改良型UCT工艺在农村生活污水处理中的应用

尤立, 刘平, 胡春明. 改良型UCT工艺在农村生活污水处理中的应用[J]. 环境工程学报, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
引用本文: 尤立, 刘平, 胡春明. 改良型UCT工艺在农村生活污水处理中的应用[J]. 环境工程学报, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
YOU Li, LIU Ping, HU Chunming. Application of modified UCT process in decentralized rural sewage treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
Citation: YOU Li, LIU Ping, HU Chunming. Application of modified UCT process in decentralized rural sewage treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075

改良型UCT工艺在农村生活污水处理中的应用

    作者简介: 尤立(1989—),男,工程师,liyou@rcees.ac.cn
    通讯作者: 胡春明(1982—),男,高级工程师,cmhu@rcees.ac.cn
  • 基金项目:
    国家重点研发计划课题(2019YFD1100105)
  • 中图分类号: X703

Application of modified UCT process in decentralized rural sewage treatment

    Corresponding author: HU Chunming, cmhu@rcees.ac.cn
  • 摘要: 我国农村生活污水处理设施的进水COD往往低于设计水质,因而脱氮除磷过程中碳源不足,同时进水中TN、TP波动较大,导致现有工艺难以稳定实现脱氮除磷。针对这一问题,构建了基于改良型UCT工艺的一体化农村生活污水处理系统,并应用在江苏省常州市某村落。该处理系统可使污泥脱氮与混合液脱氮实现分离,在保证脱氮效率的同时,进一步减少硝酸盐进入厌氧区,以保证稳定的脱氮除磷效果。该系统已稳定运行超过2年,对COD、NH3-N、TN、TP 等指标的平均去除率分别为87.8%、94.5%、72.9%和83.9%,出水水质满足江苏省《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准。本案例可为我国农村生活污水处理的技术选择和运行提供参考。
  • 铊是一种稀有的剧毒重金属元素,毒性高于铅、汞、镉等有毒物质,世界卫生组织关于铊的环境卫生标准规定,一般人群铊的总摄入量不超过5 μg,致死剂量为8~12 μg·g−1,铊对人体的急性毒性剂量为6~40 mg·kg−1 BW[1]。铊污染主要来源于工业排放,全世界每年用于工业生产的铊达到1.5×105 t左右,向环境中释放的铊达到2 000~5 000 t[2-3]。此外,尾矿、冶炼废弃物、含铊矿石等含铊物质经地表径流、淋滤、大气降水进入环境,以及钢铁厂等企业含铊废水的超标排放等,导致铊污染突发事件时有发生,给下游饮用水安全造成了严重威胁[4-5]。如广东韶关冶炼厂排放含铊污水造成了严重的水体铊污染事件、广西贺江铊污染事件、四川广元段的嘉陵江铊污染事件等。而且,2021年1月20日嘉陵江流域再次发生铊污染事件。因此,含铊废水的高效治理与防控刻不容缓。

    水中铊主要以Tl(I)和Tl(III)的无机形式存在,Tl(I)比Tl(III)更稳定和可溶[6]。与其它除铊技术相比,吸附法因其高效、经济、操作简便而被认为是最有前景的铊去除方法。已有不同类型吸附剂被开发并用于去除水中的铊污染物,包括腐殖质[7-8]、锯末[9]、活性炭[10-11]、多壁碳纳米管[12]、钛纳米管[13]、纳米Al2O3[14]和二氧化钛[15-16]等。然而,这些吸附剂的分离回收常采用离心机或过滤器,需要消耗能量且处理困难,使其在实际应用过程中受到限制。相比之下,在外加磁场作用下,磁性吸附剂可以简单地从处理水中分离出来,大大降低了操作能耗。为了提高吸附性能,通常将典型磁性材料 (例如Fe3O4和Fe2O3) 与对目标污染物具有强而特殊亲和力的吸附材料相结合[17-18],进而开发出磁性吸附剂用于去除铊、砷[17]、镉[18]和汞[19]等有毒物质。

    本研究通过化学共沉淀法制备Fe3O4颗粒,结合水热反应、溶胶凝胶等改性方法,制备磁性钛铁纳米颗粒 (TFNPs) 、四氧化三铁/二氧化钛核壳颗粒 (Fe3O4@TiO2) 和还原氧化石墨烯负载四氧化三铁/二氧化钛 (rGO-Fe3O4@TiO2) 复合磁性材料,并进一步优化TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料的制备方法,探讨TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料吸附、吸附氧化去除铊的性能,通过电化学手段,从微观水平阐明磁性材料中rGO对去除铊的促进机制。

    本研究中使用的所有化学品均为分析纯级,主要有硝酸铊 (TINO3) 、正钛酸四丁酯 (C16H36O4Ti,TBOT) 、乙醇 (C2H6O) 、叔丁醇 (C4H10O) 、氯化铁六水合物 (FeCl3·6H2O) 、硫酸亚铁七水合物 (FeSO4·6H2O) 、硼氢化钾 (KBH4) 、盐酸 (HCl) 、双氧水 (H2O2) 、氢氧化钠 (NaOH) 、硝酸 (HNO3) 、过硫酸钾 (K2S2O8,PS) ;所有溶液均采用超纯水配制。

    TFNPs是以TBOT和Fe3O4粉末为原料,其制备方法参考已有研究[20]。通过调节Fe3O4、TBOT的加入量和水热反应温度、时间等条件,制备最优的TFNPs磁性吸附材料。为减少实验次数,采用均匀实验设计方法进行实验设计[21],筛选具有代表性的Fe3O4、TBOT的加入量和水热反应温度、时间。均匀设计表用Un(qs)表示,其中U代表均匀设计,n代表要做的实验次数,q代表每个因素有q个水平,s代表因子个数。本研究主要考察的因子为Fe3O4加入量、TBOT加入量、水热反应温度和水热反应时间,实验次数一般为因子个数的3倍,采用均匀设计表 (U12[44]) 构建实验方案,如表1所示。以对Tl(I)的吸附量为优化指标筛选最佳吸附材料,具体的实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、吸附剂用量为0.1 g·L−1、温度为 (25±1) ℃、pH为7、吸附时间为4 h。

    表 1  4因素4水平均匀设计表 (U12[44])
    Table 1.  Uniform design table of four factors and four levels (U12[44])
    组别Fe3O4加入量/mgTBOT加入量/mL水热反应温度/ ℃水热反应时间/h
    1305016060
    2302014036
    3505014024
    4304020024
    5402020060
    6503018048
    7403016048
    8604014060
    9605020048
    10404018036
    11602018024
    12503016036
     | Show Table
    DownLoad: CSV

    Fe3O4@TiO2的制备已有研究[22]。Fe3O4粉末投加量会直接影响TiO2壳状结构的厚度和致密性,进而影响材料的吸附容量。通过改变Fe3O4粉末和TBOT投加量,可以对核壳结构吸附材料结构与性能进行有效调控。采用表2优化Fe3O4粉末、TBOT的加入量,构建最优的Fe3O4@TiO2核壳磁性吸附材料,以对Tl(I)的吸附量为优化指标。具体吸附实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、溶液pH为7.0、Fe3O4@TiO2用量为0.1 g·L−1、吸附时间为0.5 h。

    表 2  Fe3O4粉末和TBOT的加入量
    Table 2.  Addition amount of Fe3O4 and TBOT
    编号Fe3O4粉末/mgTBOT/mL
    1301
    2402
    3503
    4604
      注:考察Fe3O4粉末加入量时,TBOT的加入量为2 mL。
     | Show Table
    DownLoad: CSV

    考察TBOT的加入量时,Fe3O4粉末加入量为50 mg。

    rGO-Fe3O4@TiO2磁性材料的制备参考已有研究[23],采用表3优化rGO-Fe3O4和TBOT的加入量,构建最优的rGO-Fe3O4@TiO2磁性材料,以对Tl(I)的吸附量为优化指标。具体吸附实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、溶液pH为7.0、吸附剂用量为0.1 g·L−1、吸附时间为0.5 h。

    表 3  rGO-Fe3O4、TBOT的加入量
    Table 3.  Addition amount of rGO-Fe3O4 and TBOT
    编号rGO-Fe3O4/mgTBOT/mL
    110.5
    251.5
    3102
      注:考察rGO-Fe3O4加入量时,TBOT的加入量为1.5 mL。
     | Show Table
    DownLoad: CSV

    考察TBOT的加入量时,rGO-Fe3O4粉末加入量为5 mg。

    采用铊离子储备液 (100 mg·L−1) 配置一系列浓度的铊离子工作溶液 (0.5、1、5、10、20、30和50 mg·L−1) ,用针管吸取1~2 mL溶液测定不同工作溶液的初始铊浓度。每个浓度的铊离子工作溶液,用量筒准确移取50 mL,转移至玻璃瓶中,调整溶液pH为7,吸附剂投加量为0.1 g·L−1。将所有玻璃瓶放置在超声仪器中超声3 min,然后放置在摇床摇晃24 h,摇床温度分别设置为25、35和45 ℃,分别在30 min、1.5 h、4 h和8 h校准pH至7。吸附24 h后,用针管吸取1~2 mL溶液,过0.45 μm滤膜,过滤溶液加到2 mL离心管中,采用逐级稀释方法,将样品进行不同倍数的稀释,确保样品浓度符合ICP-MS进样要求,待测。

    吸附热力学模型如式(1)~式(3)所示。

    ΔG=RTlnKT (1)
    KT=55.5×1000×204.38KL (2)
    lnKT=ΔSRΔHRT (3)

    式中:ΔG为Gibbs自由能,kJ·mol−1ΔH为焓变,J·(mol·K)−1ΔS为熵变,k·mol−1KT为无量纲参数;55.5 为水的摩尔浓度,mol·L−1;204.38为铊的摩尔分子量,g·mol−1R为气体常数,8.314×103 kJ·(mol·K)−1T为绝对温度,K。

    取50 mL Tl(I)反应溶液 (8.9 mg·L−1) ,移至玻璃瓶中,加入10 mmol PS,调整溶液pH=8,分别添加0.2 g·L−1的Fe3O4@TiO2和rGO-Fe3O4@TiO2。超声10 min后,放置于160 r·min−1的水浴振荡器中反应,分别在30 min、1 h、2 h和4 h校准pH=7,反应24 h后,取样过0.45 µm滤膜后测定反应后溶液中Tl的浓度。

    将10 mg rGO-Fe3O4@TiO2纳米颗粒用甲醇固定在Pt电极上,干燥后,作为工作电极,与甘汞和铂丝构成三电极体系,分别测定Tl(I)溶液 (8.5 mg·L−1) 和Tl(I)/PS (10 mg·L−1、10 mmol·L−1) 混合溶液条件下的循环伏安特性曲线。

    采用相同三电极体系,打开电流模式,依据循环伏安特性曲线测定结果,分别将工作电极电位设置为相应的氧化峰电位和还原峰电位,测定氧化电流-时间曲线和还原电流-时间曲线,计算电子供给容量 (EDC) 和电子接受容量 (EAC) 。

    1) TFNPs磁性材料制备条件的优化。4因素4水平条件下合成的TFNPs吸附Tl(I)的效果如图1所示,在实验条件范围内,Fe3O4加入量为50 mg、TBOT加入量为30 mL、水热反应温度为180 ℃和水热反应时间为48 h时,TFNPs吸附Tl(I)的效果最佳,确定此为制备TFNPs的最佳条件。

    图 1  4因素4水平条件下制备的TFNPs在同一因素下对Tl(I)的吸附量之和
    Figure 1.  The total adsorption capacity of Tl(I) by TFNPs synthesized at 4 factors and 4 levels under the same factor

    2) Fe3O4@TiO2核壳磁性材料制备条件的优化。改变Fe3O4粉末加入量的吸附结果如图2 (a) 所示,Fe3O4粉末加入量为50 mg时吸附效果最好,其次是60 mg。如图2 (b) 所示,TBOT的加入量为2 mL时吸附效果最好,确定Fe3O4粉末和TBOT的最佳加入量分别为50 mg和2 mL。

    图 2  Fe3O4 (a) 和TBOT (b) 加入量对Fe3O4@TiO2吸附剂Tl(I)吸附量的影响
    Figure 2.  Effect of the Fe3O4 (a) and TBOT (b) addition amount on the adsorption capacity of Fe3O4@TiO2 adsorbents toward Tl(I)

    3) rGO-Fe3O4@TiO2磁性材料制备条件的优化。在rGO-Fe3O4粉末加入量为5 mg条件下,改变TBOT投加量对材料吸附性能的影响结果如图3 (a) 所示,TBOT的加入量为1.5 mL和2.0 mL时,吸附材料性能更优。如图3 (b) 所示,将rGO-Fe3O4粉末加入量从1 mg提高至5 mg,吸附容量能够提高19.8%,继续提高rGO-Fe3O4粉末加入量至10 mg,吸附容量没有明显变化。确定TBOT和rGO-Fe3O4粉末的最佳加入量分别为1.5 mL和5 mg。

    图 3  TBOT (a) 和rGO-Fe3O4 (b) 投加量对rGO-Fe3O4@TiO2吸附剂Tl(I)吸附量的影响
    Figure 3.  Effect of TBOT (a) and rGO-Fe3O4 (b) addition amount on the adsorption capacity of rGO-Fe3O4@TiO2 adsorbents toward Tl(I)

    在pH=7.0、Tl(I)的初始浓度为10 mg·L−1、吸附剂量为0.1 g·L−1和T=(25±1)℃时,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的吸附去除率如图4所示。10 min内,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的去除率分别为29.98%、33.87%和23.01%,6 h后分别达到48.95%、43.23%和45.95%。3种磁性复合材料吸附除铊性能处于相同水平,但制备TFNPs的TBOT添加量 (10 mL) 远高于rGO-Fe3O4@TiO2 (1.5 mL) 。考虑到材料制备前驱体使用量,本研究将考察单位Ti条件下的吸附容量,即吸附位点的利用效率。

    图 4  TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的吸附去除率
    Figure 4.  Adsorption removal percentage of Tl(I) by using TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2

    由于TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料制备过程中TBOT添加量不同,而钛原子表面羟基 (Ti-OH) 是Tl离子吸附的主要功能基团,根据已有XPS分析结果[20,22,23 ],计算3种磁性材料在单位Ti含量条件下的Tl(I)吸附容量。如图5所示,10 min内,rGO-Fe3O4@TiO2相应单位Ti含量的Tl(I)吸附量 (97.3 mg-Tl·g-Ti−1) 是TFNPs (62.9 mg-Tl·g-Ti−1) 的1.55倍,是Fe3O4@TiO2 (68.6 mg-Tl·g-Ti−1) 的1.42倍。TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2单位Ti含量条件下Tl(I)最大吸附容量,分别为200、271.8和440 mg-Tl·g-Ti−1。Fe3O4@TiO2的单位Ti吸附容量高于TFNPs的1.36倍,而rGO-Fe3O4@TiO2的单位Ti吸附容量高于TFNPs的2.2倍。这主要与吸附材料结构特征直接相关[24-25],利用rGO纳米片作为模板,制备rGO-Fe3O4@TiO2磁性材料提高了TiO2的利用效率,最大程度上发挥所负载TiO2吸附Tl(I)的性能;而TFNPs通过将TiO2和Fe3O4颗粒在水热反应过程中集聚在一起,无次序的堆积,且相互挤压,使其部分活性位点被覆盖。同时,Fe3O4颗粒的晶体结构可能会受到干扰,材料的磁性会减弱。与TFNPs相比,Fe3O4@TiO2的核壳结构能够将吸附材料的活性中心更充分地暴露在磁性吸附剂的外表面上,降低了Tl污染物在吸附剂孔道内扩散阶段对吸附过程的影响,Tl污染物在该表面上吸附速度会更快[26]。但由于纳米TiO2粒子之间的范德华静电引力的作用,粒子表面相互靠在一起,使总表面积和表面自由能下降,TiO2粒子从高分散态变为团聚体,仍然会在一定程度降低了纳米颗粒的实际应用效果[27-29]。因此,综合考虑制备试剂的用量、单位吸附容量,rGO-Fe3O4@TiO2是快速、高效去除水中Tl(I)的最佳吸附剂。

    图 5  单位Ti含量条件下的TFNPs、Fe3O4@TiO2和 rGO-Fe3O4@TiO2对Tl(I)的吸附容量
    Figure 5.  Adsorption capacity of TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2 toward Tl under unit Ti content

    与已报道的其他材料的吸附性能相比 (如表4所示) 。钛纳米管吸附量最大,达到709.2 mg·g−1,但需调节pH至5,而在铊泄漏造成的地表水污染情况时,水体pH一般在7左右。在中性情况下 (pH=7) ,FeOOH负载MnO2、过氧化钛、二氧化钛对Tl(I)的吸附量较大,分别为450、412和258 mg·g−1,均高于rGO-Fe3O4@TiO2的吸附性能,但过氧化钛和二氧化钛属于常规纳米吸附剂,需要借助离心或膜截留等方式进行回收再利用,高能耗在很大程度上,限制了其推广应用。rGO-Fe3O4@TiO2对Tl(I)的吸附量高于普鲁士蓝藻酸盐胶囊、聚丙烯酰胺膨润土等吸附剂,分别高于TFNPs、Fe3O4@TiO2磁性吸附剂的1.27、1.40倍[20, 22]。因此,rGO-Fe3O4@TiO2可作为一种磁选性能好且能有效去除铊污染物的吸附材料。

    表 4  现有已报道的吸附剂对Tl(I)的吸附性能比较
    Table 4.  Adsorption capacities of Tl(I) on previously reported adsorbents
    吸附剂Tl(I)/(mg·L−1)pH最大吸附量/(mg·g−1)参考文献
    碳纳米管0~0.126.00.42[30]
    锯末0~100 07.013.2[9]
    钛纳米管0~605.0709.2[13]
    改性真菌生物质-5.0159.7[31]
    聚丙烯酰胺沸石0~100 05.0378.1[32]
    聚丙烯酰胺膨润土0~100 05.073.6[32]
    过氧化钛0~507.0412[15]
    二氧化钛0~507.0258[15]
    普鲁士蓝藻酸盐胶囊0~4004.0103.0[33]
    FeOOH负载的MnO210~1507.0450[34]
    MnO2@黄铁矿渣0~16012.0320[35]
    硫醇二氧化硅微球10~3006.0452.8[36]
    线状MnO25~100 06.0450[37]
    TFNPs0~1507.0111.3[20]
    Fe3O4@TiO20~1507.0101.5[22]
    rGO-Fe3O4@TiO20~1507.0141.8[23]
     | Show Table
    DownLoad: CSV

    在pH=7.0,吸附剂量为0.1 mg·L−1和不同温度条件下的吸附热力学过程及Langmuir模型模拟数据如图6所示,依据式 (1)~式 (3) 计算的相关热动力学参数见表5。在温度为25、35和45 ℃条件下,rGO-Fe3O4@TiO2吸附去除Tl(I)过程的Gibbs自由能分别为−34.8、−36.3和−37.8 kJ·mol−1。这表明rGO-Fe3O4@TiO2吸附去除Tl(I)过程是自发进行的,且温度升高有助于提高材料的吸附性能[38]。相应焓变和熵变分别为10.19 kJ·(mol·K)−1和0.15 kJ·mol−1。这表明,Tl(I)在rGO-Fe3O4@TiO2磁性材料表面的吸附过程为吸热反应,且吸附后会导致固液界面无序性增加[39]

    图 6  rGO-Fe3O4@TiO2在不同温度下的吸附等温式及Langmuir模型模拟
    Figure 6.  Isotherm experimental data at different temperature with the fitting of Langmuir model
    表 5  吸附热力学参数
    Table 5.  Thermodynamic parameters of adsorption process
    T/ ℃ΔG/(kJ·mol−1)ΔH/(kJ·(mol·K)−1)ΔS/(kJ·mol−1)
    25−34.810.190.15
    35−36.3
    45−37.8
     | Show Table
    DownLoad: CSV

    3种磁性吸附材料TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2中的Fe3O4颗粒具有一定的PS活化能力,将其与PS耦合去除铊污染物,可以有效结合吸附和氧化技术,实现铊污染物的快速、高效去除[40]。如图7所示,在Tl(I)质量浓度为8.9 mg·L−1、PS浓度为10 mmol·L−1、磁性材料投加量为0.2 g·L−1和pH=8条件下反应24 h后,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对铊离子的去除率分别为51.1%、45.7%和50.3%,而TFNPs/PS、Fe3O4@TiO2/PS和rGO-Fe3O4@TiO2/PS耦合体系对Tl的去除率分别为51.7%、47.2%和88.4%。与TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2吸附去除率相比,TFNPs和Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除效率略有提高,而rGO-Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除率提高了75.7%。这说明,rGO-Fe3O4@TiO2磁性材料能够有效活化PS,提高了反应体系对Tl的去除效能[41]

    图 7  TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2与PS耦合前后的除铊性能
    Figure 7.  Tl removal of magnetic adsorbents including TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2 with or without PS

    为探究rGO-Fe3O4@TiO2磁性材料能够更有效活化PS的内在机制,采用循环伏安特性曲线和电子交换容量进一步分析rGO-Fe3O4@TiO2磁性材料在反应过程中的电子传递性能,将rGO-Fe3O4@TiO2粉末固定在Pt电极上,作为工作电极。在Tl(I)溶液中的伏安特性曲线如图8 (a) 所示,呈现出明显的氧化还原峰,氧化峰位于0.31 V,还原峰位于0.06 V,2者具有较好的对称性,显示出一定的可逆性,在−0.20 V出现较弱的氧化峰,在−0.23 V出现较强的还原峰。这表明,rGO-Fe3O4@TiO2纳米颗粒自身具有较强的氧化还原能力。在Tl(I)和PS体系中的伏安特性曲线如图8 (b) 所示,出现2组氧化还原峰,分别在0.45 V和−0.18 V出现氧化峰,在−0.06 V和−0.63 V出现还原峰。与Tl(I)体系相比,PS存在条件下反应体系的氧化还原能力得到显著提高[42]

    图 8  不同体系循环伏安特性曲线
    Figure 8.  Cyclic voltammograms of the different systems

    有研究表明,rGO-Fe3O4@TiO2/PS耦合体系中主要是rGO和Fe3O4共同活化PS产生自由基将Tl(I)氧化为Tl(III)[43]。为进一步明确Fe3O4、rGO和rGO-Fe3O4@TiO2在Tl溶液和Tl/PS混合溶液条件下的电子转移能力即电子交换容量 (EEC) ,采用计时电流法评估不同材料 (包括Fe3O4、rGO和rGO-Fe3O4@TiO2) 在Tl溶液和Tl/PS混合溶液条件下的电子转移能力,以揭示rGO-Fe3O4@TiO2/PS耦合处理含铊污水的电子传输规律。如图9所示,Fe3O4、rGO和rGO-Fe3O4@TiO2在Tl(I)溶液体系中电子转移能力较弱,其EDC分别为2.45、0和0.56 μmol-e·g−1,而EAC分别为19.4、47.7和37.9 μmol-e·g−1。在Tl(I)/PS混合溶液体系中,3种材料的电子转移能力均显著提高,EDC分别为168.2、225.4和195.4 μmol-e·g−1,EAC测定值分别为131.4、746.8和571.3 μmol-e·g−1。这表明,PS存在条件下大量增加了反应体系的电子,rGO在Tl溶液和Tl/PS溶液中具有较强的电子转移能力,这主要是由于其自身含有的功能基团和碳骨架会促进电子的转移[44]。rGO-Fe3O4@TiO2的电子转移能力介于Fe3O4和rGO之间,主要是由于其表面锚定的Fe3O4@TiO2减小了rGO的电子转移能力。这表明,rGO在rGO-Fe3O4@TiO2/PS耦合体系中能够作为电子穿梭体介导电子的转移[45],具有优异的电子转移能力。

    图 9  计时电流法测定不同材料在Tl(I)和Tl(I)+PS体系电子转移能力:Fe3O4 (a)、rGO (b)和rGO-Fe3O4@TiO2 (c)
    Figure 9.  EAC and EDC of different materials in Tl(I) and Tl(I)+PS systems tested by chronoamperometry: Fe3O4 (a), rGO (b) and rGO-Fe3O4@TiO2 (c)

    1) 采用水热法、溶胶凝胶法、rGO模板法分别制备TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性复合材料,优化其制备条件获得性能最佳的吸附材料。以rGO纳米片作为模板材料能够解决TiO2颗粒在废水中团聚的问题,加强吸附材料对重金属离子的吸附亲和力。rGO-Fe3O4@TiO2单位Ti含量条件下Tl(I)最大吸附容量可达到440 mg-Tl·g-Ti−1,吸附过程为吸热反应,温度升高有助于提高材料的吸附性能。

    2) rGO具有优异的电子转移能力,结合rGO-Fe3O4@TiO2磁性材料的高吸附性能,能够在材料周边形成局部高浓度,极大提高了电子传递给目标污染物的效率,进而强化电子利用效率,使rGO-Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除效率提高了75.7%。

  • 图 1  UCT工艺及本案例的改良UCT工艺流程对比

    Figure 1.  Comparion of UCT and modified UCT

    图 2  改良型UCT工艺一体化污水处理设施现场

    Figure 2.  The modified UCT process integrated sewage treatment facility photographed on-site

    图 3  桥东村一体化污水处理系统COD去除效果

    Figure 3.  COD removal of the integrated equipment in Qiaodong village

    图 4  桥东村一体化污水处理系统NH3-N去除效果

    Figure 4.  NH3-N removal of the integrated equipment in Qiaodong village

    图 5  桥东村一体化污水处理系统TN去除效果

    Figure 5.  TN removal of the integrated equipment in Qiaodong village

    图 6  桥东村一体化污水处理系统TP去除效果

    Figure 6.  TP removal of the integrated equipment in Qiaodong village

    表 1  2016年5月—2017年4月戴庄村五段头生活污水处理设施进出水水质指标

    Table 1.  Characteristics of the influent and effluent of the original process from May 2016 to June 2017 mg·L-1

    取样月份进水出水
    CODNH3-NTPSSCODNH3-NTPSS
    2016-0578.416.81.05555212.30.8736
    2016-0619451.36.128927.223.82.5812
    2016-0712632.54.624025.6202.7411
    2016-0812632.54.624025.6202.7411
    2016-0980.523.63.614322.326.41.4532
    2016-1073.543.612.76017.713.82.2719
    2016-1157.823.67.084819.721.33.5330
    2016-1269.335.76.186320.220.54.3631
    2017-0177.823.16.096026.924.11.5922
    2017-0216867.914.37964.768.28.8632
    2017-0376.326.16.236159.931.74.5935
    2017-04142172.66381168.761.6540
    取样月份进水出水
    CODNH3-NTPSSCODNH3-NTPSS
    2016-0578.416.81.05555212.30.8736
    2016-0619451.36.128927.223.82.5812
    2016-0712632.54.624025.6202.7411
    2016-0812632.54.624025.6202.7411
    2016-0980.523.63.614322.326.41.4532
    2016-1073.543.612.76017.713.82.2719
    2016-1157.823.67.084819.721.33.5330
    2016-1269.335.76.186320.220.54.3631
    2017-0177.823.16.096026.924.11.5922
    2017-0216867.914.37964.768.28.8632
    2017-0376.326.16.236159.931.74.5935
    2017-04142172.66381168.761.6540
    下载: 导出CSV

    表 2  设备设计进、出水水质

    Table 2.  Design parameters of the influent and effluent of project

    水质指标质量浓度/(mg·L−1去除率/%
    进水出水
    COD2505080.0
    总氮602066.6
    氨氮405(8*87.5
    SS1001090.0
    总磷6183.3
      注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。
    水质指标质量浓度/(mg·L−1去除率/%
    进水出水
    COD2505080.0
    总氮602066.6
    氨氮405(8*87.5
    SS1001090.0
    总磷6183.3
      注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。
    下载: 导出CSV

    表 3  分散式污水处理设施规模

    Table 3.  Scale of the decentralized rural sewage treatment

    行政村自然村受益户数受益人口日用水量/(m3·d−1)日排水量/(m3·d−1)处理规模/(m3·d−1)
    杏塘村毛家村26839.137.3010
    杏塘村野田村3911112.219.7715
    杏塘村大翁29707.76.1630
    杏塘村小翁3711412.5410.0330*
    卜弋村圣东村31798.696.9520
    卜弋村圣西村409710.678.5420*
    卜弋村庙东村4012613.8611.0930
    卜弋村庙西村33808.87.0430*
    于家村后湾村4812713.9711.1815
    于家村塘下村6016418.0414.4320
    于家村后邵头27829.027.2210
    桥东村后店11830833.8827.1100
    桥东村后巷7020622.6618.13100*
    桥东村梅村12334938.3930.71100*
      注:*号表示与其他自然村合建共用一套污水处理设施。
    行政村自然村受益户数受益人口日用水量/(m3·d−1)日排水量/(m3·d−1)处理规模/(m3·d−1)
    杏塘村毛家村26839.137.3010
    杏塘村野田村3911112.219.7715
    杏塘村大翁29707.76.1630
    杏塘村小翁3711412.5410.0330*
    卜弋村圣东村31798.696.9520
    卜弋村圣西村409710.678.5420*
    卜弋村庙东村4012613.8611.0930
    卜弋村庙西村33808.87.0430*
    于家村后湾村4812713.9711.1815
    于家村塘下村6016418.0414.4320
    于家村后邵头27829.027.2210
    桥东村后店11830833.8827.1100
    桥东村后巷7020622.6618.13100*
    桥东村梅村12334938.3930.71100*
      注:*号表示与其他自然村合建共用一套污水处理设施。
    下载: 导出CSV

    表 4  一体化污水处理系统验收监测结果

    Table 4.  Monitoring results of integrated sewage treatment system

    行政村处理规模/(m3·d−1)COD/(mg·L−1)总氮/(mg·L−1)氨氮/(mg·L−1)SS/(mg·L−1)总磷/(mg·L−1)
    杏塘村1027.315.81.4<50.73
    杏塘村1531.214.11.1<50.69
    杏塘村3028.714.11.750.58
    卜弋村2029.515.24.050.71
    卜弋村3033.516.43.5<50.74
    于家村1532.315.61.9<50.69
    于家村2020.917.21.9<50.77
    于家村1027.616.52.350.85
    桥东村10022.512.80.9<50.58
      注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。
    行政村处理规模/(m3·d−1)COD/(mg·L−1)总氮/(mg·L−1)氨氮/(mg·L−1)SS/(mg·L−1)总磷/(mg·L−1)
    杏塘村1027.315.81.4<50.73
    杏塘村1531.214.11.1<50.69
    杏塘村3028.714.11.750.58
    卜弋村2029.515.24.050.71
    卜弋村3033.516.43.5<50.74
    于家村1532.315.61.9<50.69
    于家村2020.917.21.9<50.77
    于家村1027.616.52.350.85
    桥东村10022.512.80.9<50.58
      注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。
    下载: 导出CSV
  • [1] 于法稳, 郝信波. 农村人居环境整治的研究现状及展望[J]. 生态经济, 2019, 35(10): 166-170.
    [2] 顾霖, 吴德礼, 樊金红. 农村生活污染综合治理模式与技术路线探讨[J]. 环境工程, 2016, 34(10): 113-117.
    [3] 齐嵘, 周文理, 郭雪松, 等. 我国农村分散型污水处理设施与设备性能评估体系的建立[J]. 环境工程学报, 2020, 14(9): 2310-2317. doi: 10.12030/j.cjee.202001109
    [4] 李发站, 朱帅. 我国农村生活污水治理发展现状和技术分析[J]. 华北水利水电大学学报(自然科学版), 2020, 41(3): 74-77.
    [5] 王波, 刘春梅, 赵雪莲, 等. 我国村镇生活污水处理技术发展方向展望[J]. 环境工程学报, 2020, 14(9): 2318-2325. doi: 10.12030/j.cjee.202001102
    [6] 郝晓地. 可持续污水-废物处理技术[M]. 北京: 中国建筑工业出版社, 2006.
    [7] 付昆明, 杨宗玥, 刘凡奇, 等. 碳源种类对农村污水反硝化过程脱氮效果的影响[J]. 环境工程学报, 2020, 14(9): 2331-2338. doi: 10.12030/j.cjee.202001103
    [8] 何国钢, 肖国仕. UCT工艺在工业园区污水处理厂的应用[J]. 中国给水排水, 2012, 28(24): 45-48. doi: 10.3969/j.issn.1000-4602.2012.24.012
    [9] 王斯坦, 刘星, 刘志斌. UCT工艺脱氮除磷效果[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S2): 140-142.
    [10] 冯云刚, 刘新安, 高荣宁, 等. UCT工艺在西安鱼化污水处理厂的设计应用与调试[J]. 中国给水排水, 2019, 35(24): 66-69.
    [11] 周晓莉, 俞锋, 朱光灿, 等. 江苏农村生活污水处理设施进水水质调查分析[J]. 环境工程学报, 2017, 11(3): 1445-1449. doi: 10.12030/j.cjee.201512027
    [12] 李新艳, 李恒鹏, 杨桂山, 等. 江苏太湖地区农村生活用水量空间差异及污水去向[J]. 生态与农村环境学报, 2015, 31(2): 158-165. doi: 10.11934/j.issn.1673-4831.2015.02.004
    [13] 张亚平, 王海芹, 印杰, 等. 太湖流域农村生活污水处理技术模式调查和分析——以江苏省为例[J]. 农业资源与环境学报, 2017, 34(5): 483-491.
    [14] 阮晓卿, 蒋岚岚, 陈豪, 等. 江苏不同地区典型农村生活污水处理适用技术[J]. 中国给水排水, 2012, 28(18): 44-47. doi: 10.3969/j.issn.1000-4602.2012.18.011
    [15] 石崇, 杨鑫, 邓文英. 邹区镇水环境质量现状及排放特征研究[J]. 中国资源综合利用, 2018, 36(5): 132-135. doi: 10.3969/j.issn.1008-9500.2018.05.040
    [16] 江苏省环境保护厅, 江苏省住房和城乡建设厅. 村庄生活污水治理水污染物排放标准: DB32/T 3462—2018[S]. 中国标准出版社, 2018.
    [17] 张园, 罗固源, 许晓毅, 等. UCT工艺进水COD浓度与C/N对除磷效果的影响[J]. 环境科学, 2010, 31(8): 1846-1850.
    [18] 韩琪, 曾环木, 唐志雄, 等. UCT脱氮除磷工艺在广东地区的应用[J]. 广东化工, 2015, 42(12): 42-43. doi: 10.3969/j.issn.1007-1865.2015.12.019
    [19] 乔宏儒, 孙力平, 吴振华, 等. 倒置A2O工艺和UCT工艺脱氮除磷效能比较[J]. 水处理技术, 2015, 41(12): 118-121.
    [20] 李桂荣, 王立军, 杜春山, 等. UCT工艺处理低C/N值城市污水的试验研究[J]. 中国给水排水, 2012, 28(9): 101-104. doi: 10.3969/j.issn.1000-4602.2012.09.026
    [21] 王田天, 周伟, 刘兴, 等. 改良AAO一体化设备处理农村生活污水的研究[J]. 中国给水排水, 2018, 34(7): 75-79.
    [22] 迟娟, 姜勇, 袁训珂, 等. 福创溪-大排沟黑臭水体一河一策治理工程[J]. 环境工程学报, 2019, 13(2): 496-504. doi: 10.12030/j.cjee.201811025
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.8 %DOWNLOAD: 5.8 %HTML全文: 80.3 %HTML全文: 80.3 %摘要: 13.8 %摘要: 13.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.8 %其他: 96.8 %XX: 2.5 %XX: 2.5 %北京: 0.3 %北京: 0.3 %台州: 0.1 %台州: 0.1 %塔城: 0.1 %塔城: 0.1 %武汉: 0.1 %武汉: 0.1 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.1 %深圳: 0.1 %运城: 0.1 %运城: 0.1 %其他XX北京台州塔城武汉洛阳海口深圳运城Highcharts.com
图( 6) 表( 4)
计量
  • 文章访问数:  6148
  • HTML全文浏览数:  6148
  • PDF下载数:  134
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-15
  • 录用日期:  2021-01-29
  • 刊出日期:  2022-02-10
尤立, 刘平, 胡春明. 改良型UCT工艺在农村生活污水处理中的应用[J]. 环境工程学报, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
引用本文: 尤立, 刘平, 胡春明. 改良型UCT工艺在农村生活污水处理中的应用[J]. 环境工程学报, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
YOU Li, LIU Ping, HU Chunming. Application of modified UCT process in decentralized rural sewage treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
Citation: YOU Li, LIU Ping, HU Chunming. Application of modified UCT process in decentralized rural sewage treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075

改良型UCT工艺在农村生活污水处理中的应用

    通讯作者: 胡春明(1982—),男,高级工程师,cmhu@rcees.ac.cn
    作者简介: 尤立(1989—),男,工程师,liyou@rcees.ac.cn
  • 中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京 100085
基金项目:
国家重点研发计划课题(2019YFD1100105)

摘要: 我国农村生活污水处理设施的进水COD往往低于设计水质,因而脱氮除磷过程中碳源不足,同时进水中TN、TP波动较大,导致现有工艺难以稳定实现脱氮除磷。针对这一问题,构建了基于改良型UCT工艺的一体化农村生活污水处理系统,并应用在江苏省常州市某村落。该处理系统可使污泥脱氮与混合液脱氮实现分离,在保证脱氮效率的同时,进一步减少硝酸盐进入厌氧区,以保证稳定的脱氮除磷效果。该系统已稳定运行超过2年,对COD、NH3-N、TN、TP 等指标的平均去除率分别为87.8%、94.5%、72.9%和83.9%,出水水质满足江苏省《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准。本案例可为我国农村生活污水处理的技术选择和运行提供参考。

English Abstract

  • 实施农村环境治理,着力改善水环境,是国务院《农村人居环境整治三年行动方案》的具体要求[1]。其中,农村生活污水的有效处理和长效管理是改善农村人居环境的重要环节。由于我国不同地区地理位置、气候及社会经济发展水平存在较大差异,因此,农村生活污水处理技术很难统一[2]。现有的处理工艺大部分来源于城镇污水处理领域[3-4]。其中,进水的碳氮比(C/N)是影响我国农村生活污水处理工艺效能的重要因素[5]。由于雨污合流的稀释作用、化粪池的不合理设置、管网施工不规范导致灌溉用水混入等[6]原因,农村生活污水中有机物浓度普遍较低[7],使得这类污水在处理过程中生物脱氮除磷难度增大。

    UCT(University of Cape town,南非开普敦大学提出的一种脱氮除磷工艺)工艺是类似A2/O工艺的一种新型脱氮除磷工艺。与A2/O工艺相比,UCT工艺将污泥先回流至缺氧池,再将缺氧池部分混合液回流至厌氧池,从而减少回流污泥中硝酸盐对厌氧释磷的影响[8-10]。该工艺能有效降低污水的COD、SS等指标,并解决同步脱氮除磷过程中聚磷菌和硝化菌在污泥龄上存在的矛盾问题[9]

    江苏省太湖地区位于长江三角洲的核心区,是我国人口最稠密和经济发展最具活力的地区之一。该区域城镇化水平较高,水冲厕所普遍,农村生活污水排放量大,但大多数村庄分散,污水处理设施的整体利用率和处理效率并不高[11]。其原因是设施巡检难度较大,运维成本较高。2013—2017年,环太湖地区68个自然村的分散型生活污水处理设施现状调查结果表明[12],现有处理设施出水的COD、NH3-N、TN、TP达标率分别为90.5%、84.2%、72.5%、68.2%,脱氮除磷效果有待提高。该地区中,江苏省农村生活污水中碳氮比(C/N)的年均值为3.9,远低于浙江省的年均值(6.10),说明对其进行生物脱氮的难度较大[13]。近年来,太湖流域水体一直存在富营养化问题,而农村生活污水的排放为其重要因素[14]。因此,亟需研发适应进水水质特点且具有稳定脱氮除磷效果的农村生活污水处理工艺,来解决类似环境容量小、人口基数大、水质污染严重地区的污水处理问题。

    本课题组设计并构建了基于改良型UCT工艺的一体化农村生活污水处理系统,并在江苏省常州市钟楼区邹区镇进行应用推广。本文梳理了该系统的工艺改进思路、工程设计方案、运行效果及经济性分析,以期为农村生活污水处理工程的实施提供参考。

    • 邹区镇位于常州市钟楼区西部,地处长江三角洲太湖平原中心,紧邻京杭大运河。全镇总面积66.18 km2,辖17个行政村,4个社区居委会,常住人口约5.6×104人。全镇河流水系较多,分布较为均匀,几乎各自然村均有河浜相通。境内主要河流有扁担河、卜泰河、鹤溪河、礼河、岳津河等。近年来,当地经济发展迅速,形成了灯具生产、物流贸易、建材批发等一系列国内特色产业,人口密度亦不断增大。然而,当地农村地区污水处理、垃圾处理等基础设施建设相对滞后,大量废水直接排入河湖道,水生态和水环境状况急剧恶化。根据2017年邹区镇103个断面水质监测结果,水质为优良的断面仅占4.9%,而劣Ⅴ类占54.4%。在29条河流中,有19条不能满足功能区水质要求,超标率为65.5%。其中,16条河流达到重度污染级别,污染以有机污染为主,主要污染物为耗氧有机物(以COD计)、NH3-N及磷等[15]

      2017年,江苏省提出《“两减六治三提升”专项行动方案》。该方案提出要在2020年实现农村生活污水处理设施覆盖率90%以上,设施正常运行率80%以上。邹区镇人口密度高、环境负荷大、土地资源紧缺,且位于太湖流域,环境敏感性高。调研发现,近年来该地区已建设的农村生活污水治理设施,由于运维难度大,外加碳源和药剂频繁,大部分设施尚未实现稳定运行。

    • 自2012年起,邹区镇分3年建设了基于A2O工艺的农村生活污水处理设施,共计28套,主要分布于邹区镇戴庄村、安基村和新屋村等5个行政村,处理规模为20 ~ 192 m3·d−1。以戴庄村五段头192 m3·d−1生活污水处理设施为例,其进出水水质情况(2016年5月—2017年4月)如表1所示。当地农村生活污水进水水质指标波动较大,尤以COD和NH3-N明显,分别为57.8~243 mg·L−1和16.8~89.4 mg·L−1。同时,进水耗氧有机物浓度较低,造成污水处理系统脱氮除磷的难度增加。而对于出水水质,对照《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准[16],NH3-N和TP与标准值的差距较大,需作为技术改造时的重点考虑指标。原有处理设施对污染物的平均去除率为:耗氧有机物(以COD 计)64.4%、氮(以NH3-N计)27.4%、磷(以TP计)48.4%、SS 52.9%。设备整体污染去除效率较低,部分月份氮磷去除率甚至为负值。

    • 1)脱氮除磷能力较差。邹区镇原有一体化设施采用A2O工艺。根据现状进水情况,TN、TP波动较大,且其质量浓度与城镇生活污水相比较高,而耗氧有机物质量浓度偏低,碳源含量较低。前端厌氧区聚磷菌吸收进水中易降解发酵产物以完成其细胞内的聚羟基烷酸的合成,使得后续缺氧区缺乏足够优质碳源,从而抑制了系统的反硝化潜力,降低了系统的脱氮效率。反之,当反硝化不彻底而残余硝酸盐随污泥回流进入厌氧区时,反硝化菌将优先利用环境中的有机物进行反硝化脱氮,从而会干扰厌氧释磷的正常进行,最终影响系统对磷的高效去除[17]。因此,当生物脱氮和生物除磷同时发生在A2O工艺中时,很难同时取得较好的效果。

      2)运维难度较大。原有A2O工艺需通过投加除磷药剂、外加碳源来保证系统的稳定运行。然而,邹区镇农村污水处理设施分布较为分散,运维成本较高,加上政府监管的缺失,实际过程中基本未投加过除磷药剂;另外,受专业水平限制,运维人员并未按需求进行碳源的精准补加,常常过量补加碳源,这导致生化池内污泥快速增殖,剩余污泥量加大,从而进一步增加了运行成本。

    • 1)解决脱氮除磷效果差的问题。UCT工艺是在A2O工艺的基础上,将污泥回流入缺氧池而不是厌氧池,同时增加缺氧池到厌氧池的混合液回流,回流污泥和混合液中的硝态氮至缺氧池中进行反硝化,从而可减少硝酸盐对厌氧释磷的影响,以期实现较好的生物脱氮除磷效果,流程如图1(a)所示。另外,由缺氧池回流到厌氧池中的回流液硝态氮浓度降低,也削弱了聚磷菌对厌氧释磷的影响,从而解决脱氮和除磷不能同时取得较好效果的问题[18-20]。针对邹区镇生活污水有机物浓度较低的问题,在UCT缺氧段前增加了预缺氧段,用于回流沉淀池的污泥,并在缺氧池设置回流好氧池混合液的装置,即改良型UCT工艺(流程如图1(b)所示)。这种方式使得污泥脱氮和混合液脱氮完全分开,可保证低C/N下的脱氮效率,从而进一步减少硝酸盐进入厌氧区的可能性,还可解决同步脱氮除磷过程中聚磷菌和硝化菌在污泥龄上的矛盾,最终实现良好的氮磷去除效果。

      2)降低运维成本。改良型UCT工艺可发挥聚磷菌生物除磷作用,实现低C/N下系统的稳定运行,碳源投加量低于同类工艺,因此可降低了运维成本。脱氮除磷效果的增强,使得混凝剂和助凝剂的使用减少,加药频次降低还可很大程度地减少运维工作量,从而降低运维成本与难度,对于改进农村生活污水处理设施的长效运维管理作用明显。

    • 1)构筑物设计参数。厌氧池:停留时间1.5 h,控制ORP、硝酸盐指标及碳源的供应以保持厌氧环境。缺氧池:停留时间4.2 h,反硝化负荷0.47,控制ORP以及碳源供应。好氧池:停留时间8.2 h。

      2)运行参数。污泥质量浓度4 000 mg·L−1,外回流比100%,内回流比300%,污泥负荷(每日单位质量MLSS可承受的以COD计耗氧有机污染物的质量)0.48 kg·(kg·d)−1,污泥龄17 d,曝气量8.5 m3·min−1,气水体积比为8:1。

      3)处理规模及设计水质。该系统总处理规模为270 m3·d−1,可服务人口1 996人,具体规模如表2所示。设计进水水质基于现状监测数据,按较不利的情景来考虑。设计出水水质执行《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准。出水就近排入附近自然水体,用于河塘生态补水。一体化污水处理设施设计进出水水质如表3所示。

    • 2018年,在邹区镇毛家村、野田村等4个行政村中的14个自然村投建了9套改良型UCT工艺一体化污水处理设施,总处理规模为270 m3·d−1,可服务人口1 996人,具体规模如表3所示。每套设施的服务范围按行政村河流、居住密集度和施工难度等因素进行划分。考虑到后期运维的成本和便利性,按照“分散处理,组团集中”的原则进行了布点。如于家村中3个自然村的分布较为分散,采用集中处理施工难度较大,故在每个自然村分别建设了3套处理设施,处理规模分别为15、20和10 m3·d−1;而桥东村的3个自然村居住密集度较大,故合建1套100 m3·d−1的处理设施。污水处理设施中的设备埋在地下,地上部分为电控系统(如图2所示)。

    • 改良型UCT工艺一体化污水处理工程于2018年8月进场施工,2018年12月完工进入调试阶段。经过5个月的调试运营期,建设单位于2019年5月委托第三方监测机构对9套一体化污水处理设施的出水水质进行了验收监测,结果如表4所示。新建的9套污水处理系统各项出水指标均能满足江苏省《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准。

    • 1)以COD计的耗氧有机物的去除效果图3所示,桥东村进水COD保持在95~240 mg·L−1,波动较大,进水平均COD为153.6 mg·L−1,低于设计水质。运行初期的第1~15天,系统尚未完全稳定,微生物还未培养成熟,在污泥浓度较低的情况下,出水平均COD为39.2 mg·L−1。随着系统的逐步稳定,自第30天起,系统出水COD 稳定在15~30 mg·L−1,出水平均COD为19.23 mg·L−1,可达到《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准要求。系统稳定后,以COD计的耗氧有机物的平均去除率可达到87.8%。同时,由于改良型UCT工艺采用了多段回流,在系统进水COD波动较大时,仍可保持较高的抗冲击负荷。在稳定运行工况下,通过对好氧区微生物的观察可发现,有大量轮虫出现,可见出水水质良好。

      2)NH3-N的去除效果图4为桥东村一体化污水处理系统的NH3-N去除效果。系统启动初期,好氧区硝化菌浓度较低,硝化作用不明显,出水NH3-N较高。随着污泥培养过程的进行,系统逐渐稳定,出水[NH3-N]保持在5 mg·L−1以下,平均去除率为92.4%,满足设计要求,较原有A2O工艺设备的NH3-N去除率明显提高。对于改良型UCT工艺,系统中NH3-N去除效率受好氧区DO的影响较大。较高的DO可提高系统硝化效果,但DO过高时,会造成运行成本的增加,且易产生污泥膨胀现象,导致出水悬浮物浓度升高。系统运行的第30~60天,DO可维持在1.02 mg·L−1,出水平均[NH3-N]为3.2 mg·L−1。第60~90天,DO提高至2.15 mg·L−1,出水[NH3-N]下降为1.69 mg·L−1。第90天起,为平衡运行成本,并减少硝化液回流对除磷效果的影响,将系统DO控制在1.6~1.8 mg·L−1,此时 NH3-N去除效率基本保持不变。

      3)以TN计污染物的去除效果农村生活污水中,以TN计污染物的去除效果与系统中进水C/N,回流比以及好氧区DO等均有密切关系。如图5所示,系统中进水TN波动较大,为29.2~104.9 mg·L−1,且进水C/N偏低,碳源严重不足。在系统运行初期(第0~30 天),未投加碳源,出水平均TN为24.6 mg·L−1,污染物去除率仅为45.1%,脱氮效果一般。系统运行30 d后开始投加少量碳源,C/N维持在3.5:1。第30~60天,以TN计污染物的去除率提高了15.7%,说明有机物对系统脱氮效率有较大影响。系统运行第60~90天,C/N调整为4.5:1,出水平均TN为15.2 mg·L−1,出水水质稳定达标。第90天后,系统C/N维持在3.5:1,通过调节回流比和好氧区DO,出水平均TN为14.6 mg·L−1。上述结果表明,改良UCT工艺具有较好的脱氮效果,而碳源投加量低于现有同类工艺,从而也降低了系统的运行成本。

      4)以TP计污染物的去除效果。当地农村生活污水的C/N和C/P普遍偏低,系统中存在固有反硝化细菌与聚磷菌对碳源的竞争,且聚磷菌摄取易降解有机物的能力不如反硝化细菌,从而导致聚磷菌体内贮存的聚羟基烷酸含量不足,出水TP偏高[21]。系统脱磷效果如图6所示。系统运行初期的0~30 d,未进行化学除磷,设备进水平均TP为3.89 mg·L−1,设备出水平均TP为1.78 mg·L−1,污染物的平均去除率为50.65%。随着系统逐渐稳定,在第30~60天,由于工艺的回流设计,硝酸盐进入厌氧区的量减少,使得硝化菌比聚磷菌优先利用环境中的有机物,从而干扰厌氧释磷的正常进行,依靠聚磷菌的生物除磷作用,以TP计污染物的去除率提高至74.2%,但出水仍不能达标。在第60~90天,设备开启同步化学除磷,每天投加铝盐除磷药剂及助凝剂1.5 kg,以TP计污染物的去除率提高到83.8%。在90 d之后,铝盐除磷药剂日投加量增至2 kg,出水平均TP为0.53 mg·L−1,已满足相关标准和设计要求。此时,继续增加铝盐除磷药剂投加量,除磷效果基本保持不变。因此,系统铝盐除磷药剂及助凝剂日投加量控制在1.5~2 kg。上述结果表明,改良UCT工艺强化了厌氧缺氧的交替环境,为反硝化噬磷菌的生长提供了有利的条件,保证了系统对氮磷相关指标能达标。

    • 该项目总投资为828.5万元。其中,工程建设费729.3万元,其他相关费用66.1万元,预备费33.1万元。新建一体化污水处理设施吨水建设费用约为4 650元(不含土建施工费用),与原有A2O工艺(约4 200元·m−3)相差不大。但在系统运行费用方面,改良型UCT工艺系统吨水运行费用为0.79元,较原有A2O工艺(0.9~1.2元·m−3)降低了15%[22]。这主要是由于本系统稳定运行所需DO质量浓度低于原工艺,故曝气风机能耗降低,单位水量平均耗电量降为0.313 kW·h·m−3;同时,本工艺系统尽可能地发挥了生物除磷作用,减少了混凝剂和助凝剂的投加量,进而降低了本工艺系统的运行成本。

    • 本案例将改良型UCT工艺应用于江苏省常州市钟楼区邹区镇的农村生活污水处理系统中,已建成的9套污水处理设施出水水质均满足《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准。自2019年6月完成调试并投入运行以来,已稳定运行超过2年,运行效果良好。本系统用到的改良UCT工艺通过改变污泥回流方式,使污泥脱氮和混合液脱氮分离,从而保证了系统的脱氮效率,同时也减少了硝酸盐对厌氧释磷的影响,实现了低C/N进水条件下良好的氮磷去除效果,可为我国农村生活污水处理的技术选择提供参考。

    参考文献 (22)

返回顶部

目录

/

返回文章
返回