[1] Lamshöft M., Sukul P., Zühlke S., et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs. Analytical and Bioanalytical Chemistry, 2007, 388(8): 1733-1745
[2] Thomas L. ter Laak, Wouter A. Gebbink, Johannes Tolls. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology and Chemistry, 2006, 25 (4): 904-911
[3] 张雨葵, 吴英海, 张龙江, 等. 人工河岸湿地对面源污染的处理效果研究. 环境污染与防治, 2010, 32(2): 29-32Zhang Yukui, Wu Yinghai, Zhang Longjiang, et al. The treatment efficiency of constructed riparian wetland on non-point source pollution. Environmental Pollution & Control, 2010, 32(2):29-32(in Chinese)
[4] 刘娜娜, 伍钧, 郑丹, 等. 人工湿地基质的筛选及其对猪场废水厌氧消化液中氨氮吸附性能研究. 环境工程学报, 2011, 5(4): 783-788Liu Nana, Wu Jun, Zheng Dan, et al. Study on constructed wetlands packings selection and its adsorption properties for ammonia nitrogen in digested piggery wastewater. Chinese Journal of Environmental Engineering, 2011, 5(4): 783-788(in Chinese)
[5] 徐德福, 李映雪. 不同人工湿地基质对污水总有机碳去除能力初探. 环境工程学报, 2010, 4(12): 2740-2744Xu Defu, Li Yingxue. Preliminary investigation on effect of different constructed wetland substrates on capacity of removal of TOC in wastewater. Chinese Journal of Environmental Engineering, 2010, 4(12): 2740-2744(in Chinese)
[6] Hijosa-Valsero M., Fink G., Schlüsener M.P., et al. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 2011, 83(5): 713-719
[7] Llorens E., Matamoros V., Domingo V., et al. Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Science of the Total Environment, 2009, 407(8): 2517-2524
[8] Lin A.Y.C., Tsai Y.T. Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 2009, 407(12): 3793-3802
[9] Kim Y.K., Lim S.J., Han M.H., et al. Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types. Geoderma, 2012, 185-186(9): 97-101
[10] Thiele-Bruhn S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594
[11] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
[12] Kay P., Blackwell P.A., Boxall A.B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136-1144
[13] Beausse J. Selected drugs in solid matrices: A review of environmental determination, occurrence and properties of principal substances. Trends in Analytical Chemistry, 2004, 23(10-11): 753-761
[14] Boxall A.B.A., Blackwell P., Cavallo R., et al. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1-2): 19-28
[15] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science and Technology, 2001, 35(17): 3397-3406
[16] Plosz B.G., Leknes H.K., Thomas V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment. Environmental Science and Technology, 2010, 44(2): 734-742
[17] Ingerslev F., Halling-Sørensen B. Biodegradation properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467-2473
[18] Yang S.F., Lin C.F., Wu C.J., et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation. Water Research, 2012, 46(4): 1301-1308
[19] Le-Minh N., Khan S.J., Drewes J.E., et al. Fate of antibiotics during municipal water recycling treatment processes. Water Research, 2010, 44(15): 4295-4323
[20] Zielezny Y., Groeneweg J., Vereecken H., et al. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biology & Biochemistry, 2006, 38(8): 2372-2380
[21] Marshall A.J.H., Piddock L.J.V. Interaction of divalent cations, quinolones and bacteria. Journal of Antimicrobial Chemotherapy, 1994, 34(4): 465-483
[22] Esiobu N., Armenta L., Ike J. Antibiotic resistance in soil and water environments. International Journal of Environmental Health Research, 2002, 12(2): 133-144
[23] Krieg N.R., Holt J.G. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, 1984
[24] Schauss K., Focks A., Heuer H., et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends in Analytical Chemistry, 2009, 28(5): 612-618
[25] Thiele-Bruhn S., Beck I.C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 2005, 59(4): 457-465
[26] Biak-Bielińska A., Maszkowska J., Mrozik W., et al. Sulfadimethoxine and sulfaguanidine: Their sorption potential on natural soils. Chemosphere, 2012, 86(10): 1059-1065
[27] Gao J., Pedersen J.A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science and Technology, 2005, 39(24): 9509-9516
[28] Zhou J.L. Sorption and remobilization behavior of 4-tert-octylphenol in aquatic systems. Environmental Science and Technology, 2006, 40(7): 2225-2234
[29] Yang W.B., Zheng F.F., Xue X.X., et al. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 2011, 362 (2): 503-509
[30] Sukul P., Lamshöft M., Zühlke S., et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere, 2008, 73(8): 1344-1350
[31] Kurwadkar S.T., Adams C.D., Meyer M.T., et al. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1370-1376