[1] |
CAO L, WANG W, YANG Y, et al. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China[J]. Environmental Science and Pollution Research-International, 2007, 14(7): 452-62. doi: 10.1065/espr2007.05.426
|
[2] |
HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551. doi: 10.1016/j.envint.2020.105551
|
[3] |
CHEN C Q, ZHENG L, ZHOU J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Science of the Total Environment, 2017, 580: 1175-1184. doi: 10.1016/j.scitotenv.2016.12.075
|
[4] |
YUAN L, WANG L, LI Z, et al. Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets[J]. Environmental Pollution, 2019, 255: 113327. doi: 10.1016/j.envpol.2019.113327
|
[5] |
陈军. 生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D]. 广州: 中国科学院大学, 2017.
|
[6] |
李飞翔, 岳琛, 张超月, 等. 人工湿地去除水产养殖尾水中氮磷的影响因素识别[J]. 生态与农村环境学报, 2022, 38(7): 8.
|
[7] |
ZHENG Y, LIU Y, QU M, et al. Fate of an antibiotic and its effects on nitrogen transformation functional bacteria in integrated vertical flow constructed wetlands[J]. Chemical Engineering Journal, 2021(11): 129272.
|
[8] |
YI K, D WANG, QI YANG, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Science of the Total Environment, 2017, 605: 368.
|
[9] |
覃岚倩, 白少元, 张琴, 等. 人工湿地对抗生素复合污染的净化效果及微生物群落响应[J]. 生态学杂志, 2021, 40(2): 525-533. doi: 10.13292/j.1000-4890.202102.006
|
[10] |
SANTOS F, ALMEIDA C, RIBEIRO I, et al. Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater[J]. Ecological Engineering, 2019, 129: 45-53. doi: 10.1016/j.ecoleng.2019.01.007
|
[11] |
《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989.
|
[12] |
WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175: 594-601. doi: 10.1016/j.biortech.2014.10.068
|
[13] |
YUAN Y, YANG B, WANG H, et al. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions[J]. Bioresource Technology, 2020, 310: 123419. doi: 10.1016/j.biortech.2020.123419
|
[14] |
ZHU T, SU Z, LAI W, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of The Total Environment, 2021, 776: 145906. doi: 10.1016/j.scitotenv.2021.145906
|
[15] |
刘佳, 易乃康, 熊永姣, 等. 人工湿地构型对水产养殖废水含氮污染物和抗生素去除影响[J]. 环境科学, 2016, 37(9): 3430-3437. doi: 10.13227/j.hjkx.2016.09.022
|
[16] |
崔迪, 邓红娜, 庞长泷, 等. 生物法去除水环境中磺胺甲恶唑的研究进展[J]. 中国给水排水, 2019, 35(24): 7. doi: 10.19853/j.zgjsps.1000-4602.2019.24.007
|
[17] |
VASILIADOU I A, MOLINA R, F MARTÍNEZ, et al. Biological removal of pharmaceutical and personal care products by a mixed microbial culture: Sorption, desorption and biodegradation[J]. Biochemical Engineering Journal, 2013, 81(Complete): 108-119.
|
[18] |
REIS AC, ČVANČAROVÁ M, LIU Y, et al. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp[J]. GP. Applied Microbiology and Biotechnology, 2018, 102(23): 10299-10314. doi: 10.1007/s00253-018-9411-9
|
[19] |
DAN A, YANG Y, DAI Y N, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology, 2013, 146: 363-370. doi: 10.1016/j.biortech.2013.07.050
|
[20] |
SONG H L, ZHANG S, GUO J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere, 2018, 203(1): 434-441.
|
[21] |
DAI M, ZHANG Y, WU Y, et al. Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106193. doi: 10.1016/j.jece.2021.106193
|
[22] |
GUO M J, CAO J, WANG C Y, et al. Microbial biomass and nutrients in soil at different stages of secondary forest succession in Ziwulin, North-west China[J]. Forest Ecology and Management, 2005, 217: 117-125. doi: 10.1016/j.foreco.2005.05.055
|
[23] |
KUMAR S, DUTTA V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview[J]. Environmental Science and Pollution Research-International, 2019, 26(12): 11662-11673. doi: 10.1007/s11356-019-04816-9
|
[24] |
WEI W, TONG J, HU B. X. Study on ecological dynamic model for phytoremediation of farmland drainage water[J]. Journal of Hydrology, 2019, 578: 124026. doi: 10.1016/j.jhydrol.2019.124026
|
[25] |
李泽兵, 韩飞, 曾圣男, 等. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58.
|
[26] |
PEIRIS C, GUNATILAKE S. R, MLSNA T. E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review[J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150
|
[27] |
DENG S, CHEN J, CHANG J. Application of biochar as an innovative substrate in constructed wetlands/biofilters for wastewater treatment: Performance and ecological benefits[J]. Journal of Cleaner Production, 2021, 293: 126156. doi: 10.1016/j.jclepro.2021.126156
|
[28] |
LI X, LU S, LIU S, et al. Shifts of bacterial community and molecular ecological network at the presence of fluoroquinolones in a constructed wetland system[J]. Science of the Total Environment, 2020, 708: 135156. doi: 10.1016/j.scitotenv.2019.135156
|
[29] |
王飞鹏, 黄亚玲, 张瑞瑞, 等. 不同曝气方式对人工湿地细菌多样性, 代谢活性及功能的影响[J]. 环境科学, 2022, 43(4): 2007-2017.
|
[30] |
LU S Y, ZHANG Y R, LIU X H, et al. Effects of sulfamethoxazole on nitrogen removal and molecular ecological network in integrated vertical-flow constructed wetland[J]. Ecotoxicology and Environmental Safety, 2021, 219: 112292. doi: 10.1016/j.ecoenv.2021.112292
|
[31] |
YAN Q, MIN J, YU Y, et al. Microbial community response during the treatment of pharmaceutically active compounds (Ph ACs) in constructed wetland mesocosms[J]. Chemosphere, 2017, 186: 823-831. doi: 10.1016/j.chemosphere.2017.08.064
|
[32] |
CHEN A, CHEN B, DING C. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal[J]. Rsc Advance, 2015, 5(73): 59326-59334. doi: 10.1039/C5RA08434B
|
[33] |
TONG X, WANG X, HE X, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland[J]. Science of the Total Environment, 2019, 656: 503-511. doi: 10.1016/j.scitotenv.2018.11.358
|
[34] |
KUYPERS M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
|