-
厌氧氨氧化(anaerobic ammonium oxidization, anammox)是一种自养脱氮过程,相比于传统的硝化反硝化工艺,可大幅度减少曝气成本和碳源投加成本,是一种理想的新型脱氮工艺。然而,厌氧氨氧化菌易受环境因素影响,在外界刺激下容易产生胞外聚合物使污泥聚团上浮,进而流出反应器导致反应器内生物量减少,影响该工艺的氮去除效率[1-2]。
由于厌氧氨氧化微生物的生长进行得相对缓慢,提高anammox颗粒的机械强度和沉降速度对于更好地保持反应器中的污泥浓度至关重要。有研究表明,颗粒内部的传质限制和微生物的包裹作用使颗粒污泥的核心具有了产生无机沉淀的有利条件,而增大无机物含量可明显提高颗粒的沉降速度[3]。另外,对于anammox颗粒污泥,由anammox反应导致的pH梯度可为颗粒内部无机沉淀的聚集创造更有利的条件[4]。厌氧氨氧化颗粒的机械强度会因磷灰石的积累而增加,故发生颗粒破碎的机率更低,被从反应器中冲出的生物质也更少[5]。若能将无机沉淀与anammox颗粒污泥有机结合,则可同时提高anammox颗粒污泥的机械强度和沉淀性能,进而提高反应器运行的稳定性。
磷肥是现代农业维持粮食产量的重要支撑。随着人口的增加,农业生产对磷肥的需求也急剧增加。然而,据预测来自磷酸盐岩的磷可能会在50~100 a内枯竭。因此,开发磷肥新来源,实现磷的可持续利用十分必要[6]。其中,废水被认为是实现磷可持续利用的重要资源之一。全球生产的磷中大约有10%被排入废水[6]。通过聚磷菌(polyphosphate accumulating organisms,PAO)将废水中的磷以多聚磷酸盐的形式聚集在活性污泥中,或在流化床反应器中沉淀为磷酸钙(Cax(PO4)y)和磷酸铵镁(MgNH4PO4)颗粒,一系列的磷回收工艺已被研究者开发出来[7-9]。其中,流化床结晶作为一种有效的磷回收技术,具有较高的反应速率且能够产生较高品质的磷产品,已被用于处理不同种类的废水[10]。
结晶流化床反应器与颗粒污泥膨胀床有相似的构造及流态,为anammox工艺与磷结晶在同一反应器内的进行提供了可能。本研究借鉴了用于磷回收的结晶反应器的概念,并将其与anammox工艺集成,利用厌氧氨氧化和羟磷灰石(hydroxyapatite,HAP)结晶的共反应机制开发了一种可同时实现脱氮和回收磷的高效工艺,并且探究了其在不同温度条件下运行的稳定性,以期为利用anammox工艺实现磷回收提供参考。
-
本研究中的生物反应装置如图1所示。该装置包含3个膨胀颗粒污泥床反应器。反应器的有效容积均为5 L。在连续实验中,合成废水被蠕动泵连续泵入反应器底部,从三相分离器流出的出水被蠕动泵再次循环至进水口。3个反应器(R1、R2、R3)的反应区均被水浴层覆盖,由恒温水循环器分别控制在35、25和15 °C。水浴层的外部覆盖遮光保温层,用以保持温度恒定,并避免光能自养生物的增殖。每天通过插入反应区内部的针式温度计对反应器的温度进行记录,以确保反应区的温度保持在设定温度范围(±1°C)内。反应器内产生的氮气由反应器顶部的三相分离器收集,并通过湿式气量表进行记录。在反应器运行的过程中,根据反应器的实际运行状况,通过向循环管中添加H2SO4溶液的方式调节反应系统的pH。反应器的侧面开有一系列等距(10 cm)的取样口,用以采取水样或者污泥样品。
-
表1为本研究中各反应器在不同阶段的运行参数。在开始本实验之前,R1运行温度为35 °C,氮负荷为5 g·(L·d)−1,R2与R3均使用R1的颗粒污泥作为种泥,且均在35 °C、氮负荷10 g·(L·d)−1条件下稳定运行。进水设置的总氮与总磷均参照厌氧消化液的总氮与总磷。进水中亚硝态氮与氨氮的质量之比RIS设为1.0~1.32。R1的进水总磷维持在11.40 mg·L−1,R2与R3的进水总磷均维持在22.80 mg·L−1。3个反应器的进水Ca2+质量浓度均设为81.60 mg·L−1。参考文献[11]的研究结果,在进水中添加了其他矿物质成分和微量元素。
-
每2 d从反应器中收集进水和出水样品,通过0.45 μm孔径的膜过滤器过滤,并在分析前储存在4°C的冰箱中。
NH+4 -N、NO−2 -N和NO−3 -N的质量浓度采用Agilent 7100毛细管电泳(CE)系统进行分析[11]。通过Agilent 720电感耦合等离子体发射光谱 (ICP-OES)系统分析总磷和其他无机元素。根据APHA标准方法[12],液体样品用硝酸消解以去除有机物可能引起的干扰。消解的液体样品用Milli-Q水稀释,并通过ICP-OES分别在317.933、213.618 nm波长下检测Ca、P的浓度。每日用台式pH计(TOA,HM-30V)对水样pH进行监测。 -
为测试不同温度条件下的厌氧氨氧化比活性(specific anammox activity, SAA),分别选取了3个反应器中的颗粒污泥作为种污泥,使用有效容积为120 mL的血清瓶,添加培养液至100 mL后置于恒温水浴震荡培养槽以110 r·min−1的震荡速度进行培养。为避免基质浓度不足及其浓度过高带来的抑制作用,活性实验中采用的总氮浓度为220 mg·L−1,其中氨氮的质量浓度为100 mg·L−1 、亚硝态氮的质量浓度为120 mg·L−1。在培养过程中,通过注射器定期计量并排出在血清瓶顶空部分积累的氮气,用于SAA计算。详细的活性实验流程参考文献[13]。所有的活性实验均进行3次重复。本研究使用Gompertz方程(式(1))对实验数据进行分析,拟合得出SAA。
式中:N代表产生的氮气体积,mL;P0代表氮气产生的潜力;Rmax代表最大氮气产生速度,mL·h−1;t为培养时间,h;λ代表迟滞期时间,h。
对SAA和温度之间的关系,分别使用Arrhenius方程(式(2))和CTMI模型(Cardinal temperature model with inflection)(式(3))进行拟合。
式中:k是速率常数,A是指前因子;Ea是反应的活化能,kJ·mol−1;R是通用气体常数;T是热力学温度,K。
式中:不同温度下的SAA在拟合中被用作μmax, g·(g·d)−1;Tmin和Tmax分别为可能的anammox反应的最低和最高温度,℃;Topt是SAA等于其最佳值μopt时的温度,℃。
颗粒污泥的沉降速度通过一系列的沉降实验进行测试。每组沉降实验均将颗粒污泥按照粒径分为不同组别,每个组别随机选取测试10~15个污泥颗粒。在1 m的沉降管中测试污泥颗粒的沉降速度,并根据粒径分布计算得到颗粒平均沉降速度。
各阶段稳定期的挥发性悬浮固体(volatile suspended solids,VSS)和总悬浮固体(total suspended solids,TSS)浓度根据APHA方法[12]进行分析。从TSS浓度中减去VSS以计算污泥中灰分的含量。污泥中的主要矿物种类使用OLYMPUS BTX Bench X射线衍射系统进行分析。
荧光原位杂交(fluorescence in situ hybridization,FISH)的固定和杂交程序参考文献[14-15]进行。从反应器中取出anammox-HAP颗粒,用多聚甲醛固定,并嵌入O.C.T.化合物(Sakura Finetek,Torrance,CA)中过夜,然后用低温切片机(OSK 97LF509,Ogawa Seiki Co.,LTD,日本)制备厚度为 30 μm 的冷冻切片。之后将切片与16S rRNA靶向寡核苷酸探针Amx820进行杂交(该探针与Candidatus Kuenenia stuttgartiensis和Candidatus Brocadia anammoxidans特异性结合),然后通过Carl Zeiss LSM 710 ZEN共聚焦激光扫描显微镜(CLSM,confocal laser scanning microscope)对切片进行观察。
-
分别探究了anammox-HAP颗粒污泥型膨胀床在35、25、15 °C温度条件下的氮去除效果,结果如图2所示。在每个运行温度条件下,均通过提高进水总氮和缩短HRT的方式,逐步提高进水氮负荷。在35 °C和25 °C条件下,实验初始总氮负荷均设定为5 g·(L·d)−1;在15 °C的条件下,初始总氮负荷设为2.5 g·(L·d)−1。
在不同的氮负荷条件下,anammox-HAP型反应器均能表现出良好的总氮去除效率。根据文献[16]报道的厌氧氨氧化反应式(见式(4)),约有占总氮11%的氮会在anammox反应中被转化为硝态氮,故理论上anammox反应的最高总氮去除率约为89%。在3个不同温度条件下,本系统可分别实现(44.90±0.32)、(17.12±0.97)、(8.79±0.14) g·(L·d)−1的氮去除速率;同时,反应器的平均总氮去除率均达到85%以上;而在最高负荷下,反应器的平均总氮去除率分别为(89.79±0.66)%、(85.61±4.85)%、(87.92±1.38)%。
随着anammox进行,反应器中的氢离子被消耗。因此,在anammox工艺中,随着进水浓度和氮负荷的提高,反应器中的pH会逐渐升高[17]。在本研究的各反应器中,均出现了出水pH随进水氮负荷升高而逐渐升高的现象。pH对于anammox反应和HAP结晶反应均为重要影响因素。过高或过低的pH会导致游离氨或游离亚硝酸的积累,进而影响anammox工艺的脱氮性能。另外,较低的pH也不利于HAP结晶反应的进行。有研究表明,在pH为7的条件下,仅有25%的磷可通过Ca-P沉淀去除,但在pH为9的条件下,大约有80%的磷可被去除[18]。在本研究中,通过在回流管中添加H2SO4的方式,将反应器的pH控制在8.0~9.0,以同时满足anammox细菌及HAP结晶形成对pH的要求。
在35°C条件下,随着进水磷负荷的升高,反应器的磷去除速率也逐渐提高。在整个过程中,磷的去除效率保持在(71.61±6.82)%。与R1相比,在R2与R3中,随着磷负荷逐渐升高,磷的去除速率维持在相对稳定的水平。这导致在反应器运行后期,磷去除率逐渐降至40%以下。HAP结晶的形成受到多种因素的影响,如溶液中晶核的数量、溶液过饱和指数、Ca/P、温度等[19]。在本研究中,将R1的进水Ca/P设定为R2与R3的2倍,且R1的运行温度高于R2及R3。这些因素均可能导致在R2和R3中HAP结晶形成的驱动力弱于R1,进而造成磷去除率较低。
-
现有报道的anammox菌种分属6个属,这些菌种的最适温度均为25~40 °C的中温范围[20-21]。随着运行温度从最适温度区间降低,反应器中的细菌活性也逐渐下降。据报道,anammox细菌的表观活化能约为55~80 kJ·mol−1,亦即若将35°C时细菌的活性作为参照,当反应器中的温度降为15 °C时,anammox的活性水平将低于35°C时活性的25%[13]。
为评估厌氧氨氧化工艺在不同温度下的最大脱氮能力,以及SAA对温度的响应,分别取在不同运行温度下(35、25、15 °C)驯化后得到的anammox污泥,并在摇床中测试了污泥在5~50 °C条件下的SAA,结果如图3所示。进行SAA测试时,R1已经在35 °C下运行了数年。R2和R3从R1接种,并已分别在25 °C和15 °C下运行了约半年。通过CTMI方程拟合,可发现在不同温度下培养的anammox污泥最高活性所在温度均为35~40 °C。本研究中厌氧氨氧化污泥的优势菌种为“Candidatus Kuenenia stuttgartiensis”,其最适温度与其他富含“Candidatus Kuenenia stuttgartiensis”的报告基本一致[20]。在所有3个实验中,温度对低于35 °C的SAA影响可用Arrhenius方程进行拟合,其决定系数(R2)超过0.98。这表示可使用最佳温度下的SAA准确预测较低温度下的SAA,从而评估厌氧氨氧化工艺在不同温度下的脱氮能力,以避免在温度降低或接种来自在不同温度下运行的其他反应器厌氧氨氧化污泥时负荷过载。
计算得到R1中anammox污泥的Ea为56.38 kJ·mol−1,在较低温度下培养的R2和R3中anammox污泥,其Ea分别增加到82.58 kJ·mol−1和75.67 kJ·mol−1。以35 °C作为参考温度,来自R1、R2和R3的污泥在20 °C下的SAA分别为35 °C条件下的37%、28%和27%。当温度为10 °C时,该值下降到14%、7%和7%。
在本研究的整个运行阶段,R1、R2、R3的最高单位生物量氮负荷分别达到(0.70±0.01)、(0.43±0.02)、(0.16±0.00) g·(g·d)−1。同时,在反应器外进行的SAA比活性测试中,3个反应器中的污泥活性分别达到了(0.85±0.04)、(0.45±0.00)、(0.13±0.04) g·(g·d)−1 。在anammox工艺中,SAA常被用来评价工艺的脱氮能力。在SAA实验中,通常会选取对anammox细菌最适宜的基质浓度及其他环境条件,故实际工况下反应器的脱氮能力往往会低于SAA实验中得到的最大活性[22]。本研究结果表明,在不同温度条件下,反应器的实际脱氮能力与SAA实验中得到的数值高度一致,在35°C与25°C条件下仅略低于SAA,在15°C条件下甚至略高于在反应器外测得的SAA。这表明在anammox-HAP颗粒污泥型膨胀床反应器中,anammox能够充分利用基质,脱氮能力较好。
-
脱氮和磷回收的同步过程依赖于anammox-HAP复合颗粒污泥的形成。在反应器的稳定运行阶段,对反应器中颗粒的结构进行分析,结果如图4所示。通过横切面的观察,可很清楚地看到颗粒内形成了双层结构。颗粒中心是较为坚硬的无机核心,外部包裹的是较为柔软的鲜红色生物膜。在不同运行温度下,反应器中的颗粒污泥均保持了良好的结构稳定性。通过对颗粒污泥切片的FISH染色观察,结合Amx820探针(红色)的荧光强度可发现,细菌主要分布在颗粒外层200~500 μm。而在颗粒核心中,几乎没有观察到Amx820强度,即不含anammox细菌。此外,即使在颗粒的外层也可观察到明显的荧光强度差异。荧光仅在最外层厚度约为100 μm的生物膜中展现出较高强度,且随着厚度加深而明显降低。这表明尽管厌氧氨氧化颗粒可比絮状污泥聚集更多细菌,但过大的粒径不适合传质并限制了厌氧氨氧化细菌在颗粒更深部分的生长,故在长期运行过程中,需采取有效策略来控制颗粒污泥的粒度。
由于磷含量高,anammox-HAP颗粒污泥型膨胀床反应器中形成的污泥与普通污泥有很大不同,其微观形态和晶体特征如图5所示。根据前期研究[16],磷在接近纯培养的anammox菌中的含量仅占1.40%。然而,在anammox-HAP型反应器中,磷含量可高达污泥干重的10%~15%[23]。通过对污泥样品的XRD进行分析,可发现污泥中的主要结晶成分为羟基磷灰石(hydroxyapatite, HAP)。在本研究中,不同温度条件下的反应器内均可稳定形成类似结构的颗粒污泥。在较低的温度下,厌氧消化颗粒污泥会因丝状古菌的消失而分解[24]。而本研究结果表明,无机磷酸盐矿物核的形成增强了颗粒的强度并改善了生物质在反应器中的存在条件,使颗粒即使在低温下也能保持稳定。同时,在管道或反应器壁上并未观察到明显沉淀。这也进一步表明厌氧氨氧化生物膜与HAP形成之间存在共反应机制,HAP内核的形成高度依赖于anammox生物膜的存在。
-
颗粒的粒径、密度、几何形状、表面电荷和亲水性/疏水性与沉降性均呈现出一定的相关性[25-26]。另外,根据斯托克斯定律,球体落入流体中的终端速度会受到球形颗粒半径和流体粘度的影响,同时颗粒和流体的质量密度也起着重要作用。此外,较低的温度条件下,水的密度及粘性均较大,会降低颗粒的沉降速度。在本研究中,同一运行温度条件下,流体的质量密度和粘度保持恒定,故颗粒的质量密度对相同尺寸颗粒的沉降速度起关键作用。
以R1的颗粒污泥沉降性能为例,在连续实验过程中,随着流入反应器的N/P增加,污泥平均VSS从(49.8±6.8) g·L−1增加到(62.1±1.1) g·L−1,平均TSS从(230.0±14.6) g·L−1降至(106.1±33.3) g·L−1。同时,污泥中的平均灰分含量从78.35%降低到39.72%,污泥中的平均磷含量从24.50 g·L−1逐渐降至9.67 g·L−1。随着颗粒污泥中灰分含量及磷含量的降低,颗粒的沉降速度也逐渐降低,如图6所示。灰分及磷含量与颗粒污泥的平均沉降速度之间呈明显的线性关系(R2>0.98)。
随着磷含量的减少,尽管颗粒的平均沉降速度从(306±27) m·h−1降至(167±18) m·h−1,但仍明显高于其他报道中50~110 m·h−1的沉降速度[25-26]。anammox-HAP颗粒污泥优良的沉降性能明显提高了反应器的生物量截留能力,进而保证了反应器稳定高效的脱氮性能。
-
常规厌氧颗粒污泥的造粒被认为大致分为2个阶段:由于细菌粘附而形成前体,以及由前体逐渐形成颗粒。从胚胎颗粒形成到颗粒成熟的过程中,细菌分泌的胞外聚合物可保护颗粒免受剪切应力,并逐渐形成由不同细菌主导的多层结构[27]。本研究中无机物含量非常高的复合颗粒污泥含有较高含量的HAP,与常规厌氧颗粒污泥有明显差异,导致在这种情况下颗粒的形成机制与厌氧颗粒污泥的形成有所不同。根据颗粒的切面结构和微观形貌特征梳理出结合了生物矿物形成过程和常规厌氧颗粒形成过程的机制,过程如图7所示。
随着anammox细菌的代谢活动的进行,细胞附近会形成较高的pH。在具有高浓度Ca2+和
PO3−4 的水相(废水)中,磷酸钙溶液的过饱状态很容易在细胞壁附近发生,从而诱导晶核的形成和矿物的生长[28]。对本研究中的颗粒进行微观观察时发现,在细胞表面观察到了粗糙的褶皱沉淀(图5(b))。类似的结构也在碳酸盐磷灰石和磷酸钙的生物矿形成的其他研究中被发现[29-30]。伴随着细胞增殖和矿物质的生成,并在反应器水力剪切等的综合作用下,反应器内形成了由anammox生物质和主要成分为HAP的无机组分构成的颗粒污泥。另外,由于氨氮和亚硝氮进入anammox外层的生物膜时被anammox细菌利用,浓度会逐渐降低[31],而且anammox反应会导致整个颗粒污泥核心的pH高于外部[4]。颗粒内侧较高的pH和底物浓度较低的环境会促进颗粒核心部位沉淀的生成以及厌氧氨氧化细胞的衰亡。在本研究中的颗粒横截面SEM图像中可观察到明显的蜂窝状结构,表明在细胞表面产生了生物诱导矿物,这也进一步应证了在颗粒形成过程中核心部位细胞逐渐衰亡的推测(见图5(a))。随着对环境条件的长期适应,反应器内最终会形成具有致密HAP内核和附着在外层的anammox生物膜的成熟颗粒。
-
1) Anammox-HAP颗粒污泥型膨胀床反应器可在35、25、15 ℃时实现高负荷条件下的高效率脱氮,脱氮效率未受温度影响。
2)在不同温度条件下培养的anammox-HAP颗粒的活性最适温度为35~40 ℃,脱氮能力与温度之间的关系遵循Arrhenius方程。
3) Anammox-HAP颗粒污泥呈现明显的anammox生物膜附着于HAP内核的内外结构,且HAP的形成依赖于anammox生物膜的存在。Anammox-HAP颗粒污泥的沉降性能明显高于一般的厌氧以及anammox颗粒污泥,且与颗粒中所含磷含量呈线性关系。
Anammox-HAP颗粒污泥型膨胀床反应器的氮磷同步去除能力及污泥特性
Nitrogen and phosphorus removal capability of HAP-anammox granular sludge expanded bed reactor and sludge characteristics
-
摘要: 为实现集成、高效的氮磷处理,提高厌氧氨氧化工艺的运行稳定性及功能集成性,搭建了一种新型的anammox-HAP颗粒污泥型膨胀床反应器。设置了3个不同温度条件下的反应器,通过控制进入反应器中的钙、磷元素,以及调控反应器pH,探究了膨胀床反应器对氮、磷的同步去除能力,并对污泥特性进行了分析。结果表明:anammox-HAP颗粒污泥型膨胀床反应器在35、25、15℃条件下均可稳定运行,并能分别实现(44.90±0.32)、(17.12±0.97)、(8.79±0.14 ) g·(L·d)−1的氮去除速率,且总氮去除率稳定维持在85%以上;磷元素以HAP核的形式聚集在anammox颗粒内部,可在随剩余污泥排出的同时进行回收;anammox-HAP反应器中颗粒污泥的沉降性能明显高于一般厌氧或anammox工艺中的颗粒污泥,并与颗粒中的磷含量正相关。本研究阐释了anammox-HAP颗粒污泥型膨胀床反应器的特点,可为废水中氮磷的处理提供参考。
-
关键词:
- 厌氧氨氧化 /
- 羟基磷灰石 /
- 脱氮 /
- 除磷 /
- anammox-HAP颗粒污泥
Abstract: To achieve integrated and efficient nitrogen and phosphorus treatment with improved operational stability and functional integration of the anammox process, a new type of HAP-anammox granular sludge expanded bed reactor was developed. The experiment set up three reactors under different temperature conditions. By controlling the calcium and phosphorous elements in the input of the reactor and adjusting the pH, simultaneous removal of nitrogen and phosphorous in the expanded bed reactor was achieved. The results showed that HAP-anammox granular sludge expanded bed reactor can be operated with stabilized performance at 35℃, 25℃, and 15℃, with the nitrogen removal rates of (44.90±0.32), (17.12±0.97), and (8.79±0.14) g·(L·d)-1, respectively. The total nitrogen removal rate was constantly maintained above 85%. The phosphorus element accumulates in the anammox granules as the core of HAP, which can be recovered from the excess sludge. The sedimentation performance of the granular sludge in the HAP-anammox reactor was remarkably higher than that of the conventional anammox granular sludge, and it was positively correlated with the phosphorus content in the granules. This study also characterized the HAP-anammox granular sludge expanded bed reactor, which can provide new insights for nitrogen and phosphorus removal in wastewater treatment. -
污泥未经处理随意排放堆置,会造成严重的环境污染问题。国际上污泥主要有土地利用、卫生填埋、焚烧和投海等4种处置方式[1]。其中,填埋处置对技术指标要求相对宽松、运行成本低,是现阶段我国污泥处置的主要方式,且为简易的单独填埋,即污泥经过脱水消化后,直接倾倒于事先设置好的填埋坑中,并采用膜或土覆盖进行封场。由于我国污水处理厂对污泥处理的重视度不高,技术资金投入力度也不够,导致污泥的含水率高、物理力学性质差,不仅达不到市政污泥的填埋标准,而且造成填埋场库容的日益紧张,更严重的是会埋下安全隐患[2],如深圳下坪垃圾填埋场和山西太原垃圾填埋场均发生过填埋体的滑坡事故。为此,在《城镇污水处理厂污泥处理处置技术指南》[3]的国家规范中对填埋污泥的各项指标做出了明确规定。与此同时,我国的污泥产量也在逐年增加,目前,国内上海老港、成都长安、深圳下坪、杭州天子岭等填埋库区库容已经出现严重不足。因此,污泥填埋场内坑体加固与库内污泥深度脱水减量成为目前多数填埋场所面临的问题。
现阶段常用机械压滤方式对污泥进行深度脱水。从机械脱水原理来看,机械压滤的过程实质上就是污泥的排水固结过程,即在总应力作用下孔隙水不断被排出的过程。孙政等[4]对污水处理厂脱水污泥的固结特性进行了研究,发现污泥的固结规律与一般黏土差别较大,超孔隙水压力的消散较慢。朱婧等[5]对污泥、淤泥、粘土的压缩特性进行了对比研究,认为污泥与淤泥的固结不同,在外力荷载下其固结过程可以分多个阶段。王鹏等[6]采用纤维加筋技术,研究了不同掺量下加筋污泥的固结压缩特性。范惜辉等[7]选用普通硅酸盐水泥和硫铝酸盐水泥作为固化材料,研究了固化污泥在不同应力下的压缩、渗透规律。机械压滤技术一般是先采用化学药剂预调质,使污泥颗粒的结合水释放出来之后,再其进行深度脱水,将湿基含水率降至60%以下。采用药剂真空预压法处理污泥也是如此,调质改性后的污泥与工程废浆类似,在真空预压过程中存在流固的两相转变,并在大部分时间里处于弹塑性状态,此时需要采用土力学中的固结理论进行分析[8]。武亚军课题组[9][10]对于无机药剂调质过的新鲜污泥的真空固结特性进行了研究,由于暂存库区污泥与新鲜污泥性质不同,固结特性也必然有差异,而目前关于这方面的研究并未见有所报道。此外,FeCl3是比较常用的一种调质药剂,而芬顿试剂在污水处理中应用较多,但不常用于污泥调质,因此,一方面为了对新鲜污泥与暂存库污泥进行对比,另一方面为了对FeCl3和芬顿试剂的调质效果进行对比,本研究采用土力学中的固结实验对分别采用2种不同药剂调质过的填埋污泥的压缩固结特性进行了研究,研究结果可为机械压滤和真空预压处理填埋污泥的工程实践提供参考。
1. 实验材料与方法
1.1 试剂和仪器
实验选用的药剂分别为FeCl3·6H2O、FeSO4、浓硫酸,以上药剂均为分析纯(AR)。实验所需H2O2通过40%的双氧水颗粒(昌乐鑫富强商贸有限公司)按浓度比例添加。实验仪器主要包括中压固结仪和电子天平等。
1.2 污泥基本物理性质
对暂存库区填埋污泥与新鲜污泥的各项物理指标进行了测试,其中比重采用比重瓶法测试;密度采用环刀法测试;含水率采用低温烘干法测试;有机物采用灼失量法测试。结果表明,填埋污泥与新鲜污泥的含水率分别为74.1%和82.17%,有机质含量分别为40.9%和64.9%,比重分别为1.87和1.57,密度分别为1.2 g·cm−3和1.02 g·cm−3。由此可见,填埋污泥具有比新鲜污泥含水率低、有机物含量低、比重和密度大等特点。
1.3 实验方法
固结实验的药剂调质方案中氯化铁的添加量分别为0%、10%、20%、30%和40%;芬顿试剂的添加方案如表1所示。装入烧杯中置于常温下放置24 h,待污泥与药剂充分反应后,再均匀装填入固结仪,每个实验组别设置2组平行实验。由于污泥含水率较高,初级固结应力较大时容易发生冒浆,选取初级固结应力为3.125 kPa,加荷比为1,将最大固结应力增加至400 kPa。根据《土工试验方法标准》(GB/T50123-1999),加载过程中按规定时间记录百分表读数,由于污泥稳定达到稳定标准时间较长,每级加载48 h。第1级固结应力p设置为3.125 kPa,之后按6.25、12.5、25、50、100 kPa依次加载,以沉降量小于0.005 mm·h−1为沉降稳定的标准。
表 1 污泥固结实验芬顿试剂调质方案Table 1. Consolidation test plan of sludge conditioned by Fenton reagent编号 Fe2+/% H2O2/% H2O2/Fe2+ 1 4 4 1 2 4 6 1.5 3 4 8 2 4 8 8 1.5 5 8 12 2 6 8 16 3 注:添加量表示占污泥干基的质量比。 2. 结果与讨论
2.1 孔隙比
添加药剂之后污泥的孔隙比e (指污泥中孔隙体积与固体体积的比值,初始孔隙比e0采用含水率和比重进行换算,压缩过程中的孔隙比根据压缩量测试)会发生较大的变化,不同种类的药剂添加量与初始孔隙比的关系如图1所示。由图1可知,经过药剂调质改性后,e均有不同程度的增大。采用FeCl3调质后(图1(a)),污泥的初始孔隙比e0变化明显,从原始污泥的4.098上升至6.681,但随着药剂掺量的增加,污泥的孔隙变化较为平缓,最终达到7.244。采用芬顿改性后(图1(b)),当Fe2+的掺量为4%时,污泥孔隙比随着H2O2掺量的增加变化明显,由4.802上升至7.092;当Fe2+的掺量为8%时,污泥孔隙比随着H2O2掺量的增加变化较为缓慢,最终达到4.908。这是由于在药剂调质过程中产生了大量气体,这些气体不能完全从污泥中排出,而是积存分布在污泥内部,导致污泥的空隙变多,从而使得孔隙比增大。
2.2 压缩特性
压缩实验每级荷载的加载周期为48 h,不同FeCl3添加量下改性污泥的孔隙比e与荷载p的关系如图2(a)所示。污泥初始孔隙比为4.098,略大于常规的软黏土,经过药剂调质后,污泥的初始孔隙比随着药剂添加量的增加逐渐变大,当药剂添加量为40%时,孔隙比达到7.244。不同芬顿配比掺量下改性污泥的e-p关系如图2(b)所示。由图2(b)可知,对比2种药剂调质后的污泥发现,在初级荷载作用下,样品的孔隙比迅速减小。通过对固结应力为100 kPa时的孔隙比变化量进行了分析,发现调质污泥的压缩量基本均达到总压缩量的70%以上。这是因为在前期压缩过程中,调质污泥较原始污泥颗粒间的空隙总量更多,颗粒间没有形成骨架,强度较低,在较低应力作用下,孔隙水排出顺畅,压缩量大,孔隙比减小幅度大。经过3.125、6.25、12.5、25、50 kPa荷载作用下,芬顿改性污泥的沉降量较大,孔隙被大幅压缩;当荷载大于50 kPa时,污泥沉降速率逐渐减慢,沉降幅度逐渐减小,污泥孔隙比被压缩幅度也逐渐减小。由于原始污泥中有机质含量较高,存在大量具有一定承载力的微生物残体和胶结絮状有机物,通过添加FeCl3与芬顿试剂可以一定程度上破坏微生物残体和胞外聚合物,减少了有机物的含量,样品更容易发生固结压缩。
将调质污泥的孔隙比e与固结应力p之间的关系可以绘制成半对数坐标曲线 (e-lgp),如图3所示。由图3(a)可知,孔隙比e与固结压力lgp之间呈明显的线性关系,这一结果与常规淤泥类似。填埋污泥的压缩指数为0.64,调质污泥的压缩指数在0.776~0.795,跟新鲜脱水污泥差别较大,且与常规淤泥在数值上也较为接近[1, 5]。由图3(a)可知,污泥初始孔隙比的拟合值要略大于实验实测值。这是由于污泥的机械脱水和长期填埋类似于加卸载过程,压缩之后产生不仅存在塑形变形,而且也会发生一定程度的回弹。污泥的实际孔隙比和理论孔隙比的差值在一定程度上反映了不可恢复的塑形变形。同时,重塑制样及拟合精度也会对该结果产生一定影响。由于污泥中含有凝胶状结构,颗粒接触点处有一定的胶结力,能承受一定的压力而变形较小,使得在初期加荷阶段曲线平缓。此外,一般的原状土由于前期固结应力的存在会发生自重应力下的固结。其压缩曲线会出现屈服应力的折点,污泥的e-lgp曲线近似为一条直线,由此可知,调质污泥不存在应力屈服点,属于欠固结土。不同芬顿配比掺量下改性污泥的e-lgp曲线如图3(b)所示。污泥孔隙比随固结应力增大基本呈线性减小,压缩指数Cc为0.444~0.591,整体上小于原始污泥和经FeCl3调质后的污泥,和常规淤泥土较为接近,但仍属于高压缩性土。
2.3 固结特性
固结系数Cv是表示孔隙水压力消散快慢的物理量,固结系数越大,固结速度越快,反之越慢。采用时间平方根法可得到调质污泥固结系数Cv与固结应力p之间的关系。图4(a)为采用FeCl3在各级压力下的固结系数变化结果。由图4(a)可知,在初级压力下,调质污泥的固结系数在10−3 cm2·s−1数量级变化,随着固结应力的增大,污泥的固结系数逐渐减小。此外,随着FeCl3掺量的增大,固结系数也越大,且在前几级固结应力下固结系数的减小幅度也越来越明显。由各条固结系数曲线关系可以说明在每一级固结应力下,随着FeCl3添加量的增加,污泥的固结系数增大,即FeCl3掺量越多,固结过程中孔隙水压力消散越快,这一点与新鲜脱水污泥固结系数的变化规律一致[9]。
对比芬顿调质的实验结果(图4(b))可知:当Fe2+的添加量为4%时,样品的固结系数随着H2O2添加量的增加而增大,当H2O2的掺量为8%时达到最大;当Fe2+的添加量为8%时,样品的固结系数随着H2O2掺量的增大呈现先增大后减小的趋势。这是由于当H2O2添加量过多时,不仅不能分解产生更多的羟基自由基,反而会使最初产生的羟基自由基发生泯灭[11]。就初级固结应力下的固结系数而言,芬顿试剂改性后初级固结应力下Cvmax=9.88×10−3 cm2·s−1,当固结应力增大到400 kPa时,Cv=1.85×10−3 cm2·s−1;经过40%的FeCl3调质后Cvmax=2.91×10−3 cm2·s−1,随着固结应力的增大,Cv减小至4.98×10−4 cm2·s−1。因此,当Fe2+添加量为4%、H2O2掺量为8%时,在固结应力作用下污泥的孔压消散最快。
污泥与淤泥、黏土最大的区别是污泥的固体物质中存在40%~60%的有机物,这些有机物大多数是生物处理过程中的微生物残体[12]。因此,污泥中的水分赋存状态非常特殊,除了具有孔隙水、表面结合水以外,存在絮凝体内部的结合水和细胞颗粒内部的细胞水(或称为生物水)[13]。这些水赋存于可以承载一定压力的有机物絮体中,这使污泥中水分难以快速排出,因此,孔隙水压力消散时间非常漫长[14]。添加药剂在一定程度上使得微生物残体胞内水以及有机絮体中的结合水释放,从而大大缩短了固结时间。
2.4 渗透特性
如图5所示,通过固结系数可以推演出污泥在各级固结压力下的渗透系数k。由图5(a)可知:k和固结应力的规律与固结系数Cv和固结应力的规律相似,受固结应力影响较大;在0~25 kPa阶段,污泥的渗透系数下降明显,渗透性变差,这是因为大孔隙被压缩成小孔隙或密闭孔隙,孔隙比迅速减小导致排水困难。经过试剂调质后,长期填埋污泥的渗透系数增大,初级固结应力下的k从10−7 cm·s−1数量级增大到10−6 cm·s−1数量级,随着压力的增大,k减小为10−8 cm·s−1数量级;当FeCl3的掺量为40%时,样品在初级固结应力下的k=4.439×10−6 cm·s−1,随着固结应力的增加,k减小至3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下的k=6.48×10−6 cm·s−1 (图5(b)),随着固结应力的增大k则下降至9.94×10−8 cm·s−1。若以固结系数和渗透系数作为污泥固结效果好坏的指标,芬顿试剂的效果更佳。
此外,土体渗透性与其孔隙比密切相关。有研究[5]表明,土体孔隙比e与lgk存在一定的关系。图6为在不同FeCl3掺量下调质污泥渗透系数与孔隙比关系曲线。由图6可知,随着孔隙比的减小,渗透系数也逐渐减小,反之,渗透性增大,e与lgk之间的线性关系近似成立。在一定孔隙比范围内,相同孔隙比下10%添加量的污泥渗透系数一直小于同样孔隙比的其他掺量污泥,20%、30%和40%添加量下的污泥在孔隙比为5~7时渗透系数较为接近,但是随着孔隙比减小,实验组污泥的渗透系数出现差异,且随着药剂掺量减小而递减,添加量为20%的实验组渗透系数接近于10%添加量的实验组。
对比调质污泥和原始污泥可以发现,在重合的孔隙比区间内,相同孔隙比下对照组的渗透系数要大于添加药剂的实验组。这是因为与天然细粒土一样,污泥由于初期的加药絮凝和板框压滤,其初始状态的结构也很复杂,一旦扰动,原有的过水通道的形状、大小及其分布都会改变,故渗透系数也不同。这一点与普通的性质相近,相同孔隙比时扰动土样的渗透系数通常小于原状土样[15]。实际加药时由于搅拌分散以及药剂的作用导致污泥颗粒分散变小,絮状结构一定程度上被破坏,使得调质后的污泥在相同孔隙比下的k小于原始污泥。
3. 结论
1)污泥经试剂调质后能在较短时间内排水固结稳定;调质污泥在低荷载水平下沉降量较大,在高荷载水平下沉降逐渐平稳,孔隙变化不大;经过FeCl3调质后的污泥压缩性增大,压缩指数由0.64增大至0.776~0.795。
2)在初级固结应力下,调质污泥的固结系数在10−3 cm2·s−1数量级内变化。添加FeCl3的实验组Cv,max=2.91×10−3 cm2·s−1;芬顿调质实验组Cv,max=9.88×10−3 cm2·s−1。比阻和固结系数并不是简单呈负相关性,两者之间的定量关系还需要进一步研究。
3)渗透系数受固结应力影响较大。当FeCl3的掺量为40%时,样品在初级固结应力下的渗透系数为4.439×10−6 cm·s−1,在400 kPa下,渗透系数减小为3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下,k=6.48×10−6 cm·s−1,在400 kPa下,k=9.94×10−8 cm·s−1。
4)在芬顿试剂最小添加量时(4% Fe2++4% H2O2)的调质效果均比FeCl3最大添加量40%时的调质效果要好,因此,建议在工程实践中采用芬顿试剂进行调质污泥。
-
表 1 不同阶段各反应器的运行参数
Table 1. Staged experimental operating conditions in each reactor
反应器编号 温度/°C 氮负荷/(g·(L·d)−1) 进水总氮 /(mg·L−1) 进水总磷 /(mg·L−1) 进水Ca2+ /(mg·L−1) RIS HRT /h R1 35 5 313 11.40 81.60 1.32 1.50 35 10 625 11.40 81.60 1.00 1.50 35 15 625 11.40 81.60 1.20 1.00 35 20 625 11.40 81.60 1.20 0.75 35 30 625 11.40 81.60 1.20 0.50 35 40 830 11.40 81.60 1.20 0.50 35 50 1 040 11.40 81.60 1.20 0.50 R2 25 5 625 22.80 81.60 1.20 3.00 25 7.5 937.5 22.80 81.60 1.20 3.00 25 11 1 375 22.80 81.60 1.20 3.00 25 16 1 500 22.80 81.60 1.20 2.25 25 20 1 500 22.80 81.60 1.20 1.80 R3 15 2.5 625 22.80 81.60 1.20 6.00 15 3.5 875 22.80 81.60 1.20 6.00 15 5 1 250 22.80 81.60 1.20 6.00 15 7.5 1 375 22.80 81.60 1.20 4.40 15 10 1 375 22.80 81.60 1.20 3.30 -
[1] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 [2] ZHANG Y, MA H, NIU Q, et al. Effects of substrate shock on extracellular polymeric substance (EPS) excretion and characteristics of attached biofilm anammox granules[J]. RSC Advances, 2016, 6(114): 113289-113297. doi: 10.1039/C6RA20097D [3] WINKLER M K H, KLEEREBEZEM R, STROUS M, et al. Factors influencing the density of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7459-7468. doi: 10.1007/s00253-012-4459-4 [4] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science and Technology, 2011, 45(17): 7330-7337. doi: 10.1021/es201388t [5] LIN Y M, LOTTI T, SHARMA P K, et al. Apatite accumulation enhances the mechanical property of anammox granules[J]. Water Research, 2013, 47(13): 4556-4566. doi: 10.1016/j.watres.2013.04.061 [6] CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought[J/OL][J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009 [7] ANGELA M, BÉATRICE B, MATHIEU S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. doi: 10.1016/j.watres.2011.04.031 [8] DRIVER J, LIJMBACH D, STEEN I. Why recover phosphorus for recycling, and how?[J]. Environmental Technology (United Kingdom), 1999, 20(7): 651-662. [9] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Phosphorus recovery from wastewater by struvite crystallization: A review[J]//Critical Reviews in Environmental Science and Technology, 2009, 39(6): 433-477. [10] ZHANG C, CHEN Y. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal[J]. Environmental Science and Technology, 2009, 43(16): 6164-6170. doi: 10.1021/es9005948 [11] MA H Y, NIU Q, ZHANG Y, et al. Substrate inhibition and concentration control in an UASB-Anammox process[J]. Bioresource Technology, 2017, 238: 263-272. doi: 10.1016/j.biortech.2017.04.017 [12] APHA, AWWA, WEF. Standard Methods for the examination of Water and Wastewater, 23rd Edition, Washington, D. C. : American Public Health Association, 2017. [13] MA H Y, ZHANG Y, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of the Total Environment, 2019, 659: 568-577. doi: 10.1016/j.scitotenv.2018.12.377 [14] LLOBET-BROSSA E, ROSSELLÓ-MORA R, AMANN R. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization[J]. Applied and Environmental Microbiology, 1998, 64(7): 2691-2696. doi: 10.1128/AEM.64.7.2691-2696.1998 [15] MANZ W, AMANN R, LUDWIG W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions[J]. Systematic and Applied Microbiology, 1992, 15(4): 593-600. doi: 10.1016/S0723-2020(11)80121-9 [16] LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60: 1-14. doi: 10.1016/j.watres.2014.04.017 [17] TANG C J, ZHENG P, MAHMOOD Q, et al. Effect of substrate concentration on stability of anammox biofilm reactors[J]. Journal of Central South University of Technology (English Edition), 2010, 17(1): 79-84. doi: 10.1007/s11771-010-0014-6 [18] MAÑAS A, POCQUET M, BISCANS B, et al. Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor[J]. Chemical Engineering Science, 2012, 77: 165-175. doi: 10.1016/j.ces.2012.01.009 [19] BELLIER N, CHAZARENC F, COMEAU Y. Phosphorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40(15): 2965-2971. doi: 10.1016/j.watres.2006.05.016 [20] OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. doi: 10.1111/1462-2920.13134 [21] TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[Z/OL](2017). [22] ZHANG Y, MA H Y, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. doi: 10.1016/j.biortech.2018.01.043 [23] MA H Y, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C[J]. Water Research, 2020, 172: 115510. doi: 10.1016/j.watres.2020.115510 [24] MCKEOWN R M, SCULLY C, MAHONY T, et al. Long-term (1243 days), low-temperature (4-15 °C), anaerobic biotreatment of acidified wastewaters: Bioprocess performance and physiological characteristics[J]. Water Research, 2009, 43(6): 1611-1620. doi: 10.1016/j.watres.2009.01.015 [25] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [26] DE GRAAFF M S, TEMMINK H, ZEEMAN G, et al. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability[J]. Water Research, 2011, 45(1): 63-74. doi: 10.1016/j.watres.2010.08.010 [27] HULSHOFF POL L W, DE CASTRO LOPES S I, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004, 38(6): 1376-1389. doi: 10.1016/j.watres.2003.12.002 [28] WEINER S. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 1-29. doi: 10.2113/0540001 [29] SARMA B K, BARMAN P, SARMA B, et al. Biomimetic deposition of carbonate apatite and role of carbonate substitution on mechanical properties at nanoscale[J]. Materials Letters, 2016, 185: 387-390. doi: 10.1016/j.matlet.2016.09.028 [30] VALSAMI-JONES E. Mineralogical controls on phosphorus recovery from wastewaters[J]. Mineralogical Magazine, 2001, 65(5): 611-620. doi: 10.1180/002646101317018433 [31] KINDAICHI T, TSUSHIMA I, OGASAWARA Y, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms[J]. Applied and Environmental Microbiology, 2007, 73(15): 4931-4939. doi: 10.1128/AEM.00156-07 -