[1]
|
JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014
CrossRef Google Scholar
Pub Med
|
[2]
|
ZHANG Y, MA H, NIU Q, et al. Effects of substrate shock on extracellular polymeric substance (EPS) excretion and characteristics of attached biofilm anammox granules[J]. RSC Advances, 2016, 6(114): 113289-113297. doi: 10.1039/C6RA20097D
CrossRef Google Scholar
Pub Med
|
[3]
|
WINKLER M K H, KLEEREBEZEM R, STROUS M, et al. Factors influencing the density of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7459-7468. doi: 10.1007/s00253-012-4459-4
CrossRef Google Scholar
Pub Med
|
[4]
|
WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science and Technology, 2011, 45(17): 7330-7337. doi: 10.1021/es201388t
CrossRef Google Scholar
Pub Med
|
[5]
|
LIN Y M, LOTTI T, SHARMA P K, et al. Apatite accumulation enhances the mechanical property of anammox granules[J]. Water Research, 2013, 47(13): 4556-4566. doi: 10.1016/j.watres.2013.04.061
CrossRef Google Scholar
Pub Med
|
[6]
|
CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought[J/OL][J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009
CrossRef Google Scholar
Pub Med
|
[7]
|
ANGELA M, BÉATRICE B, MATHIEU S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. doi: 10.1016/j.watres.2011.04.031
CrossRef Google Scholar
Pub Med
|
[8]
|
DRIVER J, LIJMBACH D, STEEN I. Why recover phosphorus for recycling, and how?[J]. Environmental Technology (United Kingdom), 1999, 20(7): 651-662.
Google Scholar
Pub Med
|
[9]
|
LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Phosphorus recovery from wastewater by struvite crystallization: A review[J]//Critical Reviews in Environmental Science and Technology, 2009, 39(6): 433-477.
Google Scholar
Pub Med
|
[10]
|
ZHANG C, CHEN Y. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal[J]. Environmental Science and Technology, 2009, 43(16): 6164-6170. doi: 10.1021/es9005948
CrossRef Google Scholar
Pub Med
|
[11]
|
MA H Y, NIU Q, ZHANG Y, et al. Substrate inhibition and concentration control in an UASB-Anammox process[J]. Bioresource Technology, 2017, 238: 263-272. doi: 10.1016/j.biortech.2017.04.017
CrossRef Google Scholar
Pub Med
|
[12]
|
APHA, AWWA, WEF. Standard Methods for the examination of Water and Wastewater, 23rd Edition, Washington, D. C. : American Public Health Association, 2017.
Google Scholar
Pub Med
|
[13]
|
MA H Y, ZHANG Y, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of the Total Environment, 2019, 659: 568-577. doi: 10.1016/j.scitotenv.2018.12.377
CrossRef Google Scholar
Pub Med
|
[14]
|
LLOBET-BROSSA E, ROSSELLÓ-MORA R, AMANN R. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization[J]. Applied and Environmental Microbiology, 1998, 64(7): 2691-2696. doi: 10.1128/AEM.64.7.2691-2696.1998
CrossRef Google Scholar
Pub Med
|
[15]
|
MANZ W, AMANN R, LUDWIG W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions[J]. Systematic and Applied Microbiology, 1992, 15(4): 593-600. doi: 10.1016/S0723-2020(11)80121-9
CrossRef Google Scholar
Pub Med
|
[16]
|
LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60: 1-14. doi: 10.1016/j.watres.2014.04.017
CrossRef Google Scholar
Pub Med
|
[17]
|
TANG C J, ZHENG P, MAHMOOD Q, et al. Effect of substrate concentration on stability of anammox biofilm reactors[J]. Journal of Central South University of Technology (English Edition), 2010, 17(1): 79-84. doi: 10.1007/s11771-010-0014-6
CrossRef Google Scholar
Pub Med
|
[18]
|
MAÑAS A, POCQUET M, BISCANS B, et al. Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor[J]. Chemical Engineering Science, 2012, 77: 165-175. doi: 10.1016/j.ces.2012.01.009
CrossRef Google Scholar
Pub Med
|
[19]
|
BELLIER N, CHAZARENC F, COMEAU Y. Phosphorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40(15): 2965-2971. doi: 10.1016/j.watres.2006.05.016
CrossRef Google Scholar
Pub Med
|
[20]
|
OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. doi: 10.1111/1462-2920.13134
CrossRef Google Scholar
Pub Med
|
[21]
|
TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[Z/OL](2017).
Google Scholar
Pub Med
|
[22]
|
ZHANG Y, MA H Y, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. doi: 10.1016/j.biortech.2018.01.043
CrossRef Google Scholar
Pub Med
|
[23]
|
MA H Y, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C[J]. Water Research, 2020, 172: 115510. doi: 10.1016/j.watres.2020.115510
CrossRef Google Scholar
Pub Med
|
[24]
|
MCKEOWN R M, SCULLY C, MAHONY T, et al. Long-term (1243 days), low-temperature (4-15 °C), anaerobic biotreatment of acidified wastewaters: Bioprocess performance and physiological characteristics[J]. Water Research, 2009, 43(6): 1611-1620. doi: 10.1016/j.watres.2009.01.015
CrossRef Google Scholar
Pub Med
|
[25]
|
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
CrossRef Google Scholar
Pub Med
|
[26]
|
DE GRAAFF M S, TEMMINK H, ZEEMAN G, et al. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability[J]. Water Research, 2011, 45(1): 63-74. doi: 10.1016/j.watres.2010.08.010
CrossRef Google Scholar
Pub Med
|
[27]
|
HULSHOFF POL L W, DE CASTRO LOPES S I, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004, 38(6): 1376-1389. doi: 10.1016/j.watres.2003.12.002
CrossRef Google Scholar
Pub Med
|
[28]
|
WEINER S. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 1-29. doi: 10.2113/0540001
CrossRef Google Scholar
Pub Med
|
[29]
|
SARMA B K, BARMAN P, SARMA B, et al. Biomimetic deposition of carbonate apatite and role of carbonate substitution on mechanical properties at nanoscale[J]. Materials Letters, 2016, 185: 387-390. doi: 10.1016/j.matlet.2016.09.028
CrossRef Google Scholar
Pub Med
|
[30]
|
VALSAMI-JONES E. Mineralogical controls on phosphorus recovery from wastewaters[J]. Mineralogical Magazine, 2001, 65(5): 611-620. doi: 10.1180/002646101317018433
CrossRef Google Scholar
Pub Med
|
[31]
|
KINDAICHI T, TSUSHIMA I, OGASAWARA Y, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms[J]. Applied and Environmental Microbiology, 2007, 73(15): 4931-4939. doi: 10.1128/AEM.00156-07
CrossRef Google Scholar
Pub Med
|