用。此外,Deng等[93]利用小鼠作为模式生物,探究了MPs暴露对其肝脏的毒性效应。研究发现在暴露MPs的小鼠中观察到了能量代谢的异常,肝脏中腺嘌呤核苷三磷酸(ATP)浓度显著降低,乳酸脱氢酶(LDH)活性急剧增加。MPs在组织中的积累同时也导致总胆固醇(T-CHO)和甘油三酯(TG)显著降低,表明MPs的暴露导致了脂质代谢的紊乱。在小鼠血清中检测到涉及脂质代谢的代谢物(如牛磺酸、乙醇和多种脂质)增加,而胆碱减少。此外,Cheng等[94]利用人类多功能肝细胞衍生出的肝脏类器官探究了聚苯乙烯MPs对肝脏的毒性效应,发现聚苯乙烯MPs能够对肝细胞产生毒性效应,并且随着暴露浓度的增加,细胞毒性逐渐增强。尽管以上研究从不同角度探究了MNPs对肝脏的毒性效应,但是大多数研究只考虑了原始MNPs,并未探究MNPs在肝脏中的转化对其毒性效应的影响,因此后续研究需要探索MNPs自身在肝脏中的降解或转化过程,并进一步明确MNPs自身及其转化产物在诱导肝脏毒性效应中各自的贡献。
生殖系统对外源物质较为敏感。目前已有研究表明MPs能够对模式生物斑马鱼、海水青鳉鱼等水生生物的生殖系统产生危害[67,95]。Ragusa等[96]在女性的胎盘中检测到了不同类型MPs的存在,Teng等[77]也发现NPs能够通过母代斑马鱼向其子代间发生传递,这些研究都证明了MNPs能够穿透血睾屏障进入生物体的生殖系统中。最近的研究表明,MPs会导致存活精子数量显著减少,异常精子的数量显著增加,并导致小家鼠睾丸组织损伤[97]。Xie等[98]的研究结果也表明,聚苯乙烯MPs的暴露导致精子数量和活力显著下降,精子畸形率显著增加。同时发现,聚苯乙烯MPs的暴露导致精子代谢相关酶、琥珀酸脱氢酶和乳酸脱氢酶活性降低,血清睾酮含量降低。此外,有研究将雌性小鼠暴露于聚苯乙烯MPs,发现MPs能够导致雌性小鼠子宫内膜变薄和严重的胶原纤维沉积[99]。Jin等[100]探究了不同粒径和不同浓度的聚苯乙烯MPs对小鼠生殖系统的影响,发现暴露28 d后,小鼠精子质量下降,睾丸激素水平下降。H&E染色结果也显示生精细胞脱落,排列紊乱等现象。此外,聚苯乙烯MPs还能引起睾丸炎症和血睾丸屏障的破坏。但是,该研究并未发现不同MPs尺寸之间的生殖毒性效应具有显著差异。另有研究发现母代小鼠在怀孕期间接触MNPs会导致子代代谢功能发生紊乱[65]。此外,Deng等[101]探究了MPs与邻苯二甲酸酯共同暴露对小鼠的生殖毒性效应,发现与单独暴露MPs或邻苯二甲酸酯相比,共暴露导致精子数量减少更多、精子活度更低等,说明MNPs与污染物共同暴露可能会引起更强的生殖毒性。尽管以上研究发现了MNPs的生殖毒性效应,并探究了致毒机制,但是缺乏MNPs进入生殖系统的生物过程方面的研究,即MNPs是如何穿过血睾屏障进入生殖系统。因此,后续仍需在相关方面开展更加深入的研究。
MNPs的致毒机制主要有以下几个方面(图3)。
图3 MNPs的致毒机制
Fig. 3 Toxicity mechanism of MNPs
(1) 纳米颗粒作为外源物质进入生物体内,通常能够打破体内的氧化还原平衡,进而产生氧化应激反应[102]。同其他纳米颗粒一样,诱导细胞内的氧化应激反应也是MNPs主要的致毒机制之一。例如,MPs能够破坏细胞中线粒体膜电子间的传递,影响超氧化物歧化酶、过氧化物酶和NADPH氧化酶等活性,最终导致ROS含量急剧增加[103]。此外,MNPs具有较高的比表面积,能够吸附与其共存的环境污染物,一旦暴露于体内环境,将与共存污染物协同影响抗氧化酶活性,干扰氧化还原反应路径。例如,聚乙烯MPs与四溴双酚A共同暴露条件下人体Caco-2细胞产生的ROS水平是单独暴露聚乙烯MPs的约2.5倍[104]。此外,Jeong等[105]发现MNPs的暴露引起的氧化应激反应程度与MNPs粒径大小紧密相关,即MNPs的粒径越小,氧化应激反应程度越大。一旦体内的氧化还原平衡被打破,则可能诱导多种炎症反应。这种局部炎症释放的促炎细胞因子会吸引循环免疫细胞,从而加重局部炎症,进一步引起细胞功能障碍、细胞通路异常和干扰机体免疫功能等,最终导致细胞和组织死亡[106]。实际上,细胞内的氧化还原系统十分复杂,尽管目前已经观测到MNPs的暴露能够影响多种酶的活性,但是影响酶活性的内在机制并不是十分清楚,而目前关于这方面的研究也相对较少。
(2)实际环境中的MNPs都是不规则,具有锋利的边缘结构,因此与细胞发生相互作用时,可以通过物理切割作用破坏细胞膜的完整性[107-108]。例如,在高浓度下,MNPs会破坏质膜的脂质双分子层,即使在中等浓度水平,这些物质也可能破坏重要的细胞表面结构,如蛋白聚糖和其他细胞外基质成分[107-108]。类似的,Hollóczki和Gehrke[109]也发现聚乙烯NPs在穿透双层质膜疏水环境的过程中能够改变质膜的结构,进而破坏细胞膜的完整性。此外,Choi等[110]的研究也发现MPs的边缘越锋利,曲率越高,则产生的细胞毒性越大。
(3)被细胞摄入的MNPs可能会与线粒体、细胞核等重要细胞器发生相互作用甚至影响细胞分裂过程中纺锤体形成和染色体迁移等过程。例如,Poma等[111]探究了聚苯乙烯NPs对人类纤维母细胞Hs27的基因毒性,发现MNPs诱导细胞周期阻滞、导致DNA损伤,并导致微核和核芽显著增多。Li等[112]利用基因组学的手段探究了不同尺寸MNPs对其诱导细胞毒性的影响,发现NPs优先诱导细胞成分相关过程然后通过线粒体途径诱导细胞死亡。当塑料颗粒的粒径<500 nm时,其进入细胞后通常被细胞内的溶酶体所摄取[113]。NPs进入溶酶体后能够干扰溶酶体区室的酸化,这会导致质子泵活动过度,使得水和离子流入溶酶体,继而导致溶酶体膨胀并损坏溶酶体膜。当溶酶体破裂并将其内容物释放到胞质溶胶,通过ROS和溶酶体蛋白酶导致广泛损伤,最终通过线粒体损伤引发凋亡细胞死亡[114-115]。
(4)此外,MNPs与细胞表面发生作用,可能会抑制细胞表面的重要信号受体或膜转运蛋白的表达,进而干扰许多重要的细胞过程所依赖的内体膜传输,包括表面蛋白周转和信号衰减,以及来自细胞内的逆行信号[27]。例如,Hollóczki和Gehrke[116]研究发现NPs能够与细胞膜表面的蛋白发生相互作用,而这种相互作用能够导致蛋白的二级结构发生变化,进而影响到蛋白的功能。Wang等[117]发现聚苯乙烯NPs能够增加编码酪胺合成所需的酪氨酸脱羧酶TCD-1的表达,并降低编码谷氨酸转运蛋白EAT-4的表达,而TDC-1和EAT-4在神经元调控聚苯乙烯NPs的毒性方面起着重要的作用。
实际上,许多上述毒性机制错综复杂地相互关联,一个过程的诱导可能引发其他毒理学反应的级联反应。因此,MNPs介导的生物毒性机制仍需深入探究。
尽管大量的研究表明了MNPs能够对生物体产生潜在的健康风险,但是仍然有以下几个方面的问题值得深入研究。
(1)MNPs在生物体内的分布特征
目前MNPs进入生物体的方式主要有摄食、呼吸和皮肤暴露,因此不同暴露方式下,MNPs进入生物体内后在各组织、细胞和亚细胞水平的分布规律是否一致?此外,有大量的研究表明,MNPs可以通过食物链进行传递,因此直接摄入和通过食物链传递摄入对MNPs在人体内的分布、迁移和转化的影响是否不同,也需要进行深入探究。
MPs的形貌、尺寸大小和表面官能团等理化性质能够影响其在生物体内的分布特征和转运规律。但是目前大多数研究中使用的都是购买的形状、大小相对均一的MNPs,因此这些MPs在生物体内的分布、迁移和转化是否与实际环境中的MPs具有可比性,仍需进一步开展实验进行验证。
(2)目前的大多数毒性实验中的暴露浓度远远高于实际环境中的暴露浓度,因此仍需进一步开展环境相关暴露浓度下MNPs诱导的毒性效应。
(3)尽管许多研究表明微纳米材料被生物体摄入后,能够进入到生物体的多个部位,例如肝脏、肾脏和肠道,甚至生殖系统如睾丸和卵巢,但是MNPs如何被吸收和转移到血液以及通过血液向其他器官转运的过程和机制尚不明确,有待进一步开展相关研究。
(4)有大量研究表明MNPs的暴露能够导致生物体肠道微生物群落结构的改变和功能的紊乱,但是并没有从机理上揭示为什么MNPs会导致肠道内某类菌落相对丰度发生变化。因此,目前关于MNPs的致毒机制缺乏分子水平方面的探究,在未来的研究中需要进一步深入探究。
(5)MNPs往往不是单独存在,它们不可避免的与环境中的其他污染物共存。因此,在未来的研究中有必要探究MNPs与其他污染物共暴露情况下对人体产生的毒性效应及内在机制。
(6)MNPs中通常含有不同类型的添加剂,一旦MNPs在生物体内发生转化后,往往会出现MNPs与其转化的有机产物以及释放出的添加剂共同存在,这可能会导致经典的毒物代谢-毒物效应动力学(TKTD)模型很难来准确揭示MNPs在生物体内的分布、转化和代谢等规律以及生物毒性效应。因此,仍需结合MNPs自身的理化性质,进一步研究适用于MNPs的TKTD模型。
综上所述,目前关于MNPs对人体健康影响方面的研究仍然处于起步阶段,在未来的研究中需要进一步开展更加深入的研究,这对预防MNPs对人体健康带来的各种潜在危害具有重要意义。
[1] Stark M. Comment on “characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles” [J]. Environmental Science &Technology, 2022, 56(14): 10543-10544
[2] Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling [J]. Journal of Hazardous Materials, 2018, 344: 179-199
[3] Wu X W, Liu P, Zhao X L, et al. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review [J]. Journal of Hazardous Materials, 2022, 437: 129287
[4] Yee M S, Hii L W, Looi C K, et al. Impact of microplastics and nanoplastics on human health [J]. Nanomaterials, 2021, 11(2): 496
[5] Liu P, Zhan X, Wu X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193
[6] Liu P, Shi Y Q, Wu X W, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics [J]. The Science of the Total Environment, 2021, 768: 144969
[7] Wu X W, Liu P, Gong Z M, et al. Humic acid and fulvic acid hinder long-term weathering of microplastics in lake water [J]. Environmental Science &Technology, 2021, 55(23): 15810-15820
[8] Blancho F, Davranche M, Hadri H E, et al. Nanoplastics identification in complex environmental matrices: Strategies for polystyrene and polypropylene [J]. Environmental Science &Technology, 2021, 55(13): 8753-8759
[9] Alimba C G, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile [J]. Environmental Toxicology and Pharmacology, 2019, 68: 61-74
[10] Adam V, Yang T, Nowack B. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters [J]. Environmental Toxicology and Chemistry, 2019, 38(2): 436-447
[11] Liu J, Ma Y N, Zhu D Q, et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain [J]. Environmental Science &Technology, 2018, 52(5): 2677-2685
[12] Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic? [J]. Environmental Pollution, 2018, 235: 1030-1034
[13] Wu X W, Liu P, Shi H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater [J]. Water Research, 2021, 188: 116456
[14] Qi Y L, Ossowicki A, Yang X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties [J]. Journal of Hazardous Materials, 2020, 387: 121711
[15] Lu F X, Su Y, Ji Y T, et al. Release of zinc and polycyclic aromatic hydrocarbons from tire crumb rubber and toxicity of leachate to Daphnia magna: Effects of tire source and photoaging [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 651-656
[16] Yonkos L T, Friedel E A, Perez-Reyes A C, et al. Microplastics in four estuarine rivers in the Chesapeake Bay, USA [J]. Environmental Science &Technology, 2014, 48(24): 14195-14202
[17] Zang H D, Zhou J, Marshall M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? [J]. Soil Biology and Biochemistry, 2020, 148: 107926
[18] Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental Science &Technology, 2019, 53(19): 11496-11506
[19] Ma J, Chen F Y, Xu H, et al. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation [J]. Environmental Pollution, 2021, 288: 117748
[20] Su Y, Hu X, Tang H J, et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy [J]. Nature Nanotechnology, 2022, 17(1): 76-85
[21] Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea [J]. Environmental Science &Technology, 2019, 53(21): 12300-12310
[22] Zhang Q, Xu E G, Li J N, et al. A review of microplastics in table salt, drinking water, and air: Direct human exposure [J]. Environmental Science &Technology, 2020, 54(7): 3740-3751
[23] Mattsson K, Ekvall M T, Hansson L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles [J]. Environmental Science &Technology, 2015, 49(1): 553-561
[24] Lehner R, Weder C, Petri-Fink A, et al. Emergence of nanoplastic in the environment and possible impact on human health [J]. Environmental Science &Technology, 2019, 53(4): 1748-1765
[25] Welle F, Franz R. Microplastic in bottled natural mineral water - literature review and considerations on exposure and risk assessment [J]. Food Additives &Contaminants Part A, Chemistry, Analysis, Control, Exposure &Risk Assessment, 2018, 35(12): 2482-2492
[26] Mohamed Nor N H, Kooi M, Diepens N J, et al. Lifetime accumulation of microplastic in children and adults [J]. Environmental Science &Technology, 2021, 55(8): 5084-5096
[27] Yang Y F, Chen C Y, Lu T H, et al. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice [J]. Journal of Hazardous Materials, 2019, 366: 703-713
[28] Yong C Q Y, Valiyaveettil S, Tang B L. Toxicity of microplastics and nanoplastics in mammalian systems [J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1509
[29] da Costa Araújo A P, Malafaia G. Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish [J]. Journal of Hazardous Materials, 2021, 401: 123263
[30] Jing J R, Zhang L, Han L, et al. Polystyrene micro-/ nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines [J]. Environment International, 2022, 161: 107131
[31] Prata J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution, 2018, 234: 115-126
[32] Cox K D, Covernton G A, Davies H L, et al. Human consumption of microplastics [J]. Environmental Science &Technology, 2019, 53(12): 7068-7074
[33] Isobe A, Iwasaki S, Uchida K, et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066 [J]. Nature Communications, 2019, 10(1): 417
[34] Huang S M, Huang X X, Bi R, et al. Detection and analysis of microplastics in human sputum [J]. Environmental Science &Technology, 2022, 56(4): 2476-2486
[35] Li L, Zhao X L, Li Z Y, et al. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks [J]. Journal of Hazardous Materials, 2021, 411: 124955
[36] Kelly F J, Fussell J C. Toxicity of airborne particles-established evidence, knowledge gaps and emerging areas of importance [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378(2183): 20190322
[37] Kelly M R, Lant N J, Kurr M, et al. Importance of water-volume on the release of microplastic fibers from laundry [J]. Environmental Science &Technology, 2019, 53(20): 11735-11744
[38] Hernandez L M, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products? [J]. Environmental Science &Technology Letters, 2017, 4(7): 280-285
[39] Cheung P K, Fok L. Evidence of microbeads from personal care product contaminating the sea [J]. Marine Pollution Bulletin, 2016, 109(1): 582-585
[40] Revel M, Chtel A, Mouneyrac C. Micro(nano)plastics: A threat to human health? [J]. Current Opinion in Environmental Science &Health, 2018, 1: 17-23
[41] Sykes E A, Dai Q, Tsoi K M, et al. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy [J]. Nature Communications, 2014, 5: 3796
[42] Mittal A, Raber A S, Schaefer U F, et al. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization [J]. Vaccine, 2013, 31(34): 3442-3451
[43] Adachi K, Yamada N, Yoshida Y, et al. Subchronic exposure of titanium dioxide nanoparticles to hairless rat skin [J]. Experimental Dermatology, 2013, 22(4): 278-283
[44] Banerjee A, Shelver W L. Micro- and nanoplastic induced cellular toxicity in mammals: A review [J]. Science of the Total Environment, 2021, 755: 142518
[45] Ebrahimi P, Abbasi S, Pashaei R, et al. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review [J]. Chemosphere, 2022, 289: 133146
[46] Ding Y F, Zhang R Q, Li B Q, et al. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells [J]. Environmental Pollution, 2021, 280: 116974
[47] Abbasi S, Soltani N, Keshavarzi B, et al. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf [J]. Chemosphere, 2018, 205: 80-87
[48] Smith M, Love D C, Rochman C M, et al. Microplastics in seafood and the implications for human health [J]. Current Environmental Health Reports, 2018, 5(3): 375-386
[49] Bouwmeester H, Hollman P C H, Peters R J B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology [J]. Environmental Science &Technology, 2015, 49(15): 8932-8947
[50] Campanale C, Massarelli C, Savino I, et al. A detailed review study on potential effects of microplastics and additives of concern on human health [J]. International Journal of Environmental Research and Public Health, 2020, 17(4): E1212
[51] Banerjee A, Shelver W L. Micro- and nanoplastic-mediated pathophysiological changes in rodents, rabbits, and chickens: A review [J]. Journal of Food Protection, 2021, 84(9): 1480-1495
[52] Kannan K, Vimalkumar K. A review of human exposure to microplastics and insights into microplastics as obesogens [J]. Frontiers in Endocrinology, 2021, 12: 724989
[53] Gray A D, Weinstein J E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio) [J]. Environmental Toxicology and Chemistry, 2017, 36(11): 3074-3080
[54] Ebrahimi P, Abbasi S, Pashaei R, et al. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review [J]. Chemosphere, 2022, 289: 133146
[55] Yacobi N R, Malmstadt N, Fazlollahi F, et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles [J]. American Journal of Respiratory Cell and Molecular Biology, 2010, 42(5): 604-614
[56] Wu Q, Li G Y, Huo T B, et al. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring [J]. The Science of the Total Environment, 2021, 774: 145766
[57] Feng Y Y, Yuan H B, Wang W Z, et al. Co-exposure to polystyrene microplastics and lead aggravated ovarian toxicity in female mice via the PERK/eIF2α signaling pathway [J]. Ecotoxicology and Environmental Safety, 2022, 243: 113966
[58] Jing J R, Zhang L, Han L, et al. Polystyrene micro-/ nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines [J]. Environment International, 2022, 161: 107131
[59] Qiao J Y, Chen R, Wang M J, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction [J]. Nanoscale, 2021, 13(19): 8806-8816
[60] Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. The Science of the Total Environment, 2019, 649: 308-317
[61] Tomlin J, Read N W. Laxative properties of indigestible plastic particles [J]. BMJ (Clinical Research Ed), 1988, 297(6657): 1175-1176
[62] López de las Hazas M C, Boughanem H, Dávalos A. Un toward effects of micro- and nanoplastics: An expert review of their biological impact and epigenetic effects [J]. Advances in Nutrition, 2021, 13(4): 1310-1323
[63] Lu L, Luo T, Zhao Y, et al. Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health [J]. The Science of the Total Environment, 2019, 667: 94-100
[64] Xie S L, Zhou A G, Wei T L, et al. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 640-650
[65] Luo T, Wang C Y, Pan Z H, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring [J]. Environmental Science &Technology, 2019, 53(18): 10978-10992
[66] Deng Y F, Yan Z H, Shen R Q, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut [J]. Environment International, 2020, 143: 105916
[67] Qiao R X, Deng Y F, Zhang S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish [J]. Chemosphere, 2019, 236: 124334
[68] Djouina M, Vignal C, Dehaut A, et al. Oral exposure to polyethylene microplastics alters gut morphology, immune response, and microbiota composition in mice [J]. Environmental Research, 2022, 212(Pt B): 113230
[69] Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244: 125492
[70] Yan Z H, Liu Y F, Zhang T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status [J]. Environmental Science &Technology, 2022, 56(1): 414-421
[71] Bai Y L, Xin M G, Lin J M, et al. Banana starch intervention ameliorates diabetes-induced mood disorders via modulation of the gut microbiota-brain axis in diabetic rats [J]. Food and Agricultural Immunology, 2022, 33(1): 377-402
[72] Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions [J]. Science, 2012, 336(6086): 1262-1267
[73] Cryan J F, Dinan T G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour [J]. Nature Reviews Neuroscience, 2012, 13(10): 701-712
[74] Chen J J, Rao C Y, Yuan R J, et al. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.) [J]. Science of the Total Environment, 2022, 814: 152681
[75] Deng Y F, Zhang Y, Qiao R X, et al. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus) [J]. Journal of Hazardous Materials, 2018, 357: 348-354
[76] Huang J N, Wen B, Xu L, et al. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis [J]. Journal of Hazardous Materials, 2022, 421: 126830
[77] Teng M M, Zhao X L, Wang C J, et al. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain-intestine-microbiota axis [J]. ACS Nano, 2022, 16(5): 8190-8204
[78] Gasperi J, Wright S L, Dris R, et al. Microplastics in air: Are we breathing it in? [J]. Current Opinion in Environmental Science &Health, 2018, 1: 1-5
[79] Chen Q Q, Gao J N, Yu H R, et al. An emerging role of microplastics in the etiology of lung ground glass nodules [J].Environmental Sciences Europe, 2022, 34(1): 1-15
[80] Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy [J]. Science of the Total Environment, 2022, 831: 154907
[81] Gautam R, Jo J, Acharya M, et al. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines [J]. The Science of the Total Environment, 2022, 838(Pt 2): 156089
[82] Halimu G, Zhang Q R, Liu L, et al. Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism [J]. Journal of Hazardous Materials, 2022, 430: 128485
[83] Brown D M, Wilson M R, MacNee W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines [J]. Toxicology and Applied Pharmacology, 2001, 175(3): 191-199
[84] Xu M K, Halimu G, Zhang Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell [J]. The Science of the Total Environment, 2019, 694: 133794
[85] Lim S L, Ng C T, Zou L, et al. Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells [J]. Nanotoxicology, 2019, 13(8): 1117-1132
[86] Kern D G, Kuhn C, Ely E W, et al. Flock worker’s lung: Broadening the spectrum of clinicopathology, narrowing the spectrum of suspected etiologies [J]. Chest, 2000, 117(1): 251-259
[87] Gallagher L G, Li W J, Ray R M, et al. Occupational exposures and risk of stomach and esophageal cancers: Update of a cohort of female textile workers in Shanghai, China [J]. American Journal of Industrial Medicine, 2015, 58(3): 267-275
[88] Wright S L, Kelly F J. Plastic and human health: A micro issue? [J]. Environmental Science &Technology, 2017, 51(12): 6634-6647
[89] Atis S, Tutluoglu B, Levent E, et al. The respiratory effects of occupational polypropylene flock exposure [J]. The European Respiratory Journal, 2005, 25(1): 110-117
[90] Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood [J]. Environment International, 2022, 163: 107199
[91] Shi J, Deng H P, Zhang M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics [J]. Chemosphere, 2022, 304: 135321
[92] Chen X B, Zhuang J S, Chen Q L, et al. Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data [J]. The Science of the Total Environment, 2022, 839: 155984
[93] Deng Y F, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure [J]. Scientific Reports, 2017, 7: 46687
[94] Cheng W, Li X L, Zhou Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids [J]. The Science of the Total Environment, 2022, 806(Pt 1): 150328
[95] Qiang L Y, Cheng J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2019, 176: 226-233
[96] Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta [J]. Environment International, 2021, 146: 106274
[97] Hou B L, Wang F Y, Liu T, et al. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice [J]. Journal of Hazardous Materials, 2021, 405: 124028
[98] Xie X M, Deng T, Duan J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110133
[99] Wu H, Xu T, Chen T, et al. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice [J]. The Science of the Total Environment, 2022, 838(Pt 2): 155825
[100] Jin H B, Ma T, Sha X X, et al. Polystyrene microplastics induced male reproductive toxicity in mice [J]. Journal of Hazardous Materials, 2021, 401: 123430
[101] Deng Y F, Yan Z H, Shen R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus) [J]. Journal of Hazardous Materials, 2021, 406: 124644
[102] Yang B W, Chen Y, Shi J L. Reactive oxygen species (ROS)-based nanomedicine [J]. Chemical Reviews, 2019, 119(8): 4881-4985
[103] Bedard K, Krause K H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J]. Physiological Reviews, 2007, 87(1): 245-313
[104] Huang W T, Yin H, Yang Y Y, et al. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota [J]. The Science of the Total Environment, 2021, 778: 146264
[105] Jeong C B, Won E J, Kang H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus) [J]. Environmental Science &Technology, 2016, 50(16): 8849-8857
[106] Limonta G, Mancia A, Benkhalqui A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish [J]. Scientific Reports, 2019, 9(1): 15775
[107] Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna [J]. Environmental Science &Technology, 2014, 48(20): 12336-12343
[108] Pan D, Vargas-Morales O, Zern B, et al. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells [J]. PLoS One, 2016, 11(3): e0152074
[109] Hollóczki O, Gehrke S. Can nanoplastics alter cell membranes? [J]. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 2020, 21(1): 9-12
[110] Choi D, Hwang J, Bang J, et al. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis [J]. The Science of the Total Environment, 2021, 752: 142242
[111] Poma, Vecchiotti G, Colafarina S, et al. In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line [J]. Nanomaterials, 2019, 9(9): E1299
[112] Li Z L, Feng C H, Pang W, et al. Nanoplastic-induced genotoxicity and intestinal damage in freshwater benthic clams (Corbicula fluminea): Comparison with microplastics [J]. ACS Nano, 2021, 15(6): 9469-9481
[113] Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways [J]. ACS Nano, 2008, 2(1): 85-96
[114] Wang F J, Bexiga M G, Anguissola S, et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles [J]. Nanoscale, 2013, 5(22): 10868-10876
[115] Wang F J, Yu L, Monopoli M P, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes [J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9(8): 1159-1168
[116] Hollóczki O, Gehrke S. Nanoplastics can change the secondary structure of proteins [J]. Scientific Reports, 2019, 9(1): 16013
[117] Wang S T, Liu H L, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239
#共同通信作者(Co-corresponding author), E-mail: kunlu@nju.edu.cn
吴恩荣(1966—),女,副主任技师,主要研究方向为医学检验技术在人体疾病诊疗中的应用。
共同通信作者简介:卢坤(1989—),男,博士,副研究员,主要研究方向为纳米材料的生态与健康风险。