Processing math: 100%

YUE Chen, OU Huan, ZHANG Xueting, HUANG Yaling, MU Jingli. Analysis of influence factors on antibiotics and nutrients removal from aquaculture wastewater by vertical flow constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1243-1251. doi: 10.12030/j.cjee.202211136
Citation: YUE Chen, OU Huan, ZHANG Xueting, HUANG Yaling, MU Jingli. Analysis of influence factors on antibiotics and nutrients removal from aquaculture wastewater by vertical flow constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1243-1251. doi: 10.12030/j.cjee.202211136

Analysis of influence factors on antibiotics and nutrients removal from aquaculture wastewater by vertical flow constructed wetlands

  • Corresponding author: HUANG Yaling, ylhuang@mju.edu.cn
  • Received Date: 14/11/2022
    Available Online: 10/04/2023
  • Constructed wetlands (CWs) are widely used for removal of pollutants in aquaculture wastewater due to its advantages of efficient, economical and environment-friendly features. Aiming at the problems of antibiotics and nutrients pollution in aquaculture wastewater, three test-batch vertical flow constructed wetlands (VFCW) with different substrates or plant conditions were constructed to investigate the factors affecting the removal of four typical antibiotics and nutrients from aquaculture wastewater, then the potential effect of antibiotics on the nutrient removal was further studied. The results showed that the removal rates of florfenicol, oxytetracycline, ofloxacin and sulfamethoxazole were 25.61%~53.66%, 94.82%~97.16%, 93.53%~94.27% and 10.48%~57.54% in spring, then 15.10%~37.93%, 93.96%~94.87%, 85.17%~86.57% and 29.84%~62.36% in summer, respectively. Addition of biochar as substrate could significantly increase the removal rates of sulfamethoxazole and florfenicol by VFCW. Compared with CW1 (VFCW with no biochar and plant) and CW2 (VFCW with no biochar), the average increase ratios of sulfamethoxazole removal rate by CW3 (VFCW with biochar and plant) were 39.79% and 33.92%, respectively; the average increase ratios of florfenicol were 25.45% and 22.61%, respectively. In spring, after 3 days- exposure to 4 antibiotics, the average removal rates of TN, TP, NH4+-N, and NO3--N in the system decreased by 11.69%, 17.53%, 10.04%, and 4.07%, respectively. In summer, the average removal rates of TP and NH4+-N in the system decreased by 19.41% and 5.53%, respectively, while the average removal rates of TN and NO3--N increased by 11.67% and 10.42%, respectively. This is expected to provide a reference for further improving the design parameters of constructed wetland system and increasing the removal efficiency of pollutants.
  • 我国《水污染防治行动计划》明确规定,在重点的湖泊(水库)等水质要求敏感的区域排放的污水必须达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放要求[1]。虽然目前我国污水处理设施在数量上已达4 000多个,但在处理能力以及处理设施上的发展并不平衡。目前部分城镇污水处理厂在出水一级A提标改造中对氮磷的去除效果并不十分理想,需要进一步研发新技术以改进现有技术,提高脱氮除磷效率[2]。藻菌共生体系是利用藻类和细菌2类生物之间在协同作用处理污水的一种生态系统[3]。污水中的有机物经好氧菌分解产生NH+4-N、PO34和CO2等无机物,为藻类提供营养,合成自身细胞组织;藻类光合作用释放的O2又可供好氧菌继续氧化有机物[4]。藻菌共生体系能有效去除污水中含碳、氮、磷等的污染物,具有运行成本低、无二次污染以及藻、菌生物资源可再利用的特点,在城镇污水处理研究中受到广泛关注并得到了实际应用[5]

    碳源是藻类与菌类进行生命活动时不可或缺的条件之一。藻类可利用无机碳源进行光合作用合成有机碳[6],菌类利用有机或无机碳源为细胞生长提供能量以及合成碳骨架[7],因此,外在碳源的缺乏直接影响藻菌共生体系的稳定生长及其污水处理效率。然而,我国城镇污水处理厂的进水COD普遍偏低,部分进水甚至低于100 mg·L−1。因此,在藻菌共生体系等生物处理工艺运行中可考虑通过补充合适的碳源来进一步提升脱氮除磷效率[8]

    本研究以某城镇污水厂中鉴定出的优势脱氮除磷藻种短带鞘藻(Oedogonium brevicingulatum)为藻源,以该厂好氧池中活性污泥为菌源,构建并优化了短带鞘藻-活性污泥共生体系。从乙酸钠、葡萄糖、碳酸钠和碳酸氢钠4种外加碳源中筛选出最适宜该体系的外加碳源,对其脱氮除磷处理效果进行了评价,并使用其处理某城镇污水,以期为该藻菌共生技术的实际应用提供技术参数[9]

    在前期研究中,采用PCR-DGGE分子生物学方法筛选并鉴定某污水处理厂中的优势藻种为丝状短带鞘藻(Oedogonium brevicingulatum)[10]。从中国科学院武汉水生所国家淡水藻库购置的纯种短带鞘藻作为实验所用藻种。接种前用超纯水将藻细胞清洗3次,随后在无菌操作台中用接种环将藻细胞接种于含300 mL改良BG11培养基的锥形瓶中,摇匀,并用透气膜封口。将锥形瓶置于光照恒温培养箱中培养,培养条件设置为:温度(25±1) ℃、光照强度6 000 lx、光暗比12 h∶12 h[11]。每天定时摇瓶3次,防止藻类贴壁生长。

    实验所用活性污泥取自某城市污水处理厂A2O处理工艺中的好氧池。将取回的活性污泥曝气24 h以去除杂质,再用葡萄糖、可溶性淀粉、NH4Cl、K2HPO4、KH2PO4按照C∶N∶P为100∶5∶1的比例配置营养盐培养活性污泥,每天更换营养盐3次,曝气间歇时间为12 h∶12 h。

    实验前期,对某城镇污水处理厂二沉池进水的主要污染物进行了为期1年的跟踪监测并计算年平均值,NH+4-N、TN、TP和COD分别为15.4、21.5、1.5和102.4 mg·L−1,按照该污水厂主要污染物的年平均进水浓度,分别采用NH4Cl、KNO3、K2HPO4和葡萄糖来配置实验用模拟城镇污水。

    在反应器运行期间,采用该城镇污水厂二沉池4月份的实际进水,主要污染物进水水质指标NH+4-N、TN、TP和COD平均值分别为16.5、27.5、1.4和87.4 mg·L−1。实验过程中水温控制在(25±1) ℃[12],pH控制在7.0~8.0[13-14]

    实际污水处理采用课题组研究设计的固定化藻菌共生生物膜反应器[15]。该反应器的总高度为0.5 m,总容积为17 L,通体由透明有机玻璃制成,固定化材料为聚乙烯弹性立体填料,生物反应区的高度为0.25 m,有效直径为0.25 m。反应器结构实物图见图1

    图 1  固定化藻菌生物膜反应器实物图
    Figure 1.  Photos of immobilized algae-sludge biological reactor

    用恒重的定量滤纸过滤并称量一系列不同湿重梯度的短带鞘藻,然后将短带鞘藻和滤纸置于103~105 ℃的烘箱中烘至恒重,利用差减法得出藻的干重质量,再分别以藻湿重和藻干重为横、纵坐标来绘制藻的干、湿重关系标准曲线,得到式(1);短带鞘藻叶绿素的测定采用丙酮提取法[16],取一系列不同湿重的藻体,分别测定总叶绿素含量,作出总叶绿素—藻湿重标准曲线,得到式(2)。

    y=0.122x+0.002302 (1)
    y=3.1345x+1.0967 (2)

    用量筒准确量取100 mL混合均匀的活性污泥混合液后过滤,将载有活性污泥的滤纸移入103~105 ℃的烘箱内烘至恒重,利用差减法求得活性污泥干重质量,最后将活性污泥干重质量除以体积确定活性污泥浓度。培养过程中每2~3 d对出水中的沉淀物在光学显微镜下进行观察。当视野中观察到累枝虫(Epistylislacustris)伴随钟虫(Vorticellidae)一起出现时,表明出水活性污泥的培养进入成熟期且可用于后续的实验。

    NH+4-N的测定采用纳氏试剂分光光度法(GB 7479-1887);TN、TP的测定分别采用便携式总氮测定仪(深昌鸿PWN-810 B)和钼酸铵分光光度法(GB 11893-1989);COD的测定采用微波消解滴定法(GB 11914-1989);pH采用便携式pH计(雷磁PHS-3E)测定。

    采用Monod动力学方程(式(3))建立短带鞘藻和活性污泥生长动力学模型,描述稳态时碳酸氢钠限制条件下对短带鞘藻和活性污泥生长的影响。

    μ=μmSKS+S (3)

    式中:μ为比生长速率,d−1μm为最大比生长速率,d−1S为限制性碳酸氢钠浓度,mg·L−1KS为半饱和常数,mg·L−1。根据该动力学方程可分别求出短带鞘藻和活性污泥的动力学参数。

    在5 d的实验周期中,首先对短带鞘藻-活性污泥共生体系进行工艺参数优化[17]。考察了初始藻菌干重比(1∶1、2∶1、3∶1、5∶1)、初始生物量(0.2、0.3、0.4、0.5 g·L−1)、曝气量(0、0.2、0.4、1 L·min−1)和曝气间歇时间(1、3、6、24 h)对短带鞘藻-活性污泥共生体系脱氮除磷的影响。结果表明,在初始藻菌比为3∶1,初始生物量0.3 g·L−1,曝气量0.2 L·min−1和曝气间歇时间6 h∶6 h的条件下,短带鞘藻-活性污泥共生体系对各污染物去除率最优。如图2所示,在实验第5天时,NH+4-N、TN、TP和COD的去除率分别为83.7%、67.6%、64.7%和100%。

    图 2  短带鞘藻-活性污泥共生体系对模拟污水中NH+4-N、TN、TP和COD的去除效果
    Figure 2.  Removal effect of NH+4-N, TN, TP and COD in synthetic wastewater by the symbiosis system of O.brevicingulatum and activated sludge

    碳源是藻类与菌类进行生命活动时不可或缺的因素之一。目前由于雨污分流不彻底,污水管网收集不充分,城镇污水处理厂进水普遍存在COD偏低的问题,部分进水小于100 mg·L−1[18]。在本研究中,某城镇污水厂在A2O工艺运行中通过比较葡萄糖和乙酸钠后,加入了乙酸钠来提升脱氮除磷效率。因此,为进一步提升藻菌共生体系的脱氮除磷效率,解决进水碳源不足的问题,可考虑通过补充合适的外加碳源。本研究考察了2种有机碳源(乙酸钠、葡萄糖)和2种无机碳源(碳酸钠、碳酸氢钠)对短带鞘藻-活性污泥共生体系去除氮磷和COD的影响。如图3(a)图3(b)所示,外加有机碳源(乙酸钠和葡萄糖)的实验组对NH+4-N和TN的去除速率高于外加无机碳源(碳酸钠和碳酸氢钠)的实验组,其中葡萄糖为外加碳源的实验组脱氮效率最高。该体系中氮的去除主要靠藻菌共同作用,藻类通过吸收氮素将其合成为自身细胞,菌类硝化作用将氨氮转化为亚硝酸盐和硝酸盐后通过反硝化作用将硝态氮和亚硝态氮转化为氮气[19]。有机碳源的加入增强了菌类的活性,进而提高了脱氮效率[20]

    图 3  4种外加碳源对短带鞘藻-活性污泥共生体系去除氮、磷和COD的影响
    Figure 3.  Treatment of nitrogen, phoshpours and COD by the symbiosis system of O. brevicingulatum and activated sludge with four carbon sources

    与脱氮的效果不同,如图3(c)所示,当外加碳源为无机碳时,对TP的去除效果更好且TP< 0.5 mg·L−1,达到一级A排放标准。在第6 h时,外加碳源为碳酸氢钠的实验组先于碳酸钠TP达到一级A标准,且相比于外加碳源为葡萄糖和乙酸钠的实验组其对TP的去除率分别提高了6.0%和14.4%。在该藻菌体系中,藻对磷的同化吸收和表面吸附为主要的除磷途径,无机碳源更容易被藻类利用[21],新细胞合成速率加快,除磷效率得到提高。在本研究中,如图3(d)所示,4个实验组在第6 h时COD的去除率虽均能达到100%,但是,添加无机碳源的实验组在6 h内对COD的去除率更高。综合评价,碳酸氢钠是该体系的最适外加碳源。

    进一步考察了碳酸氢钠初始浓度对该藻菌共生体系去除氮、磷和COD的影响。由图4(a)图4(b)可知,当初始碳酸氢钠初始浓度为100 mg·L−1时,对NH+4-N和TN的去除率最高,分别为98.7%和78.6%。初步分析,投加碳酸氢钠改变了体系初始HCO3浓度,进而导致初始pH也不同。如图5所示,当初始碳酸氢钠浓度为75~125 mg·L−1时,pH维持在7.1~8.8,适合藻菌体系的生长,随着碳酸氢钠投加量的增加175 mg·L−1的实验组pH达到9.4~10.3,过高的pH不利于藻菌体系脱氮[22]。如图4(c)所示,各实验组在0~4 h里TP的浓度波动较大,随后TP浓度开始持续降低,直至平稳。造成上述现象的主要原因:一方面是由于碳酸氢钠的加入使pH发生变化,部分藻菌共生体表面附着的磷溶入水中造成TP浓度的短暂升高;另一方面是体系在脱氮除磷的过程中会使氮磷比发生变化,从而引起藻类向水中释放磷以维持自身细胞生长[23]。在12 h实验周期结束时,碳酸氢钠初始浓度为100 mg·L−1和125 mg·L−1的实验组TP浓度达到一级A标准,分别为0.42 mg·L−1和0.48 mg·L−1。COD的去除效果如图4(d)所示,在4个实验组中并未表现出明显的差异,均能达到一级A排放标准。

    图 4  碳酸氢钠初始浓度对短带鞘藻-活性污泥共生体系去除氮、磷和COD的影响
    Figure 4.  Removal efficiencies of nitrogen, phosphorus and COD by the symbiosis system of O. brevicingulatum and activated sludge at different NaHCO3 initial concentrations
    图 5  不同碳酸氢钠初始浓度下短带鞘藻-活性污泥共生体系pH的变化趋势
    Figure 5.  Changes in pH of O. brevicingulatum and activated sludge system at different initial NaHCO3 concentrations

    外加碳酸氢钠的投加时间对体系脱氮的影响如图6(a)图6(b)所示,在体系脱氮过程中,藻菌生物体利用污水中的碳源作为能源支撑同化吸收以及分解转化水中的氮素。加入碳酸氢钠后,短带鞘藻持续吸收水中的氮元素以合成自身细胞等物质,因此,在补充碳源后的数小时内NH+4-N和TN的浓度开始快速下降。如图6(c)所示,TP浓度在0~3 h内出现波动,这可能是因为藻在最初的延滞生长期吸收磷并储存于体内,随着环境变化和生长需要会将体内部分的磷释放出来[24]。如图6(d)所示,外加碳酸氢钠的投加时间对体系去除COD的影响不大。而第3 h由于碳源的加入短带鞘藻的活性增强,快速吸收水中以及藻中释放出来的磷。综合考虑各污染物的去除情况,在第3 h补充碳酸氢钠的实验组有着更好的脱氮除磷性能,在实验周期12 h时结束时,出水中NH+4-N、TN、TP和COD分别为0.14、6.54、0.43和0 mg·L−1

    图 6  碳酸氢钠的投加时间对短带鞘藻-活性污泥共生体系去除氮、磷和COD的影响
    Figure 6.  Removal efficiencies of nitrogen, phosphorus and COD by O. brevicingulatum and activated sludge symbiosis system at different NaHCO3 addition time

    为确定碳酸氢钠对共生体系中短带鞘藻和活性污泥去除氮、磷与COD的影响,分别设置了单藻和单泥实验组。由图7(a)可以看出,短带鞘藻加碳酸氢钠实验组在实验第4 h时 NH+4-N浓度最先达到一级A标准。活性污泥加碳酸氢钠实验组与单泥实验组在对TN、TP的去除效果如图7(b)图7(c)所示,二者并未表现出明显差异,且在12 h实验周期结束时,活性污泥加碳酸氢钠实验组和单泥实验组中TP的浓度分别为0.82 mg·L−1和0.72 mg·L−1,均未达到一级A排放标准。这是由于加入碳酸氢钠后,活性污泥中的硝化菌逐渐成为优势菌种,加快吸收水中的NH+4-N,并将其氧化为硝酸盐或亚硝酸盐,但厌氧条件下反硝化菌缺少有机碳源的补充,硝态氮还原成氮气的过程缓慢;在对TP的去除上,好氧状态下活性污泥中的聚磷菌吸收正磷酸盐,但在厌氧状态下会向水体中释磷[25]。而短带鞘藻利用外加的碳酸氢钠作为碳源,持续吸收水体中的氮磷和有机物来合成自身细胞,相比于活性污泥外加碳酸氢钠的实验组其对TN和TP的去除率分别提高了11.5%和42.4%。相较于其他实验组,短带鞘藻外加碳酸氢钠实验组达到一级A排放标准的时间更短且效果更好。如图7(d)所示,各实验组在对COD的去除效果上未表现出明显差异。

    图 7  外加碳酸氢钠对短带鞘藻和活性污泥去除氮、磷和COD的影响
    Figure 7.  Effect of NaHCO3 addition on the removal of nitrogen, phosphorus and COD by O. brevicingulatum or activated sludge

    采用Monod动力学方程(式(3))计算拟合,获得外加碳酸氢钠后短带鞘藻和活性污泥生长动力学参数。短带鞘藻和活性污泥都能较好的拟合Monod模型(R2分别为0.943和0.862),此外 ,短带鞘藻的比生长速率(μm)为0.276 d−1,大于活性污泥(0.144 d−1);而半饱和常数(Ks)为0.77 mg·L−1,远低于活性污泥的15.28 mg·L−1,这表明短带鞘藻对碳酸氢钠的亲和性要优于活性污泥。因此,该体系外加碳酸氢钠后更多地促进了短带鞘藻的生长,提升了脱氮除磷的效果。

    将某城镇污水厂进水加入到课题组研究设计的藻菌共生生物膜反应器中连续运行30 d。以脱氮除磷效果为评价指标,初步评价了该体系在反应器中对实际城镇污水的处理效果。在反应器运行的0~10 d里,设置水力停留时间(HRT)为8 h,如图8所示,NH+4-N、TP的浓度波动较大,均不能达到一级A标准。因此,在11~20 d,将HRT调整为12 h,NH+4-N、TP及COD的出水波动明显较前10 d平稳,但出水中NH+4-N、TP和TN仍无法稳定达标。虽然继续延长反应器的HRT可有效增加反应器对污染物的去除效率[26],但HRT过长会增加污水处理的成本,因此,在反应器运行的最后10 d中设置HRT为12 h,另投加前期实验中筛选出的最佳外加碳源碳酸氢钠100 mg·L−1来提高反应器的处理效率。结果表明,出水中的NH+4-N、TP、TN和COD分别为3.7、13.0、0.4和34.2 mg·L−1,均达到一级A排放标准。

    图 8  固定化藻菌反应器处理实际城镇污水氮、磷和COD的去除效果
    Figure 8.  Removal efficiencies of nitrogen, phosphorus and COD from actual urban sewage by immobilized algal-bacteria biological reactor

    1)构建了短带鞘藻-活性污泥共生体系,并确定了最佳工艺条件为初始藻菌干重比3∶1、初始生物量0.3 g·L−1、曝气量0.2 L·min−1和曝气间歇时间6 h∶6 h,在此条件下,对NH+4-N、TN、TP和COD的去除率分别为83.7%、67.6%、64.7%和100%。

    2)筛选出最适宜的外加碳源为碳酸氢钠。在12 h的实验周期中,3 h往短带鞘藻-活性污泥共生体系投加100 mg·L−1的碳酸氢钠,该体系对NH+4-N、TN和TP的去除率分别提高了15.6%、6.3%和10.0%,实验周期结束时出水中NH+4-N、TN、TP和COD分别为0.14、6.54、0.43和0 mg·L−1,各污染物浓度均达到一级A排放标准。

    3)外加碳酸氢钠主要促进了共生体系中短带鞘藻的生长。

    4)当投加碳酸氢钠为100 mg·L−1、HRT为12 h时,固定化藻菌共生反应器出水中的氮、磷及COD均能达到一级A排放标准且运行稳定。

  • [1] CAO L, WANG W, YANG Y, et al. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China[J]. Environmental Science and Pollution Research-International, 2007, 14(7): 452-62. doi: 10.1065/espr2007.05.426

    CrossRef Google Scholar Pub Med

    [2] HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551. doi: 10.1016/j.envint.2020.105551

    CrossRef Google Scholar Pub Med

    [3] CHEN C Q, ZHENG L, ZHOU J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Science of the Total Environment, 2017, 580: 1175-1184. doi: 10.1016/j.scitotenv.2016.12.075

    CrossRef Google Scholar Pub Med

    [4] YUAN L, WANG L, LI Z, et al. Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets[J]. Environmental Pollution, 2019, 255: 113327. doi: 10.1016/j.envpol.2019.113327

    CrossRef Google Scholar Pub Med

    [5] 陈军. 生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D]. 广州: 中国科学院大学, 2017.

    Google Scholar Pub Med

    [6] 李飞翔, 岳琛, 张超月, 等. 人工湿地去除水产养殖尾水中氮磷的影响因素识别[J]. 生态与农村环境学报, 2022, 38(7): 8.

    Google Scholar Pub Med

    [7] ZHENG Y, LIU Y, QU M, et al. Fate of an antibiotic and its effects on nitrogen transformation functional bacteria in integrated vertical flow constructed wetlands[J]. Chemical Engineering Journal, 2021(11): 129272.

    Google Scholar Pub Med

    [8] YI K, D WANG, QI YANG, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Science of the Total Environment, 2017, 605: 368.

    Google Scholar Pub Med

    [9] 覃岚倩, 白少元, 张琴, 等. 人工湿地对抗生素复合污染的净化效果及微生物群落响应[J]. 生态学杂志, 2021, 40(2): 525-533. doi: 10.13292/j.1000-4890.202102.006

    CrossRef Google Scholar Pub Med

    [10] SANTOS F, ALMEIDA C, RIBEIRO I, et al. Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater[J]. Ecological Engineering, 2019, 129: 45-53. doi: 10.1016/j.ecoleng.2019.01.007

    CrossRef Google Scholar Pub Med

    [11] 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989.

    Google Scholar Pub Med

    [12] WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175: 594-601. doi: 10.1016/j.biortech.2014.10.068

    CrossRef Google Scholar Pub Med

    [13] YUAN Y, YANG B, WANG H, et al. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions[J]. Bioresource Technology, 2020, 310: 123419. doi: 10.1016/j.biortech.2020.123419

    CrossRef Google Scholar Pub Med

    [14] ZHU T, SU Z, LAI W, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of The Total Environment, 2021, 776: 145906. doi: 10.1016/j.scitotenv.2021.145906

    CrossRef Google Scholar Pub Med

    [15] 刘佳, 易乃康, 熊永姣, 等. 人工湿地构型对水产养殖废水含氮污染物和抗生素去除影响[J]. 环境科学, 2016, 37(9): 3430-3437. doi: 10.13227/j.hjkx.2016.09.022

    CrossRef Google Scholar Pub Med

    [16] 崔迪, 邓红娜, 庞长泷, 等. 生物法去除水环境中磺胺甲恶唑的研究进展[J]. 中国给水排水, 2019, 35(24): 7. doi: 10.19853/j.zgjsps.1000-4602.2019.24.007

    CrossRef Google Scholar Pub Med

    [17] VASILIADOU I A, MOLINA R, F MARTÍNEZ, et al. Biological removal of pharmaceutical and personal care products by a mixed microbial culture: Sorption, desorption and biodegradation[J]. Biochemical Engineering Journal, 2013, 81(Complete): 108-119.

    Google Scholar Pub Med

    [18] REIS AC, ČVANČAROVÁ M, LIU Y, et al. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp[J]. GP. Applied Microbiology and Biotechnology, 2018, 102(23): 10299-10314. doi: 10.1007/s00253-018-9411-9

    CrossRef Google Scholar Pub Med

    [19] DAN A, YANG Y, DAI Y N, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology, 2013, 146: 363-370. doi: 10.1016/j.biortech.2013.07.050

    CrossRef Google Scholar Pub Med

    [20] SONG H L, ZHANG S, GUO J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere, 2018, 203(1): 434-441.

    Google Scholar Pub Med

    [21] DAI M, ZHANG Y, WU Y, et al. Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106193. doi: 10.1016/j.jece.2021.106193

    CrossRef Google Scholar Pub Med

    [22] GUO M J, CAO J, WANG C Y, et al. Microbial biomass and nutrients in soil at different stages of secondary forest succession in Ziwulin, North-west China[J]. Forest Ecology and Management, 2005, 217: 117-125. doi: 10.1016/j.foreco.2005.05.055

    CrossRef Google Scholar Pub Med

    [23] KUMAR S, DUTTA V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview[J]. Environmental Science and Pollution Research-International, 2019, 26(12): 11662-11673. doi: 10.1007/s11356-019-04816-9

    CrossRef Google Scholar Pub Med

    [24] WEI W, TONG J, HU B. X. Study on ecological dynamic model for phytoremediation of farmland drainage water[J]. Journal of Hydrology, 2019, 578: 124026. doi: 10.1016/j.jhydrol.2019.124026

    CrossRef Google Scholar Pub Med

    [25] 李泽兵, 韩飞, 曾圣男, 等. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58.

    Google Scholar Pub Med

    [26] PEIRIS C, GUNATILAKE S. R, MLSNA T. E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review[J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150

    CrossRef Google Scholar Pub Med

    [27] DENG S, CHEN J, CHANG J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits[J]. Journal of Cleaner Production, 2021, 293: 126156. doi: 10.1016/j.jclepro.2021.126156

    CrossRef Google Scholar Pub Med

    [28] LI X, LU S, LIU S, et al. Shifts of bacterial community and molecular ecological network at the presence of fluoroquinolones in a constructed wetland system[J]. Science of the Total Environment, 2020, 708: 135156. doi: 10.1016/j.scitotenv.2019.135156

    CrossRef Google Scholar Pub Med

    [29] 王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性, 代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007-2017.

    Google Scholar Pub Med

    [30] LU S Y, ZHANG Y R, LIU X H, et al. Effects of sulfamethoxazole on nitrogen removal and molecular ecological network in integrated vertical-flow constructed wetland[J]. Ecotoxicology and Environmental Safety, 2021, 219: 112292. doi: 10.1016/j.ecoenv.2021.112292

    CrossRef Google Scholar Pub Med

    [31] YAN Q, MIN J, YU Y, et al. Microbial community response during the treatment of pharmaceutically active compounds (Ph ACs) in constructed wetland mesocosms[J]. Chemosphere, 2017, 186: 823-831. doi: 10.1016/j.chemosphere.2017.08.064

    CrossRef Google Scholar Pub Med

    [32] CHEN A, CHEN B, DING C. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal[J]. Rsc Advance, 2015, 5(73): 59326-59334. doi: 10.1039/C5RA08434B

    CrossRef Google Scholar Pub Med

    [33] TONG X, WANG X, HE X, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland[J]. Science of the Total Environment, 2019, 656: 503-511. doi: 10.1016/j.scitotenv.2018.11.358

    CrossRef Google Scholar Pub Med

    [34] KUYPERS M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9

    CrossRef Google Scholar Pub Med

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionDOWNLOAD: 11.1 %DOWNLOAD: 11.1 %FULLTEXT: 79.6 %FULLTEXT: 79.6 %META: 9.3 %META: 9.3 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 99.7 %其他: 99.7 %北京: 0.1 %北京: 0.1 %岳阳: 0.1 %岳阳: 0.1 %衡阳: 0.1 %衡阳: 0.1 %其他北京岳阳衡阳Highcharts.com
  • Cited by

    1. 隋雪晴,左尚武,周磊,张雪琦,王月圆,卢烨彬,杨扬,成水平. 部分饱和垂直流人工湿地抗生素去除性能及规律研究. 环境科学学报. 2025(01): 177-187 .
    2. 侯天元,汤冬梅,张丽萍,周巧红,吴振斌,武俊梅. 抗生素对人工湿地处理水产养殖尾水的影响及其缓解途径. 水生生物学报. 2025(04): 61-71 .
    3. 张美,王家宏,白杨. 铁碳强化潮汐流-潜流复合人工湿地处理模拟养殖尾水的启动运行效果. 环境科学研究. 2024(04): 800-811 .
    4. 郑仕夫,徐慧敏,陈曦,裘丽萍,宋超,范立民,李丹丹,孟顺龙,徐跑. 水产养殖尾水处理技术的研究现状和发展趋势. 中国农学通报. 2024(12): 159-164 .
    5. 王梦婷,郑于聪,郝梦晴,程晓阳,王晓昌,陈荣,DZAKPASU Mawuli. 多种类抗生素对垂直流人工湿地净化作用的影响机制. 环境工程学报. 2024(05): 1365-1372 .
    6. 樊祥科,邹宏海. 人工智能在池塘养殖生产中的应用前景探析. 黑龙江水产. 2024(05): 618-624 .
    7. 王飞儿,林杉,张秀玲,沈瑶瑶,张水清,江艳云,胡荣桂. 微塑料输入与秸秆添加对潮土和黄棕壤氮淋溶的影响. 农业工程学报. 2023(23): 94-102 .
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(3)

Article Metrics

Article views(3953) PDF downloads(151) Cited by(11)

Access History

Analysis of influence factors on antibiotics and nutrients removal from aquaculture wastewater by vertical flow constructed wetlands

Abstract: Constructed wetlands (CWs) are widely used for removal of pollutants in aquaculture wastewater due to its advantages of efficient, economical and environment-friendly features. Aiming at the problems of antibiotics and nutrients pollution in aquaculture wastewater, three test-batch vertical flow constructed wetlands (VFCW) with different substrates or plant conditions were constructed to investigate the factors affecting the removal of four typical antibiotics and nutrients from aquaculture wastewater, then the potential effect of antibiotics on the nutrient removal was further studied. The results showed that the removal rates of florfenicol, oxytetracycline, ofloxacin and sulfamethoxazole were 25.61%~53.66%, 94.82%~97.16%, 93.53%~94.27% and 10.48%~57.54% in spring, then 15.10%~37.93%, 93.96%~94.87%, 85.17%~86.57% and 29.84%~62.36% in summer, respectively. Addition of biochar as substrate could significantly increase the removal rates of sulfamethoxazole and florfenicol by VFCW. Compared with CW1 (VFCW with no biochar and plant) and CW2 (VFCW with no biochar), the average increase ratios of sulfamethoxazole removal rate by CW3 (VFCW with biochar and plant) were 39.79% and 33.92%, respectively; the average increase ratios of florfenicol were 25.45% and 22.61%, respectively. In spring, after 3 days- exposure to 4 antibiotics, the average removal rates of TN, TP, NH4+-N, and NO3--N in the system decreased by 11.69%, 17.53%, 10.04%, and 4.07%, respectively. In summer, the average removal rates of TP and NH4+-N in the system decreased by 19.41% and 5.53%, respectively, while the average removal rates of TN and NO3--N increased by 11.67% and 10.42%, respectively. This is expected to provide a reference for further improving the design parameters of constructed wetland system and increasing the removal efficiency of pollutants.

  • 近年来,我国水产养殖业快速发展,随之带来的环境问题也日益凸显。剩余饵料、养殖对象排泄物等的排放导致尾水中氮磷普遍超标。同时,为了预防和控制疾病,大量的抗生素被广泛应用于水产养殖中[1]。养殖环境中抗生素污染问题已不容忽视,四环素类、喹诺酮类、磺胺类、氯霉素类[2-3]等在养殖尾水或养殖水域中广泛存在。残留在水中的抗生素不仅直接威胁鱼虾的生存,还会加剧环境中耐药菌和耐药基因问题[4]。目前,国家正在大力发展绿色健康养殖业,养殖尾水治理力度不断增加,研发绿色、高效、低成本的抗生素去除技术对于降低抗生素排放、缓解水环境污染具有非常重要的价值。

    人工湿地具有处理成本低、操作简单、不会形成二次污染等特点被广泛应用于水产养殖尾水的处理,主要通过基质吸附、微生物降解和植物吸收等过程去除废水中的污染物[5]。然而已有研究表明,不同设计参数与系统结构,如流态、基质类型和组成结构、植物类型与组成结构、水力停留时间和水力负荷、pH和季节因素(如气温、光照等)等均会导致营养盐和抗生素的去除效率存在明显差异[6-7]。同时,抗生素的存在可能会影响人工湿地系统中营养盐的去除。但是,部分研究结果和结论尚不完全一致。有研究表明,废水中抗生素的存在会降低氮磷的去除效率[8]。另一些研究表明,抗生素的存在反而提高氨氮的去除率[9]。此外,也有研究表明,2 mg·L−1的土霉素不会影响人工湿地系统对氮、磷的去除[10]。抗生素的存在对人工湿地系统去除氮磷等营养盐的影响机制尚不清晰,相关研究有待深入探讨。

    本研究以3套不同基质和植物条件的上行垂直潜流人工湿地小试系统为研究对象,探究不同季节、不同基质和是否种植耐盐植物海马齿(Sesuvium portulacastrum)情况下,上行垂直潜流人工湿地系统对养殖尾水中4种典型抗生素的去除效果及抗生素的存在是否影响人工湿地系统对营养盐的去除效率。本研究结果有望为进一步改进人工湿地系统设计参数,提高污染物去除效率,促进人工湿地在淡水和海水养殖尾水治理中的应用。

    • 本研究构建了3种不同基质或植物条件的垂直潜流人工湿地小试系统(CW1、CW2和CW3),结构示意图如图1所示。系统由圆柱体玻璃钢制成,高80 cm、半径为40 cm,水位控制在60 cm,侧面设置3个不同高度的采样口,本研究统一从最底部采样口采样。系统中种植的植物为多年生且生命力顽强耐干旱的草本盐生植物—海马齿,选取高度在15~20 cm,生长良好的植株移栽至系统中,种植密度为40株·m−2。CW1的基质组成结构为底部铺设5 cm左右的砾石,中下层铺设30 cm高小粒径沸石,中上层铺设20 cm高中粒径沸石,上层铺设10 cm高麦饭石。CW2在CW1的基础上种植海马齿(图1(a))。CW3在CW2的基础上用生物炭层替换相同体积的沸石层(图1(b)),使用2.5 kg生物炭分5层铺设替换共0.05 m3沸石。本实验中使用的生物炭是经过500 ℃高温裂解的玉米秸秆生物炭。

    • 实验时间为2021年3月(春季)—2021年6月(夏季)。其中,春季的实验时间为3月10日—4月22日;夏季的实验时间为5月12日—6月25日。受试用的水产养殖尾水均来自福建省淡水水产研究所科研中试基地。本实验选用了养殖水体中常被检出的4种抗生素(氟苯尼考、土霉素、氧氟沙星和磺胺甲恶唑),设计添加质量浓度为250 µg·L−1。春、夏季实验开始前均通过向系统中输入未添加抗生素的养殖尾水进行挂膜,持续20 d。春季实验结束后,通过清水对系统进行清洗,持续20 d。系统采用间歇流(快速进水)运行方式,包括进水-反应-排水-排空闲置4个阶段,每个周期时长为4 d。其中进水时间0.5 h,反应时间为89 h,排水时间为0.5 h,排空闲置6 h。系统每个周期的进水水量约为8 000 L,水力停留时间(HRT)设置为0 (进水)和3 d。春季和夏季,分别采集HRT为0 (进水)和3 d的抗生素和营养盐水样进行分析。

    • 待营养盐样品采集完成后,将其装入1 000 mL聚乙烯塑料瓶中,在现场用WTW便携式水质测定仪(Multi 3630)测定水温(T)、电导率(EC)、溶解氧(DO)和pH后,将样品贮存于4 ℃采样箱中,立即带回实验室。用0.45 μm的玻璃纤维滤膜过滤500 mL水样,用于硝态氮(NO3-N)、氨氮(NH4+-N)的测定,未过滤的水样用于总氮(TN)和总磷(TP)的测定,48 h内完成样品的分析,测定方法参照相关文献[11]

      抗生素水样采集完成后装入100 mL棕色玻璃瓶中并立即运回实验室,用0.22 μm的玻璃纤维滤膜过滤样品,取1 mL注入液相进样小瓶。植物体内抗生素提取方法主要参照陈军[8]并根据多次实验结果进行相应改进。抗生素水样和植物抗生素样品均用高效液相色谱串联质谱仪(LC-MS)测定,其具体参数为:色谱柱为XTERRA MS C18(3.0 mm×100 mm,5 μm)。色谱柱柱温为35 ℃,进样量为5 µL。流动相流速为0.4 mL·min−1,流动相A是体积分数为0.1%的甲酸-水溶液。流动相B为甲醇,洗脱梯度程序设置如下:0~0.5 min,5%B;0.5~3 min,5%~40%B;3~4 min,40%B;4~5 min,40%~95%B;5~7.5 min,95%B;7.5~7.51 min,95%~5%B;7.51~9 min,5%B。

    • 本研究应用One-Way ANOVA单因素方差分析研究不同组别去除率总体分布是否有显著性差异;相关统计分析应用SPSS 26软件进行;图件制作应用Origin软件完成;数据预处理采用Excel软件完成。抗生素和营养盐的去除率按照公式(1)计算。

      式中:η%ci为进水营养盐浓度,mg·L−1和进水抗生素浓度,µg·L−1ce为出水营养盐平衡浓度,mg·L−1和抗生素平衡浓度,µg·L−1

    2.   结果与讨论
    • 春季和夏季进、出水水质状况见表1表2。总体而言,夏季进、出水平均水温比春季平均水温分别高5.65 ℃和7.20 ℃;夏季进、出水pH平均值比春季分别低0.21和0.26;夏季进、出水电导率平均值比春季分别高5.73 μs·cm−1和7.42 μs·cm−1;夏季进、出水溶解氧平均值比春季分别低0.81 mg·L−1和3.97 mg·L−1。春季和夏季,进水pH均呈弱酸性,经过系统处理后pH呈弱碱性;与进水相比,出水电导率均有所上升,而溶解氧含量下降。

    • 春季和夏季,3套系统进、出水中氟苯尼考、土霉素、氧氟沙星和磺胺甲恶唑质量浓度见表3;CW1、CW2和CW3对4种抗生素的去除率见图2。无论春季或夏季,3套系统对土霉素和氧氟沙星的去除率均无明显差异,且均具有良好的去除能力。春季,与CW1相比,CW2对氟苯尼考和磺胺甲恶唑的去除率分别提升了2.71%和1.59%;与CW2相比,CW3对氟苯尼考和磺胺甲恶唑的去除率分别提升了25.34%和45.48%。夏季,与CW1相比,CW2对氟苯尼考和磺胺甲恶唑的去除率分别提升了2.97%和10.16%;与CW2相比,CW3对氟苯尼考和磺胺甲恶唑的平均去除率分别提高19.87%和22.36%。结果表明,种植海马齿可以在一定程度上提升以沸石为主人工湿地系统对氟苯尼考和磺胺甲恶唑的去除效果,添加生物炭可以显著提高(p≤0.05)这两种抗生素的去除率。

      人工湿地系统去除抗生素的主要途径包括基质吸附截留、植物吸收、光降解和生物降解等过程,对于垂直潜流人工湿地系统而言,光解作用可以忽略[12]。本研究中3套垂直潜流湿地系统对土霉素和氧氟沙星均有良好的净化效果,而磺胺甲恶唑和氟苯尼考的去除率明显低于土霉素和氧氟沙星,这与其他研究结论一致[13]。土霉素和氧氟沙星分别属于四环素类和氟喹诺酮类抗生素。基质吸附作用是废水中喹诺酮类和四环素类抗生素的主要去除途径[14],一旦暴露在环境中可以快速光解或者被基质吸附,这可能是3套系统均表现出对土霉素和氧氟沙星有良好净化能力的主要原因。氟苯尼考属于甲砜霉素的单氟衍生物,具有氟、氯多个卤代基团和苯环结构,性质较为稳定,不易发生光解和水解,在常规的人工湿地中难以被去除[15]。磺胺甲恶唑属于磺胺类抗生素,在环境中降解速度缓慢,生物降解是磺胺类的抗生素的最主要去除路径[16]。已有研究发现好氧微生物降解、部分厌氧微生物或者兼性厌氧微生物均可促进磺胺甲恶唑降解[17-18]。由于不同研究的进水水质、基质、植物等存在较大差异,系统内微生物群落结构和多样性也不同,磺胺甲恶唑去除率存在较大的差异[19-20]。与一些研究相比[21],本研究中CW1和CW2对磺胺甲恶唑的去除率偏低。这可能是因为水产养殖尾水C/N较低,碳源不足时,不利于磺胺甲恶唑的降解[13]。水体中微生物的种群、数量和活性都与水体中有机质的含量成正相关[22],寡营养态水体中磺胺甲恶唑的降解效率普遍偏低[19]。此外,不同研究中除了植物和基质对抗生素吸收和吸附能力存在差异外,磺胺甲恶唑初始质量浓度的差异,导致其对系统微生物群落结构和多样性的影响也不同,这可能是影响人工湿地系统对其净化能力存在差异的另一重要因素[16]。部分研究也发现,以沸石为主的人工湿地对低浓度的磺胺甲恶唑的去除效果不佳[5,19]

      除夏季土霉素外,植物组(CW2)对4种抗生素的去除率均优于无植物组(CW1)。植物主要通过根系的吸收作用、根际的吸附和截留、根系分泌物和氧气释放增强微生物活性等方式直接或间接去除废水中的抗生素[23]。虽然大部分研究认为植物吸收过程不是人工湿地去除磺胺甲恶唑和氟苯尼考的主要途径,但是适当种植植物可以提高抗生素的去除率[24]。本研究中检测到海马齿中土霉素的质量浓度在851.55~1691.48 µg·L−1,磺胺甲恶唑的质量浓度在125.07~291.67 µg·L−1,表明海马齿能够通过吸收过程移除水体中土霉素和磺胺甲恶唑。结合植物组和无植物组系统对4种抗生素的去除率,说明海马齿对这4种抗生素去除起到一定的促进作用。相比春季,夏季促进效果更明显,可能因为夏季植物生长更旺盛,有利于海马齿对污染物的吸收。

      基质是人工湿地的重要组成部分之一,除了对污染物具有吸附作用外,还可为微生物和植物提供基本的生长环境和营养物质[12]。因此,基质的物理化学特征直接影响人工湿地系统对抗生素的净化能力。春季和夏季,添加生物炭均可显著提高垂直潜流人工湿地对氟苯尼考和磺胺甲恶唑的净化能力。相比沸石,生物炭孔隙结构明显、比表面积大,且具有亲水、疏水和酸碱性等性质[25],对抗生素的吸附速度更快,尤其在酸性环境[26]。人工湿地对抗生素的净化能力与基质的类型、组成、微生物群落结构等关系密切,添加生物炭后会改变系统内pH、营养盐和氧气的流动、植物生长状况等,影响系统内其他基质表面的微生物群落结构,进而提升系统对抗生素的净化能力[27]。pH是影响抗生素去除效率的关键因素之一,在酸性条件下磺胺类抗生素以阳离子形式存在。CW3的pH低于CW1和CW2,更有利于生物炭对磺胺甲恶唑和氟苯尼考的吸附。

    • 春季和夏季抗生素添加前后3套系统进、出水中总氮、总磷、氨氮和硝态氮的质量浓度见图3。春季,抗生素存在条件下,3种不同条件系统的总氮、总磷、氨氮和硝态氮平均去除率分别下降了11.69%、17.53%、10.04%和4.07%,且3套系统均显著降低了其对总磷的去除效率(P≤0.05)(图4(a))。夏季,抗生素存在条件下,总磷和氨氮的平均去除率分别下降了19.41%和5.53%,而总氮和硝态氮平均去除率分别提高了11.66%和10.42%(图4(b))。

      本研究结果表明,春季和夏季抗生素存在对人工湿地去除总氮和硝氮的影响截然不同,而对总磷和氨氮的去除均表现为抑制作用,且在春季3套系统均可以显著降低对总磷的去除效率。其他研究[28]也发现,添加质量浓度为50~100 ng·L−1的氟喹诺酮类抗生素后,TP的去除率下降。基质吸附、植物吸收和聚磷菌(PAOs)的吸收是人工湿地系统中磷的主要去除路径。基质中吸附的土霉素(四环素类)和氧氟沙星(喹诺酮类)可能会与磷争夺吸附位点,导致磷的去除效率下降[9]。抗生素的存在也可能影响聚磷菌的丰度,削弱微生物对磷的吸收过程。YI等[8]发现添加2 mg·L−1的环丙沙星后会降低系统中聚磷菌的丰度,减少细菌对磷的吸收。夏季系统中溶解氧的浓度显著低于春季(表1表2),厌氧或缺氧条件下,聚磷菌会释放磷,在一定程度上抑制尾水中总磷的去除,这可能是夏季总磷去除率比春季下降更明显的原因之一。

      硝化、反硝化、厌氧氨氧化等微生物转化过程是人工湿地系统去除废水中无机氮的主要机制。课题组前期研究发现,抗生素添加前尾水中的细菌群落主要为α-变形菌(α-Proteobacteria)、γ-变形菌(γ-Proteobacteria)、拟杆菌(Bacteroidia)和放线菌(Actinomycete),这些微生物在人工湿地系统去除氮的过程中起着非常关键的作用[29]。好氧条件下,硝化细菌[30](如假单胞菌(Pseudomonas))将系统中NH4+氧化成NO3的过程是人工湿地系统去除氨氮的重要途径。抗生素的添加可能会影响微生物群落的结构和多样性,从而影响氮的转化过程。YAN等[31]研究发现人工湿地系统中微生物多样性和丰度指数与磺胺甲恶唑、氧氟沙星、罗红霉素等抗生素呈负相关关系,多种抗生素的存在会降低水体中变形菌门(Proteobacteria)的丰度,导致系统对氨氮的去除效率下降,这与本研究的结论一致。夏季,抗生素添加后氨氮去除率下降幅度比春季小,可能因为夏季水温更高,促进微生物硝化作用,提高氨氮去除率,在一定程度上抵消抗生素存在对氨氮去除的不利影响。反硝化过程是指在厌氧条件下,硝酸盐和亚硝酸盐被反硝化细菌异化还原为N2的过程,是系统中硝态氮去除的重要形式。YI等[8]研究发现添加2 mg·L−1的环丙沙星会降低系统对硝态氮的去除。本研究中抗生素添加对硝态氮去除的影响由春季的抑制作用转为夏季的促进作用,可能是因为夏季尾水中溶解氧(<2 mg·L−1)远低于春季(5.09~5.26 mg·L−1),低氧或厌氧条件下有利于拟杆菌和放线菌等反硝化菌群繁殖,促进反硝化过程的发生,提高硝氮的去除效率。硝态氮在进水中占总氮的比重在27.70%~53.89%,是无机氮的主要赋存形态,尤其是夏季,这可能是抗生素添加对总氮和硝态氮去除的影响一致的原因。CHEN等[32]也发现2 mg·L−1的四环素影响了系统内反硝化菌的丰度,系统内硝态氮浓度增加,降低了对总氮的去除率。

      在已有的研究中,人工湿地系统基质的组成结构和类型、运行方式、流式、植物类型等不尽相同,且添加的抗生素种类和质量浓度也存在差异,大部分研究结论尚不一致。CHEN[32]等研究发现系统中四环素的质量浓度为2 mg·L−1时不会影响除磷效果,但会降低系统对总氮的去除率;TONG等[33]研究发现添加质量浓度为0.1、10和1 000 µg·L−1氧氟沙星后,人工湿地系统中氨氮的去除率由72.60%提高至80.70%~82.10%;KUYPERS等[34]研究发现在磺胺甲嘧啶质量浓度为100 µg·L−1时,处理组的氨氮去除率略高于对照组。本研究仅考虑4种不同类型抗生素复合对营养盐去除的影响,将来研究中会进一步分析抗生素添加前后微生物群落结构的变化,为阐明本研究试验抗生素添加浓度条件下对营养盐去除影响的机理提供理论依据。

    3.   结 论
    • 1)本研究所构建的3种不同条件垂直潜流人工湿地系统对氧氟沙星和土霉素在春季和夏季均表现出良好的去除效果,去除率均在85%以上。与氧氟沙星和土霉素相比,系统对磺胺甲恶唑和氟苯尼考的去除效率相对较低,春季,系统对氟苯尼考和磺胺甲恶唑的去除率分别为17.23%~67.50%和8.37%~67.87%;夏季,系统对氟苯尼考和磺胺甲恶唑的去除率分别为12.01%~41.29%和19.28%~67.04%。

      2)春季和夏季,种植海马齿整体上可以提高系统对4种抗生素的去除效率,但均不具有显著性差异;春季和夏季,添加生物炭均可提高系统对4种抗生素的去除效率,且会显著提高系统对磺胺甲恶唑和氟苯尼考的去除效率。

      3)无论是春季还是夏季,4种抗生素添加均对总磷和氨氮的去除产生一定的负面影响,但不同季节对总氮和硝态氮去除效率的影响存在差异。在抗生素存在的条件下,春季,3种不同条件的人工湿地系统对总氮、总磷、氨氮和硝态氮平均去除率分别下降了11.69%、17.53%、10.04%和4.07%;夏季,总磷和氨氮的平均去除率分别下降了19.41%和5.53%,而总氮和硝态氮的平均去除率分别提高了11.67%和10.42%。

    Figure (4)  Table (3) Reference (34)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint