[1]
|
Lamshöft M., Sukul P., Zühlke S., et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs. Analytical and Bioanalytical Chemistry, 2007, 388(8): 1733-1745
Google Scholar
Pub Med
|
[2]
|
Thomas L. ter Laak, Wouter A. Gebbink, Johannes Tolls. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology and Chemistry, 2006, 25 (4): 904-911
Google Scholar
Pub Med
|
[3]
|
张雨葵, 吴英海, 张龙江, 等. 人工河岸湿地对面源污染的处理效果研究. 环境污染与防治, 2010, 32(2): 29-32Zhang Yukui, Wu Yinghai, Zhang Longjiang, et al. The treatment efficiency of constructed riparian wetland on non-point source pollution. Environmental Pollution & Control, 2010, 32(2):29-32(in Chinese)
Google Scholar
Pub Med
|
[4]
|
刘娜娜, 伍钧, 郑丹, 等. 人工湿地基质的筛选及其对猪场废水厌氧消化液中氨氮吸附性能研究. 环境工程学报, 2011, 5(4): 783-788Liu Nana, Wu Jun, Zheng Dan, et al. Study on constructed wetlands packings selection and its adsorption properties for ammonia nitrogen in digested piggery wastewater. Chinese Journal of Environmental Engineering, 2011, 5(4): 783-788(in Chinese)
Google Scholar
Pub Med
|
[5]
|
徐德福, 李映雪. 不同人工湿地基质对污水总有机碳去除能力初探. 环境工程学报, 2010, 4(12): 2740-2744Xu Defu, Li Yingxue. Preliminary investigation on effect of different constructed wetland substrates on capacity of removal of TOC in wastewater. Chinese Journal of Environmental Engineering, 2010, 4(12): 2740-2744(in Chinese)
Google Scholar
Pub Med
|
[6]
|
Hijosa-Valsero M., Fink G., Schlüsener M.P., et al. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 2011, 83(5): 713-719
Google Scholar
Pub Med
|
[7]
|
Llorens E., Matamoros V., Domingo V., et al. Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Science of the Total Environment, 2009, 407(8): 2517-2524
Google Scholar
Pub Med
|
[8]
|
Lin A.Y.C., Tsai Y.T. Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 2009, 407(12): 3793-3802
Google Scholar
Pub Med
|
[9]
|
Kim Y.K., Lim S.J., Han M.H., et al. Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types. Geoderma, 2012, 185-186(9): 97-101
Google Scholar
Pub Med
|
[10]
|
Thiele-Bruhn S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594
Google Scholar
Pub Med
|
[11]
|
Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
Google Scholar
Pub Med
|
[12]
|
Kay P., Blackwell P.A., Boxall A.B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136-1144
Google Scholar
Pub Med
|
[13]
|
Beausse J. Selected drugs in solid matrices: A review of environmental determination, occurrence and properties of principal substances. Trends in Analytical Chemistry, 2004, 23(10-11): 753-761
Google Scholar
Pub Med
|
[14]
|
Boxall A.B.A., Blackwell P., Cavallo R., et al. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1-2): 19-28
Google Scholar
Pub Med
|
[15]
|
Tolls J. Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science and Technology, 2001, 35(17): 3397-3406
Google Scholar
Pub Med
|
[16]
|
Plosz B.G., Leknes H.K., Thomas V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment. Environmental Science and Technology, 2010, 44(2): 734-742
Google Scholar
Pub Med
|
[17]
|
Ingerslev F., Halling-Sørensen B. Biodegradation properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467-2473
Google Scholar
Pub Med
|
[18]
|
Yang S.F., Lin C.F., Wu C.J., et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation. Water Research, 2012, 46(4): 1301-1308
Google Scholar
Pub Med
|
[19]
|
Le-Minh N., Khan S.J., Drewes J.E., et al. Fate of antibiotics during municipal water recycling treatment processes. Water Research, 2010, 44(15): 4295-4323
Google Scholar
Pub Med
|
[20]
|
Zielezny Y., Groeneweg J., Vereecken H., et al. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biology & Biochemistry, 2006, 38(8): 2372-2380
Google Scholar
Pub Med
|
[21]
|
Marshall A.J.H., Piddock L.J.V. Interaction of divalent cations, quinolones and bacteria. Journal of Antimicrobial Chemotherapy, 1994, 34(4): 465-483
Google Scholar
Pub Med
|
[22]
|
Esiobu N., Armenta L., Ike J. Antibiotic resistance in soil and water environments. International Journal of Environmental Health Research, 2002, 12(2): 133-144
Google Scholar
Pub Med
|
[23]
|
Krieg N.R., Holt J.G. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, 1984
Google Scholar
Pub Med
|
[24]
|
Schauss K., Focks A., Heuer H., et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends in Analytical Chemistry, 2009, 28(5): 612-618
Google Scholar
Pub Med
|
[25]
|
Thiele-Bruhn S., Beck I.C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 2005, 59(4): 457-465
Google Scholar
Pub Med
|
[26]
|
Biak-Bielińska A., Maszkowska J., Mrozik W., et al. Sulfadimethoxine and sulfaguanidine: Their sorption potential on natural soils. Chemosphere, 2012, 86(10): 1059-1065
Google Scholar
Pub Med
|
[27]
|
Gao J., Pedersen J.A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science and Technology, 2005, 39(24): 9509-9516
Google Scholar
Pub Med
|
[28]
|
Zhou J.L. Sorption and remobilization behavior of 4-tert-octylphenol in aquatic systems. Environmental Science and Technology, 2006, 40(7): 2225-2234
Google Scholar
Pub Med
|
[29]
|
Yang W.B., Zheng F.F., Xue X.X., et al. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 2011, 362 (2): 503-509
Google Scholar
Pub Med
|
[30]
|
Sukul P., Lamshöft M., Zühlke S., et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere, 2008, 73(8): 1344-1350
Google Scholar
Pub Med
|
[31]
|
Kurwadkar S.T., Adams C.D., Meyer M.T., et al. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1370-1376
Google Scholar
Pub Med
|