-
城市污水中的有机物、氮和磷等物质是污水处理厂需要去除的主要污染物[1]。实际上,这些物质亦是能源和资源,若能实现资源化利用,则可解决污水处理厂能耗和成本较高的问题,确保其可持续性发展。因此,城市污水处理需由达标处理向能源回收、资源回收和低碳处理方向转型[2]。大量有机物、氮磷等物质在污水处理过程中进入污泥,故污泥的资源化处理亦成为研究热点[3]。利用厌氧消化技术对其中的有机物进行能源高效回收,再利用厌氧氨氧化(anaerobic ammonium oxidation, anammox)技术对污泥厌氧消化液进行低碳脱氮处理被认为是较为有效的方法[4]。
污泥厌氧消化过程会释放高浓度的磷,产生高含磷的污泥厌氧消化液。LIN等[5]成功开发了厌氧氨氧化-羟基磷酸钙(anammox-hydroxyapatite, anammox-HAP)颗粒污泥技术,实现了高负荷厌氧氨氧化脱氮同步高效磷回收[6]。污泥厌氧消化液的磷酸盐浓度与污水处理厂的除磷工艺密切相关。对于采用化学除磷方法的污水处理厂,其出水中磷酸盐质量浓度一般低于10 mg·L−1;而采用生物除磷方法的污水处理厂,则出水中磷酸盐的质量浓度相对较高[7]。anammox-HAP颗粒污泥技术可实现污泥厌氧消化液的高效脱氮和磷回收[8]。然而,污泥消化液水质差异对anammox-HAP系统磷回收效率会产生影响。MA等[9]通过批次实验研究发现,对于不同磷含量的废水,最适宜的钙投加量是不同的,磷的回收效率亦不相同。
现有研究在探索anammox-HAP系统的脱氮性能和磷回收效率时,主要集中在磷质量浓度较低时(<100 mg·L−1)的性能与表现,而实际污泥厌氧消化液中,磷的质量浓度可超过200 mg ·L−1[8]。本课题组在连续流膨胀颗粒污泥床(expanded granular sludge bed,EGSB)反应器中建立anammox-HAP系统并观察其长期运行特征,考察不同进水磷质量浓度、反应器pH、进水钙磷比(Ca/P)对反应器磷回收效率及污泥特性的影响,以期实现高效脱氮和磷回收,为anammox-HAP工艺应用于污泥厌氧消化液的低碳处理和资源回收提供参考。
-
实验反应器为EGSB反应器,结构如图1所示。反应器由有机玻璃制成,有效容积为6 L。在反应器的顶端设有三相分离器,用于固液气三相的分离,从而防止反应器运行过程中絮状污泥的流失。
-
接种污泥取自实验室长期稳定运行的anammox反应器。anammox-HAP颗粒污泥的质量浓度为51.5 g·L−1,接种体积为1 L。
反应器的进水均为人工配水。氯化铵(NH4Cl)与亚硝酸钠(NaNO2)为进水中的基质。配水中用1.25 g·L−1的KHCO3提供无机碳源和碱度,并添加质量浓度为0.1 g·L−1的MgSO4·7H2O、0.017 g·L−1的FeSO4·7H2O、0.024 g·L−1的Na2EDTA和0.4 mL·L−1等微量元素。EGSB反应器中磷质量浓度的控制通过投加不同浓度的KH2PO4来实现,Ca2+的质量浓度根据磷变化而变化。另外,为避免过高的游离氨(free ammonia, FA)或者游离亚硝酸硝酸盐(free nitrous acid, FNA)对厌氧氨氧化菌(anaerobic ammonium oxidizing bacterium, AnAOB)产生抑制作用,向反应器中添加HCl和NaOH以调节系统pH,从而保证反应器的正常运行。
-
每天定时取反应器出水水样进行分析。水样先经过0.45 μm滤膜过滤后,再进行水质分析。水质分析指标包括氨氮、亚硝态氮、硝态氮、正磷酸盐和pH。分析方法按照《水和废水分析监测方法》(第4版)[10]进行。
颗粒污泥的特性分析方法包括:颗粒污泥粒径分布(筛分法)、颗粒污泥沉降速度(重量沉降法)、颗粒污泥VSS和TSS含量(重量法)、颗粒污泥固相总磷(钼酸铵分光光度法)。
-
通过逐步提高总氮(由50 mg·L−1升至1 000 mg·L−1)和降低HRT(由4.8 h降至3.2 h),调节反应器的氮负荷(nitrogen loading rate, NLR)(由0.3 g·(L·d)−1提升至7.5 g·(L·d)−1)。为避免因出水中基质的质量浓度过高而影响回流的稀释效果,反应器进水[
NO−2 -N]/NH+4 -N]可设定为1.2~1.3。在研究后期,为避免因磷的质量浓度提高导致反应器内pH过低、造成FNA抑制,向基质桶里添加NaOH以调节反应器内的pH,确保FNA的质量浓度不大于10 μg·L−1。表1为反应器的运行条件。初始阶段设置的进水磷质量浓度为40 mg·L−1,反应器稳定运行过程中,进水磷的质量浓度逐步升至250 mg·L−1。此外,通过调节反应器内pH与Ca/P,以考察磷回收效率的变化。
-
不同磷质量浓度对anammox-HAP系统的进、出水氮质量浓度及去除率的影响如图2所示。磷的质量浓度变化对anammox-HAP系统脱氮性能并没有明显影响。反应器运行前5 d,出水的氮质量浓度较高,主要是由于反应器刚启动时污泥的状态不太稳定。在第6~108天,进水磷的质量浓度提升至150 mg·L−1,反应器稳定运行,出水氨氮和亚硝态氮均小于5 mg·L−1。在第109天,反应器回流管出现破裂导致反应器直接进入高浓度基质状态,此时AnAOB受FA和FNA的抑制,且回流泵一直处于工作状态,较多空气被带入反应器中,从而使得AnAOB被进一步抑制。为恢复系统正常运行,降低了进水总氮。7 d后,反应器恢复正常运行。在第118~133天,磷的质量浓度提升至200 mg·L−1,反应器仍然保持稳定运行,出水氨氮和亚硝态氮均小于5 mg·L−1。从第134 天开始,反应器出水氮的质量浓度逐渐升高。其原因有2个:1)磷浓度的提升导致更多HAP生成,消耗更多碱[11],反应器内pH出于较低水平,导致FNA抑制AnAOB,反应系统失稳;2)从反应器长期运行条件来看,由于回流使得颗粒污泥的多次被取出导致反应器内无机组分含量占比较大,此时反应器内微生物含量无法使反应器维持之前的运行负荷。在第161天后,总氮最终稳定在800 mg·L−1。当磷的质量浓度提升至250 mg·L−1后,向进水桶中添加NaOH调节合适的pH,以维持反应器稳定运行。
反应器进水的磷质量浓度为40~250 mg·L−1。在整个运行过程中,发生过一次由于回流泵的蠕动管未及时更换,导致回流管破裂,AnAOB被抑制的意外状况。除此之外,反应器运行均很稳定,反应器总氮的平均去除率达到88.5%。反应器的氮去除负荷(nitrogen removal rate, NRR)最高达到6.8 g·(L·d)−1。因此,此反应过程对应的磷质量浓度范围对anammox-HAP系统的脱氮性能并无明显影响。然而,周正等[12]发现,在长期研究获得的结果中,磷酸盐质量浓度在70~90 mg·L−1时,SAA开始受到明显影响。不同研究得到的抑制浓度差异较大,这可能是由于在高负荷水平下培养的anammox-HAP颗粒污泥具有较高活性,抗冲击能力更强,故磷质量浓度对anammox的抑制阈值也会更高。此外,反应器的类型及操作条件也会影响AnAOB,导致抑制浓度存在差异。综上所述,污泥厌氧消化液中磷质量浓度对EGSB反应器中anammox-HAP系统的脱氮性能无明显的不利影响。
-
EGSB反应器长期进出水磷质量浓度及anammox-HAP系统磷回收效率的变化如图3所示。在反应器运行的第55~73 天和第169~178天,磷的质量浓度分别为100 mg·L−1和250 mg·L−1。维持反应器中pH和Ca/P不变,磷的回收效率会随着进水磷质量浓度的升高而升高,分别为69%和80%。因此,在未改变其他影响因素的条件下,进水磷的质量浓度越高,anammox-HAP系统的磷回收效率越高。这与LIN等[13]的研究结果一致。
-
pH是影响anammox-HAP系统磷回收效率的关键因素。在反应器运行的第133~140天,通过向基质桶里加NaOH将pH从6.7调节至8.0~8.1。此时,氮和磷的质量浓度不变,磷的平均回收效率明显从70.9%提高至75.5%,结果如图3所示。此外,在第20~40天,将氮的质量浓度从600 mg·L−1升至700 mg·L−1,磷的平均回收效率从69.3%提升至73.2%。这是由于anammox过程是个消耗H+的过程,氮质量浓度的提升导致pH升高。因此,在HAP结晶过程中,pH会对磷酸钙的沉淀起到重要作用,pH的升高促进了结晶的形成[14]。在第141~168 天,由于反应器中FNA抑制AnAOB,脱氮效率降低。同时,磷的回收效率也明显降低,最低时降至51.8%。anammox的高效脱氮特性可为HAP的形成提供较好的pH条件[15]。因此,AnAOB被FNA或FA抑制也会减弱生物诱导HAP矿化作用,进而影响磷的回收效率。
在第80 ~106天,反应器进水总氮维持在1 000 mg·L−1,进水磷的质量浓度约为100 mg·L−1,pH不变。当进水Ca/P从1.5提升至3,anammox-HAP系统磷的回收效率明显提升,从70.6%提高到89.7%。在运行过程中,反应器内极易出现白色沉淀导致管道堵塞。而对于不同的磷质量浓度,最佳Ca/P也不一样[9]。因此,在实际污泥厌氧消化液处理中,可通过控制anammox-HAP系统的最佳Ca/P,以提高污泥厌氧消化液中磷的回收效率。
-
高磷浓度下形成高度矿化的颗粒污泥有助于实现系统对污泥厌氧消化液中磷的回收。不同时期EGSB反应器内VSS和HAP的分布如图4所示。反应器启动初期,接种污泥的泥层高度为12 cm,生物量质量浓度为51.5 g·L−1。运行至第103天,反应器内泥层高度为80 cm。此后,不定期的排泥使得反应器内泥层高度保持在约80 cm。随着反应器的运行,反应器内颗粒污泥的平均污泥浓度变化不大,为281.1~314.1 g·L−1。然而,污泥中平均VSS在明显减小,从51.5 g·L−1减至36.4 g·L−1;而反应器内平均HAP的含量在逐渐增大,从229.6 g·L−1增至277.8 g·L−1;VSS占TSS的比值从18%降至12%。由于EGSB反应器的升流式特性,反应器中形成的颗粒污泥无机组分含量从底部到上部逐渐减少。因此,需要不定期地从反应器底部取泥,以保证反应器中微生物量的充足,维持反应器的稳定运行。如表2和图5所示,反应器底部的颗粒污泥生物量占比较低,无机组分占比较高,且底部颗粒污泥的磷质量浓度高,因此,从反应器底部取出的高度矿化的颗粒污泥可成为有利用价值的磷资源。
-
颗粒污泥的粒径分布和沉降速度分别体现了anammox-HAP颗粒污泥的生长情况和颗粒污泥的沉降性能。根据粒径大小,本研究将颗粒污泥分为5类:<1 、1~2、2~3、3~4 和>4 mm。由图6(a)可知,反应器运行至第20 天时,反应器内颗粒污泥主要以粒径<2 mm的为主;运行至第178 天时,颗粒污泥的粒径明显增大,大于2 mm的颗粒污泥的占比明显提高,占到50%以上。这也映证了反应器内的颗粒污泥会由小颗粒变成大颗粒。大粒径的颗粒污泥具有发育更为成熟的外膜内核结构[16]。然而,在本系统内磷质量浓度较高的条件下,形成的大颗粒污泥结构松散且不稳定,这可能是由于之前AnAOB活性受抑制,使得微生物新陈代谢能力下降,在不利于其凝聚的条件下形成了颗粒污泥。这也解释了在第178天反应器内小于1 mm的颗粒污泥占比仍达到27.2%。
HAP作为内核时anammox-HAP颗粒污泥具有较好的沉降性能[17]。由图(b)可知,反应器运行期间,颗粒污泥的沉降速度整体呈变大趋势。反应器内产生的高度矿化的污泥有利于污泥的沉降。在较高磷浓度下形成的颗粒污泥沉降速度为262.5~445.5 m·h−1,明显高于刚接种时anammox-HAP颗粒污泥的沉降速度。Anammox-HAP颗粒污泥的沉降速度明显高于其他研究中颗粒污泥的沉降速度[18-19],使其更易实现反应器内厌氧氨氧化菌的有效持留。然而,AnAOB的抑制会影响颗粒污泥的形成,导致反应器内存在一定的絮状污泥。反应器内的絮状污泥仍会因较大的上升流速随出水一起流出反应器。因此,在实验研究或者工程应用的过程中,应保证反应器的稳定运行,促进颗粒污泥形成较紧密的结构,以维持反应器内充足的生物量。
-
1)进水磷浓度在40~250 mg·L−1时,基于anammox-HAP工艺的EGSB反应器脱氮性能稳定,平均总氮去除率为88.5%,氮去除负荷为6.8 g·(L·d)−1。
2) Anammox-HAP系统磷回收效率与进水磷质量浓度、反应器pH及进水Ca/P密切相关。在保证反应器稳定运行的前提下,进水磷质量浓度、pH和Ca/P越高,越有利于磷的回收。磷回收效率最高可达89.7%。
3)由于EGSB反应器的升流式特性,反应器中形成的anammox-HAP颗粒污泥无机组分含量会沿反应器高度从上到下逐渐增大。通过定期从反应器底部排泥,既可实现高效优质的磷回收,又能保证anammox-HAP系统颗粒污泥的厌氧氨氧化活性,保持反应器的高效脱氮性能。
污泥消化液的磷浓度对anammox-HAP系统磷回收的影响
Effect of phosphorus concentration in sludge digestion liquid on phosphorus recovery by anammox-HAP
-
摘要: 厌氧氨氧化-羟基磷酸钙(anammox-hydroxyapatite, anammox-HAP)技术可实现污泥厌氧消化液高效自养脱氮同步磷回收。污泥厌氧消化液中磷的浓度与污泥性质、厌氧消化过程相关,变化范围很大。为探索anammox-HAP系统中的磷回收效率,通过基于anammox-HAP长期运行的膨胀颗粒污泥床反应器,考察了不同进水磷浓度、pH和钙磷质量比(Ca/P)对磷回收效率及污泥特性的影响。结果表明:进水磷浓度在40~250 mg·L−1时,膨胀颗粒污泥床反应器脱氮性能稳定,总氮去除率可达88.5%;磷回收效率与进水磷浓度、反应器内pH及进水Ca/P密切相关,磷回收效率最高为89.7%;高磷浓度下形成的颗粒污泥,有望实现高效的磷资源利用。本研究可为利用anammox-HAP系统实现磷回收提供参考。Abstract: Anammox-hydroxyapatite (anammox-HAP) process was developed to effectively remove nitrogen and recover phosphorus at the same time from municipal sludge digestion liquid. However, phosphorus concentration in sludge digestion liquid varies greatly with the characteristics of sludge and the digestion process. In this study, the effects of different influent phosphorus concentration, pH value and calcium phosphorus ratio on phosphorus recovery efficiency and granular sludge characteristics were investigated through long-term operation of a continuous flow expanded granular sludge bed (EGSB) reactor. Results showed that the nitrogen removal performance of the continuous flow EGSB reactor was stable when the influent phosphorus concentration is in the range of 40~250 mg·L−1, and the average total nitrogen removal rate of the reactor reached 88.5%. The recovery efficiency of phosphorus was closely correlated with the influent concentration of phosphorus, the pH value in the reactor and the ratio of calcium to phosphorus. The maximum recovery efficiency of phosphorus was up to 89.7%. Granular sludge formed under high phosphorus concentration is expected to realize efficient recovery of phosphorus. This study can provide reference for phosphorus recovery using the anammox-HAP system.
-
Key words:
- sludge digestion liquid /
- phosphorus concentration /
- anammox /
- hydroxyapatite /
- granular sludge
-
随着工业化和城镇化的加速推进,对废水的集中处理备受关注[1]。1932年开始应用的Wuhrmann工艺是最早的脱氮工艺,称之为O/A工艺,遵循硝化、反硝化的流程顺序而设置[2]。然而,在硝化过程中需要供氧,反硝化过程中需要外加碳源,这造成了能耗和碳源的双重浪费。对此,将生物单元的顺序进行倒置,便产生了A/O工艺,A/O工艺成为最早使用的生物脱氮技术。这是工艺单元不同排列顺序构成组合工艺的开端,后续发展的废水生物处理工艺几乎均为厌氧、缺氧/水解、好氧单元的组装(图1)。典型的工艺有A/A/O和O/A/O,组合工艺中的不同单元反应器排序会影响碳源利用和脱氮效果,因此,需要根据废水组成与处理目标选择合适的工艺技术。
厌氧置前的工艺可以控制碳源转化为小分子有机物或者甲烷,提高废水的可生化性,为后续反硝化反应提供碳源。HAO等[3]采用A/A/O工艺处理制革废水,考察了沿程溶解性有机物的浓度变化,发现A1的厌氧水解单元能优先去除小分子量的物质和蛋白质,后续的A/O工艺可更彻底地去除残余有机物。O/A/O工艺可在O1单元反应器中好氧降解部分有机物,实现含氮有机物的氨化,有助于硝化反应的实现。李国令等[4]对比了O/A/O和A/O工艺处理同一城镇污水的结果,在O1单元反应器中降解了大部分有机物,可为O2提供良好的硝化环境,因此,O/A/O脱氮效果优于A/O工艺。A/A/O工艺对高毒性工业废水的处理不具有优势,这是因为A1中的微生物增殖速度慢,难以消除毒性抑制作用。兼顾脱氮和除磷是A/A/O工艺的特征,脱氮效率受回流比的影响,无法实现完全脱除总氮,也存在着与除磷菌在碳源利用分配之间的矛盾。然而,前置好氧的O/A/O工艺因大幅度削减了毒性物质而有利于后续单元硝化菌的生长。与A/A/O工艺不同的是,该工艺不能利用废水中存在的易降解有机物作为碳源进行反硝化脱氮,造成一定程度的碳源浪费。由此可见,前置厌氧或者前置好氧对后续的脱氮工艺有着不同的影响机制,A/A/O工艺多用于生活污水[5-6],而O/A/O工艺可能更适合于工业废水[7]。
焦化废水是典型的高碳氮比工业废水,含有多种高浓度有毒物质。其中的有机污染物主要包括酚类[8]、苯系物、杂环芳烃和多环芳烃等物质[9];其无机物中,S2-、SCN−、CN−等均为典型的毒性物质,并且对废水的COD值有较大的贡献[10]。LI等[11]研究了在相同水力停留时间下A/A/O与A/O工艺分别对焦化废水中COD和NH4+-N的去除效果,发现两者的去除率几乎相同,但A/A/O比A/O工艺对总氮的去除效果更好。汤清泉等[12]比较了A/A/O与O/A/O工艺对焦化废水的处理效果,认为碳氮比是决定二者对总氮去除效果的关键因素。当碳氮比为15~20时可以选择A/A/O工艺,当碳氮比为20~35时则O/A/O工艺效果更好。其原因是:前置好氧单元可以去除高碳氮废水中的有机物而降低后续处理的负荷。本课题组在长期实践的基础上开发了针对焦化废水处理三污泥系统的好氧-水解-好氧流化床脱氮工艺(命名为O/H/O工艺,其中,O1为除碳氨化单元,H为水解脱氮单元,O2为完全硝化单元) [13-15],已有 5个实际工程应用案例,最长运行时间达到12年。O/H/O工艺具有独特的三相分离器,可以保证在不需要污泥回流的情况下实现各个单元反应器独立的污泥特征和生物量,节省了能耗,并促进了污泥生态与水质环境的相容性[16]。新型结构生物三相流化床作为O1反应器,在进水有机负荷达到2.4 kg ·(m3·d)−1 的运行情况下,其耗氧有机物的去除率可以达到93.0%以上,反应器中氧的利用率为50%~60%。面对高毒性、高浓度的焦化废水,A/A/O工艺需要1~2倍稀释后才能进入生物系统,而O/A/O或O/H/O工艺则不需要稀释。
厌氧、水解、好氧单元不同顺序的排列组合构成了不同的废水生物处理工艺技术。在废水性质转化方面,厌氧单元可提高B/C值[17],而好氧单元可降低B/C值,分别有利于异养反硝化与硝化反应;在脱氮模式中,要考虑硝化反硝化[18]、短程硝化反硝化[19]、厌氧氨氧化[20]、自养反硝化[21]、好氧反硝化[22]等原理的选用、协同及条件控制。A/A/O工艺和O/A/O工艺都需要回流才能保持反应器内的污泥浓度,A/A/O工艺的运行属于单污泥系统,O/A/O工艺中设置了2个二沉池,属于双污泥系统,而O/H/O工艺属于三污泥系统。根据废水的性质选择合适的工艺,可以在达标排放的基础上实现能耗与物耗的减量化。由于目前缺乏不同工艺特征的比较,为此,本文分析了不同工艺的碳源利用模式和脱氮模式,提出了一种代表性的焦化废水组成并通过研究A/A/O、O/A/O、O/H/O的组合工艺对焦化废水中核心污染物的去除及其能耗分配关系,阐明了工艺技术选择的原则,为复杂工业废水生物处理技术的工艺优选提供参考。
1. 研究方法
1.1 数据来源
本课题组对国内38个焦化厂进行了实地调查和数据采集,分析了焦化废水的水质特征与地域差异的关系,发现华北、华中、华东地区废水中的COD值略高,华中和西南地区废水的氨氮浓度略低[23]。焦化废水中的含氮物质主要由氨氮、有机氮、SCN−、CN−等组分构成,由于蒸氨工艺的差异,含氮物质的比例各有不同。综合国内外的焦化废水原水水质[24-26],结合我们的调查,为了消除差异性和增强可比性,本文定义代表性的焦化废水组成为: COD为4 000 mg·L−1,苯酚、
-N、SCN−、CN−、S2−以及总氮的质量浓度分别为800、 100、 500、 50、 50 和280 mg·L−1。NH+4 A/A/O工艺借鉴宝武韶钢公司的运行数据,水量为60 m3·h−1,3个单元反应器的水力停留时间分别为34、22和52 h,COD负荷分别为1.22、1.46和0.47 kg·(m3·d)−1;O/H/O工艺参考实验室和焦化厂的运行数据[27-28],废水处理量为60 m3·h−1,3个单元反应器的水力停留时间分别为36、40和24 h,COD负荷分别为2.30、0.38和0.55 kg·(m3·d)−1;选取韩国某厂实验室数据作为O/A/O工艺的案例[29],实验规模为0.03 L·h−1,3个反应器的水力停留时间分别为28.8、12和19.2 h,进水中添加KH2PO4和Na2CO3以维持碱度,在缺氧池中加入3倍总氮浓度的甲醇作为碳源,工艺装置总水力停留时间为2.5 d。通过实际与假设相结合的方法进行分析,以3个焦化厂的实际废水数据(见表1)来剖析不同工艺的碳源利用和脱氮模式。O/A/O和O/H/O工艺的反应器排列顺序相同,反应器的性能和运行模式不同。因此,在分析碳源利用和脱氮模式时只考虑A/A/O与O/A/O的对比,而在能耗分析时,再考虑O/A/O与O/H/O的差异性。
表 1 3种工艺实际运行水质Table 1. Actual operating water quality in three processesmg·L−1 工艺 COD 挥发酚 -NNH+4 SCN− CN− A/A/O 1 727±60 742±69 173±12 175±18 26.2±4.5 O/A/O 2 300±100 635±15 235±15 375±25 - O/H/O 3 451±215 973±74 245±15 450±17 25±3 注:以集水调池的水质作为生物上水。 1.2 过程分析
根据污染物的降解途径计算了污染物的COD当量和TN当量,结果见表2,在生物系统里,SCN−和CN−中的氮转化为氨氮[30-31]。
表 2 不同污染物对COD和总氮的贡献Table 2. Contribution of various pollutants to COD and nitrogen mg·mg-1当量 挥发酚 SCN− CN− S2− NO−3 NO−2 COD当量 2.380 1.100 0.615 2.000 - 0.348 N当量 - 0.241 0.538 - 0.226 0.304 通过分析不同污染物对COD和总氮的贡献,检验废水组成的合理性。如式(1)所示,废水中的含氮量主要由
、NO−3 、NO−2 、SCN−、CN−以及其他有机氮提供。如式(2)所示,废水中的COD主要由有机物和还原性无机离子构成,其中,挥发酚、苯系物、SCN−、S2−的贡献比例比较大,部分难降解的有机物也导致生物出水中检出较高的COD值。NH+4 CTN= 0.226CNO−3+0.538CCN−+0.241CSCN−+CNH+4−N+0.304CNO−2+C其他含氮物质 (1) CCOD= 2.380Cphenol+1.100CSCN−+0.615CCN−+2.000CS2−+0.348CNO−2+C其他有机物 (2) 式中:CTN、
、CNO−3 、CNO−2 、CCN− 、CSCN− -N、C其他含氮物质分别表示总氮、硝酸根、亚硝酸根、氰化物、硫氰化物、氨氮以及其他含氮物质的质量浓度,mg·L−1;CCOD为废水中耗氧有机物(以COD计)的质量浓度,mg·L−1;Cphenol、CS2−、C其他有机物分别表示废水中苯酚、硫离子以及其他有机物的质量浓度,mg·L−1。CNH+4 在每一个单元反应器的出水中,都通过以上的方法进行检验,以确定废水组成的合理关系。
1.3 数据处理
根据式(3)~式(7)计算A/A/O工艺中每个反应器对污染物i总体去除的贡献率,分别以
、PiA1 、PiA2 表示。根据式(8)~式(13)计算O/A/O每个反应器对污染物i总体去除率,分别以PiO 、PiO1 、PiA 表示。PiO2 PiA1=(1+R1)×CiA1-I-CiA1-ECi0×100% (3) PiA2=(1+R1+R2)×CiA2-I-CiA2-ECi0×100% (4) PiO=(1+R1+R2)×CiO-I-CiO-ECi0×100% (5) CiA2-I=(1+R1)×CiA1-E+R1×CiO-E1+R1+R2 (6) CiO-I=CiA2-E (7) PiO1=(1+R3)CiO1-I-CiO1-ECi0×100% (8) PiA=(1+R4+R5)×CiA-I-CiA-ECi0×100% (9) PiO2=(1+R4+R5)×CiO2-I-CiO2-ECi0×100% (10) CiO1-I=Ci0+R3CiO1-E1+R3 (11) CiA-I=CiO1-E+(R4+R5)×CiO2-E1+R4+R5 (12) CiO2-I=CiA-E (13) 式中:i为各种污染物(COD、苯酚、硫氰化物、氰化物、氨氮、亚硝酸根、硝酸根和总氮)。R1和R2分别为A/A/O工艺中污泥回流比和硝化液回流比,污泥回流比取值1,硝化液回流比取值3;R3、R4、R5分别为O/A/O工艺中初沉池回流至O1的污泥回流比、二沉池回流至A的污泥回流比以及硝化液回流比,均取值为1。C0i为未处理废水中污染物i的质量浓度,mg·L−1;
和CiA1−I 、CiA1−E 和CiA2−I 、CiA2−E 和CiO−I 、CiO−E 和CiO1−I 、CiO1−E 和CiA−I 、CiA−E 和CiO2−I 分别表示A1、A2、O反应器和O1、A、O2反应器中污染物i的进水和出水的质量浓度,mg·L−1。CiO2−E 排除水力停留时间对工艺对比造成差异,假设A/A/O与O/A/O工艺具有相同的总水力停留时间,结合文献调研和实际考虑,每个工艺各个反应器的体积比为1:1:2,处理水量为60 m3·h−1。
污染物在反应器中会进行到氨化碳氧化、亚硝化氮氧化或硝化氮氧化3种不同的处理阶段,不同阶段的耗氧量分别根据式(14)~式(16)进行计算。
OS=[a⋅KCOD⋅CCOD+CDO]Q24 000 (14) OS=[a⋅KCOD⋅CCOD+b(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)⋅CDO]Q24 000 (15) OS=[a⋅KCOD⋅CCOD+c(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)⋅CDO]Q24 000 (16) Kd=(1-NoNi)×100% (17) 式中:Q为生物系统进水量,m3·d−1;a、b、c分别为氧化COD、氨氮到亚硝氮、氨氮到硝态氮的有关的耗氧系数,在本研究中为1.4、3.43、4.57;Os为好氧单元的理论需氧量,kg·h−1;CCOD为耗氧有机物(以COD计)的质量浓度,mg·L−1;CDO为好氧单元溶解氧的质量浓度,mg·L−1;KCOD为COD去除率,%;Rs、Rd分别为活性污泥和硝化液回流比;CN、CCN、CSCN分别为以脱氮为目标的好氧池中含氨氮、氰化物、硫氰化物的质量浓度,mg·L−1;Kd为反硝化率,%;Ni、No分别为脱氮系统进、出水总氮的质量浓度,mg·L−1。
A/A/O中的好氧单元主要发挥硝化作用,通过式(16)和式(17)计算可知其耗氧量;O/A/O工艺中,O1易氧化降解耗氧有机物(以COD计),不考虑硝化作用,耗氧量通过式(14)计算可知;在O2中进行硝化作用,耗氧量通过式(16)和式(17)计算可知;O/H/O工艺与O/A/O工艺相似,但不需要污泥回流,因此,在计算O/H/O工艺中O2的曝气能耗时,式(16)的污泥回流比Rs为0。
污泥回流的能耗是A/A/O与O/A/O工艺所必不可少的,只有通过污泥回流才能保证生物池活性污泥的浓度,回流泵的能耗通过式(18)进行计算。
WS=K⋅Q⋅H (18) K=k183.5 (19) 式中:Ws为污泥回流泵的能耗,kW·h;K是安全系数,由式(19)计算,当水泵功率和污泥回流泵功率超过5 kW时,式(19)中的k取值1.15[32];Q为回流的流量,m3·d−1;H为水泵总水头损失,m。
由于回流污泥含水率高达99.5%~99.9%,所以,污泥回流与废水回流的能耗以相同方法计算。A/A/O与O/A/O工艺的回流比已经明确,O/H/O工艺仅存在硝化液回流,回流比为1,能耗估算值可由泵能耗的公式给出。A/A/O工艺中污泥回流至厌氧池的水头损失为1.5~2 m,硝化液回流至缺氧池的水头损失为1~1.2 m。O/A/O工艺有2个污泥回流系统,二沉池至O1的水头损失为0.5~0.8 m,另一个二沉池至A的水头损失为1~1.5 m。O/H/O不存在污泥回流,硝化液回流的水头损失为1~1.6 m。
2. 结果与讨论
2.1 碳源利用
首先考察了2种工艺中COD的沿程变化,分析2种工艺的碳源利用模式差异。由图2可以看出,在A/A/O工艺中,O单元对耗氧有机物(以COD计)的去除效果最好,A1的水解作用使难降解有机物断链、开环,转化为小分子有机酸,为后续的反硝化脱氮所利用;而在O/A/O工艺中,O1对COD的去除率高达90.0%以上,使后续单元工艺主要为脱氮服务。两者不同的是,A/A/O工艺通过微生物反硝化作用去除了废水中的耗氧有机物,而O/A/O工艺则通过生物耗氧直接氧化废水中的耗氧有机物。
LI等[11]对比了A/A/O与A/O工艺的处理效果,指出2个工艺对于有机物和氨氮的去除效果几乎相同,但A/A/O工艺更有利于总氮脱除,这是因为A/A/O工艺设置了产酸阶段。CHAKRABORTY等[33]发现,在A1中COD的去除率为5%~11%,CN−降解率为35.0%,没有发现苯酚降解的中间产物和甲烷的生成。王子兴等[34]指出,在A/A/O-MBR工艺处理焦化废水的过程中,单个反应器COD去除率分别为9.2%、73.5%、14.7%;经过GC/MS检测分析,苯酚在A1中的降解率为26.7%,而含氮杂环化合物以及苯系物的去除率分别为49.5%和65.8%。此外,有研究[35]表明,在A/A/O工艺中,A1单元去除污染物效果不明显,COD去除率低于10%;A2单元的COD去除率最高,尤其是易降解有机物在此阶段几乎全部被利用;在O单元中,利用异养微生物好氧氧化残留的有机物,CN−和SCN−在O2中也被彻底去除。SHARMA[36]研究了厌氧、缺氧、好氧单个单元的处理效果时发现,好氧单元可去除83.3%的CN− 和62.0%的COD;当加入氰化物后,好氧单元中COD的去除率下降到52.0%。由此可见,废水组成的复杂性会影响单组分的去除效果。马昕等[37]采用O/A/O工艺处理焦化废水时发现,在O1停留时间为16 h时对COD的去除率达到75.0%,这与我们调查的工艺结果相似。由图2(b)可见,在O/A/O工艺中,O1对COD的去除率很高,浪费了部分有机碳源,而添加的外部有机碳源是造成A单元COD去除率降低的原因之一[38];另一方面,O1中的氨化过程可为O2提供良好的硝化环境。以上研究结果表明,2种工艺对废水中碳源的利用在原理上存在非常大的差异。
2.2 脱氮模式
脱氮的效果可通过协调碳源、电子供受体以及DO等因素来实现,故根据2种工艺中氨氮浓度沿流程变化来分析不同脱氮模式的有效性。 由图3可见,虽然O/A/O工艺进水氨氮偏高,但出水氨氮却很低,在O2单元中已经彻底硝化。可见,前置好氧工艺可以为后续O2创造良好的硝化条件。A1去除了27.0%的氨氮,而O1去除了87.5%的氨氮,即在A1中仍然保留着较高浓度的氨氮,而在O1中氨氮几乎完全硝化,这与在进水中是否添加磷盐有关[39]。O1、A1中氨氮浓度的变化以及微生物同化、有机氮氨化、氰化物及硫氰化物氨化等可以同时发生。在工程研究中发现,O1中还存在亚硝化和硝化的可能性[17]。
焦化废水中的含氮物质除了铵离子/氨分子外,还有SCN−、CN−以及含氮有机物。ZHANG等[40]发现,A/A/O中各个单元对氨氮的去除率分别为-2.5%、3%、97%,A1出水中氨氮升高的原因是其他含氮物质氨化作用所致。吕鹏飞等[41]的研究表明,2种流化床工艺的前置厌氧单元对氨氮有少量的降解,氨氮去除率分别为18.1%和35.6%,体现出反应器对于处理效果的影响不同,流化床反应器面对复杂毒性废水比传统的沸腾床反应器表现出更好的耐毒性抑制作用。经过缺氧反应器A2后,氨氮浓度的变化主要有回流导致的直接稀释以及微生物降解的共同作用。GUI等研究了2个A/A/O系统,在硝化液回流比为200%的情况下,氨氮的质量浓度由250 mg·L−1降低至80 mg·L−1[42]。易欣怡等[28]考察了O/H/O工艺的焦化废水处理,发现O1单元能够把氰化物、硫氰化物氧化为氨氮,有机氮全部氨化,从而造成O1出水氨氮浓度的升高;而在H单元中,环状含氮化合物通过水解作用可实现分子开环转变为氨氮,回流液中的硝态氮实现反硝化转变为氮气;接下来的O2单元能够将残余低价状态的含氮化合物转变为硝态氮,所以对氨氮的去除非常彻底。由于多种含氮物质之间具有不同价态转化机制,工艺中合理安排碳源进行脱氮,以及通过回流/超越或微生物功能调控实现总氮的彻底去除将是工艺理论中具有挑战性的研究方向。
2.3 能耗分析
1)各单元反应器的去除效率。能耗分配受工艺的单元反应器组合的影响。单元反应器的不同组合顺序可构成多样的生物处理工艺,前置好氧与厌氧工艺对同一种废水会产生不同的污染物去除效率,较优的工艺应该是在达标排放(即核心污染物去除)的基础上实现时间和空间上的减量化,还要降低二次污染。图4反映了A/A/O和O/A/O工艺污染物浓度的沿程变化。沿流程图中的百分比数据代表反应单元出水污染物浓度占进水中污染物浓度的比例。除了内部降解外,还要考虑因回流引起的反应器内污染物浓度的稀释作用。结合文献调查,综合实际情况,总结出代表性焦化废水典型污染物在单元反应器中的去除效率,如图5所示。其中,假设SCN−和CN−在O/A/O工艺的O1中完全氨化。
2)不同工艺的能耗分配。废水中的污染物在不同工艺各单元反应器中的总体去除率如图6所示。A/A/O工艺对污染物的降解主要集中在O单元中,O/A/O工艺的降解则集中在O1单元中。这两者的差异反映了前置好氧工艺与前置厌氧工艺在曝气能耗上的差别。通过式(14)~式(16)计算,各工艺需氧单元的曝气量如图7所示。A/A/O工艺中O单元的需氧量为102.7 kg·h−1,O/A/O中O1和O2的需氧量分别为260.8 kg·h−1和35.1 kg·h−1。由图7可看出,O/A/O工艺的O1大部分的曝气量是用来去除易降解有机物,因此,需氧量较高。但当废水中有机物的浓度很低时(当不考虑有机物耗氧时),A/A/O工艺氧化含氮物质需氧量为100.4 kg·h−1,O/A/O工艺氧化含氮类物质的需氧量为83.9 kg·h−1。因此,对于脱氮性能,O/A/O工艺比A/A/O工艺能耗更高。这归因于:在O1中解除了SCN−、CN−等有毒物质对A反应器微生物的抑制作用,使得在A中降解的含氮物质相对较多,可以实现O2单元的低能耗硝化反应。因此,当废水中的耗氧有机物的预处理较为彻底时,前置好氧工艺可以实现低耗能高效率脱氮。O/H/O工艺在保留了O/A/O工艺优点的基础上,实现了反应器内部流态化的颗粒污泥特征,氧传质系数是一般活性污泥的2倍左右[43],因此,与O/A/O工艺相比,O/H/O工艺在耗氧量的节能方面更能体现出优势。本课题组根据多年的O/H/O运行经验数据统计得出,在仅考虑脱氮目标时,O/H/O工艺的需氧量约为53.26 kg·h−1。
由图4所示的计算可得出,在A/A/O工艺中,进入A2的废水COD为1 140.0 mg·L−1,硝化液回流的硝酸根为84.4 mg·L−1,在A2中主要去除总氮中的硝酸根,其余的氨氮、SCN−、CN−等含氮物质只是发生了少量的生物降解,经过A2可去除80.0 mg·L−1左右的硝态氮,满足微生物生长的碳源需求量为723.2 g·m−3 (缺氧条件下C∶N∶P = 200∶5∶1),因为废水中含有一定量的有机物,故实际可以供微生物利用的量约为540.0 g·m−3,需要外加碳源122.1 g·m−3 (以甲醇计)。在O/A/O工艺中,进入A单元的废水COD值为633.3 mg·L−1,其总氮类型为硝酸根和氨氮,浓度分别为93.9 mg·L−1和50.0 mg·L−1,在A中降解90.0 mg·L−1的硝态氮,满足微生物正常生长的碳源需求量约为813.6 g·m−3,进入A的废水中可降解有机物的含量约为83.3 g·m−3,不足的碳源需要从外部添加486.9 g·m−3(以甲醇计)。以上的讨论是在不考虑O/A/O工艺中有超越进水的情况,但在实际工程中,往往会使部分集水调节池中的出水以超越O1池的方式进入A池,这样既可以降低O1的曝气能耗,又可减少A单元的外部碳源的需求量。当超越1/3处理量的废水进入A单元时,O1的曝气量变为174.0 kg·h−1 ,超越之后A单元进水的有机物浓度达到977.8 mg·L−1,可供微生物利用的量约为427.8 mg·L−1,因此,折合计算1 m3废水仅需要257.2 g的外加碳源,节省了229.7 g的外部碳源(以甲醇计)。可以看出,O/A/O系统的模式多样性,可以实现总氮的低能耗高效率去除。在实际运行的O/H/O工艺中,由于不需要污泥回流,每个反应器可以灵活调控,因此,O/H/O工艺比O/A/O工艺更容易实现厌氧氨氧化反应,并且可以利用FeS进行自养反硝化脱氮而节省能耗,故实际的O/H/O工艺的外部碳源需求约0~220 g·m−3,具体的需求量取决于厌氧氨氧化与自养反硝化的耦合性能[44]。
污泥回流可以保证生物单元中的污泥浓度即生物量。通过式(18)和式(19)的计算,A/A/O工艺的污泥回流和硝化液回流的总能耗约为42.37 kW·h;O/A/O系统污泥回流与硝化液回流的总能耗约为23.55 kW·h;O/H/O系统只存在硝化液回流,回流能耗约为9.42 kW·h。除了曝气和回流的能耗外,考虑综合因素,3种工艺归纳为2大类:厌氧-缺氧-好氧以及好氧-水解/缺氧-好氧。由于反应器的设置不同,好氧-水解/缺氧-好氧工艺又可以分类为O/A/O和O/H/O,分化出二污泥法和三污泥法,反应器的类型决定了工艺的耗能。若只考虑生物阶段的处理,废水COD在3 000~4 000 mg·L−1、铵离子质量浓度在100~200 mg·L−1时,A/A/O的处理费用为6~8 元·t−1[45,46],O/A/O的处理费用为7~9 元·t−1 [47-49],而O/H/O流化床工艺的处理费用仅为4~5元·t−1,体现了不同技术的成本差异。
2.4 性能比较
单元工艺的摆放顺序不仅决定了整体工艺运行的能耗,还会对冲击负荷、系统中微生物菌落和处理效果产生很大的影响。李国令等[4]指出,热单胞菌属、脱氯单胞菌属是O/A/O工艺好氧池中的优势菌属;热单胞菌属、脱氯单胞菌属、球形红假单胞菌属是O/A/O工艺缺氧池中的优势菌属。WANG等也发现[50],热单胞菌属与硝酸盐还原酶基因呈正相关,对同时厌氧氨氧化-反硝化系统中的硝酸盐还原起重要作用。 WEI等[15]指出,丛毛单胞菌属在反应器O1中对COD去除起到了关键作用,有助于去除O1反应器中的NH4+-N;硫杆菌则在H反应器中起着主要的反硝化作用,AOB和NOB(亚硝化单胞菌和硝化螺菌)对反应器中硝化作用的贡献最大。三污泥法的O/H/O工艺各单元在污染物组成、去除、功能和微生物群落等方面存在显著进步,有望实现厌氧氨氧化脱氮与深度脱氮的结合,也表明废水水质和反应器的组合对微生物功能分布具有调控功能。
根据污泥回流的设置与否,A/A/O、O/A/O、O/H/O工艺可以分为单污泥系统、双污泥系统及三污泥系统,3个工艺的主要区别见表3。据报道,A/A/O工艺中A1单元对COD去除效率小于10%,检测不到甲烷的产生[51]。因此,A/A/O工艺仅仅在缺氧和有氧反应器中实现了对COD的去除。由于回流的存在,A/A/O工艺表现为单污泥特征,异养细菌具有较高的比生长速率,因污泥排放量高而导致其在处理高COD/TN废水时,大量自养硝化细菌被排洗。前置好氧工艺对高浓度毒性废水有很好的抗负荷冲击能力,并且O/H/O工艺中的新型结构流化床反应器的强化传质功能与污泥原位分离原理加强了各单元反应器中的微生物能力[22]。在H单元中,根据投加的电子供体不同而具有多种反硝化模式:如利用O1池的剩余COD作为碳源及其他电子供体进行异养反硝化脱氮;通过投加无机还原性电子供体以利用其作为营养源进行自养反硝化脱氮[21,52],还可以避免二次碳源的污染。另外,有研究表明,控制O1反应器在短程硝化水平,可使亚硝酸盐直接得到富集和积累,然后实现厌氧氨氧化模式脱氮,从而使工艺过程节能效果更好[17,19]。可见,复杂废水的脱氮模式多种多样,需要根据实际情况合理选择或耦合新原理,从而进一步实现低能耗、低物耗目标下的总氮去除。
表 3 不同工艺系统的特点Table 3. Characteristics of different process systems工艺 污泥系统 毒性物质的去除 COD/TN 脱氮途径 能耗影响因素 平均运行单价/(元·m-3) 优点 缺点 A/A/O 单污泥系统 A1对大分子有机物的去除 11.4 异养反硝化 一次回流、一次曝气 7 有利于含氮有机物的水解;反硝化可利用废水中有机物作为碳源 不耐冲击负荷,受毒性抑制,需要稀释进水 O/A/O 双污泥系统 O1对SCN−、CN−的去除及氨化 12.5 异养反硝化、自养反硝化 二次回流、二次曝气 8 耐冲击负荷,进水不需要稀释;硝化效果好 耗氧量大,污泥回流频繁,耗能多 O/H/O 三污泥系统 O1对SCN−、CN−的去除及氨化 13.8 异养反硝化、自养反硝化、厌氧氨氧化及其耦合脱氮 二次曝气 4.5 耐冲击负荷,颗粒污泥耐毒性抑制,硝化效果好,不需要沉淀池;不需要回流 耗氧量大 3. 结论与展望
1)每处理1 m3设定浓度的焦化废水(不考虑O/A/O的超越进水),A/A/O和O/A/O工艺分别需要122.1 g 与486.9 g的外部碳源(以甲醇计)。当废水中的易降解有机物较少且只考虑脱氮目标时,O/A/O工艺的曝气需氧量为83.9 kg·h−1,A/A/O工艺的曝气需氧量为100.4 kg·h−1;当O/A/O工艺中有1/3的进水流量超越至A单元时,其碳源需求量由486.9 g·m−3减至257.2 g·m−3(以甲醇计),曝气量也将显著降低。
2)由于废水组成的复杂性,污染物的降解效率除了受到彼此的相互制约外,工艺条件和反应器的设计也至关重要。具有高毒性、高碳氮含量的焦化废水,更适合于选择前置好氧的工艺。O/H/O工艺由于其独特的三相分离器的设置而节省了污泥回流部分的能耗,反应器中的颗粒污泥更加耐毒性抑制和抗冲击负荷,并且传氧速率高,工艺耗氧量仅为53.26 kg·h−1,外部碳源的消耗可以由486.9 g·m−3降至0~220 g·m−3。
3)反应器的高效性和可控性,使O/H/O工艺比O/A/O工艺更容易实现自养反硝化与异养反硝化协同脱氮、自养型短程反硝化与厌氧氨氧化的协同脱氮等其他脱氮途径,进而使O/H/O工艺成为一种更具潜力的低能耗、低物耗的生物脱氮技术工艺。针对不同的废水水质与物质组成特征,O/H/O工艺能够对不同功能的单元进行组合和编辑,从时间与空间、药剂与能耗、处理效率等方面追求更加丰富的优化模式,以满足各种不同的出水需求,特别是满足总氮浓度趋零的要求。
-
表 1 反应器运行条件
Table 1. Operational conditions of the reactor
时间/d P/(mg·L-1) Ca/(mg·L-1) Ca/P pH 1~42 40 60 1.5 7.2~8.2 43~87 100 150 1.5 7.3~7.7 88~91 100 200 2 7.4~7.7 92~95 100 250 2.5 7.3~7.4 96~108 100 300 3 7.2~7.4 109~126 150 225 1.5 7.1~7.4 127~141 200 300 1.5 7.0~7.7 170~179 250 375 1.5 7.0~7.3 表 2 不同高度EGSB反应器内颗粒污泥的组分特征(第178天)
Table 2. Distribution of VSS and HAP in the EGSB reactor at different heights (178th day)
反应器高度/cm TSS/(g·L-1) VSS /(g·L-1) VSS/TSS 2 350.3 38.17 0.11 12 272.34 35.35 0.13 22 253.71 32.29 0.13 32 237.96 31.74 0.13 42 259.5 32.73 0.13 52 240.91 25.76 0.11 62 220.83 31 0.14 72 209.87 28.59 0.14 -
[1] MIAO J, YIN Q, HORI T, et al. Nitrifiers activity and community characteristics under stress conditions in partial nitrification systems treating ammonium-rich wastewater[J]. Journal of Environmental Sciences, 2018, 73: 1-8. doi: 10.1016/j.jes.2017.12.020 [2] 蔡碧婧. 反硝化脱氮补充碳源选择与研究[D]. 上海: 同济大学, 2008. [3] GU J, ZHANG M, LIU Y. A review on mainstream deammonification of municipal wastewater: Novel dual step process[J]. Bioresource Technology, 2020, 299: 122674. doi: 10.1016/j.biortech.2019.122674 [4] MULDER A, GRAAF A A V D, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology 1995, 16(3): 177-184. [5] LIN Y M, LOTTI T, SHARMA P K, et al. Apatite accumulation enhances the mechanical property of anammox granules[J]. Water Research, 2013, 47(13): 4556-66. doi: 10.1016/j.watres.2013.04.061 [6] GUO Y, LI Y. Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor[J]. Water Research, 2020, 187: 116444. doi: 10.1016/j.watres.2020.116444 [7] 梅翔, 成慧灵, 张寅丞. 离子交换法选择性回收污泥厌氧消化液中的磷[J]. 环境工程学报, 2013, 7(9): 3319-3326. [8] MA H, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 degrees C[J]. Water Research, 2020, 172: 115510. doi: 10.1016/j.watres.2020.115510 [9] MA H, ZHANG Y, XUE Y, et al. A new process for simultaneous nitrogen removal and phosphorus recovery using an anammox expanded bed reactor[J]. Bioresource Technology, 2018, 267: 201-208. doi: 10.1016/j.biortech.2018.07.044 [10] 国家环境保护总局. 水和废水监测分析方法[J]. 4版. 北京:中国环境科学出版社, 2002: 258-282. [11] XUE Y, MA H, KONG Z, et al. Formation mechanism of hydroxyapatite encapsulation in Anammox-HAP Coupled Granular Sludge[J]. Water Research, 2021, 193: 116861. doi: 10.1016/j.watres.2021.116861 [12] 周正, 刘凯, 王凡. 磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响[J]. 环境科学, 2017, 38(6): 2453-2460. [13] LIN L, ZHANG Y, BECKMAN M, et al. Process optimization of anammox-driven hydroxyapatite crystallization for simultaneous nitrogen removal and phosphorus recovery[J]. Bioresource Technology, 2019, 290: 121779. doi: 10.1016/j.biortech.2019.121779 [14] MAURER M, ABRAMOVICH D, SIEGRIST H, et al. Kinetics of biologically induced phosphorus precipitation in waste-water treatment[J]. Water Research, 1999, 33(2): 484-493. doi: 10.1016/S0043-1354(98)00221-8 [15] ZHANG Z Z, XU J J, HU H Y, et al. Insight into the short- and long-term effects of inorganic phosphate on anammox granule property[J]. Bioresource Technology, 2016, 208: 161-169. doi: 10.1016/j.biortech.2016.02.097 [16] ZHANG Y, MA H, LIN L, et al. Enhanced simultaneous nitrogen and phosphorus removal performance by anammox–HAP symbiotic granules in the attached film expanded bed reactor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10989-10998. [17] GUO Y, CHEN Y, WEBECK E, et al. Towards more efficient nitrogen removal and phosphorus recovery from digestion effluent: Latest developments in the anammox-based process from the application perspective[J]. Bioresource Technology, 2020, 299: 122560. doi: 10.1016/j.biortech.2019.122560 [18] WU D L, QIAN H F, MAHMOOD Q, et al. Cultivation, granulation and characteristics of anaerobic ammonium-oxidizing sludge in sequencing batch reactor[J]. Water Science & Technology:Water Supply, 2006, 6(6): 71-79. [19] TANG C, ZHENG P, WANG C, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-44. doi: 10.1016/j.watres.2010.08.018 -