-
厌氧氨氧化(anaerobic ammonium oxidization, anammox)是一种自养脱氮过程,相比于传统的硝化反硝化工艺,可大幅度减少曝气成本和碳源投加成本,是一种理想的新型脱氮工艺。然而,厌氧氨氧化菌易受环境因素影响,在外界刺激下容易产生胞外聚合物使污泥聚团上浮,进而流出反应器导致反应器内生物量减少,影响该工艺的氮去除效率[1-2]。
由于厌氧氨氧化微生物的生长进行得相对缓慢,提高anammox颗粒的机械强度和沉降速度对于更好地保持反应器中的污泥浓度至关重要。有研究表明,颗粒内部的传质限制和微生物的包裹作用使颗粒污泥的核心具有了产生无机沉淀的有利条件,而增大无机物含量可明显提高颗粒的沉降速度[3]。另外,对于anammox颗粒污泥,由anammox反应导致的pH梯度可为颗粒内部无机沉淀的聚集创造更有利的条件[4]。厌氧氨氧化颗粒的机械强度会因磷灰石的积累而增加,故发生颗粒破碎的机率更低,被从反应器中冲出的生物质也更少[5]。若能将无机沉淀与anammox颗粒污泥有机结合,则可同时提高anammox颗粒污泥的机械强度和沉淀性能,进而提高反应器运行的稳定性。
磷肥是现代农业维持粮食产量的重要支撑。随着人口的增加,农业生产对磷肥的需求也急剧增加。然而,据预测来自磷酸盐岩的磷可能会在50~100 a内枯竭。因此,开发磷肥新来源,实现磷的可持续利用十分必要[6]。其中,废水被认为是实现磷可持续利用的重要资源之一。全球生产的磷中大约有10%被排入废水[6]。通过聚磷菌(polyphosphate accumulating organisms,PAO)将废水中的磷以多聚磷酸盐的形式聚集在活性污泥中,或在流化床反应器中沉淀为磷酸钙(Cax(PO4)y)和磷酸铵镁(MgNH4PO4)颗粒,一系列的磷回收工艺已被研究者开发出来[7-9]。其中,流化床结晶作为一种有效的磷回收技术,具有较高的反应速率且能够产生较高品质的磷产品,已被用于处理不同种类的废水[10]。
结晶流化床反应器与颗粒污泥膨胀床有相似的构造及流态,为anammox工艺与磷结晶在同一反应器内的进行提供了可能。本研究借鉴了用于磷回收的结晶反应器的概念,并将其与anammox工艺集成,利用厌氧氨氧化和羟磷灰石(hydroxyapatite,HAP)结晶的共反应机制开发了一种可同时实现脱氮和回收磷的高效工艺,并且探究了其在不同温度条件下运行的稳定性,以期为利用anammox工艺实现磷回收提供参考。
Anammox-HAP颗粒污泥型膨胀床反应器的氮磷同步去除能力及污泥特性
Nitrogen and phosphorus removal capability of HAP-anammox granular sludge expanded bed reactor and sludge characteristics
-
摘要: 为实现集成、高效的氮磷处理,提高厌氧氨氧化工艺的运行稳定性及功能集成性,搭建了一种新型的anammox-HAP颗粒污泥型膨胀床反应器。设置了3个不同温度条件下的反应器,通过控制进入反应器中的钙、磷元素,以及调控反应器pH,探究了膨胀床反应器对氮、磷的同步去除能力,并对污泥特性进行了分析。结果表明:anammox-HAP颗粒污泥型膨胀床反应器在35、25、15℃条件下均可稳定运行,并能分别实现(44.90±0.32)、(17.12±0.97)、(8.79±0.14 ) g·(L·d)−1的氮去除速率,且总氮去除率稳定维持在85%以上;磷元素以HAP核的形式聚集在anammox颗粒内部,可在随剩余污泥排出的同时进行回收;anammox-HAP反应器中颗粒污泥的沉降性能明显高于一般厌氧或anammox工艺中的颗粒污泥,并与颗粒中的磷含量正相关。本研究阐释了anammox-HAP颗粒污泥型膨胀床反应器的特点,可为废水中氮磷的处理提供参考。
-
关键词:
- 厌氧氨氧化 /
- 羟基磷灰石 /
- 脱氮 /
- 除磷 /
- anammox-HAP颗粒污泥
Abstract: To achieve integrated and efficient nitrogen and phosphorus treatment with improved operational stability and functional integration of the anammox process, a new type of HAP-anammox granular sludge expanded bed reactor was developed. The experiment set up three reactors under different temperature conditions. By controlling the calcium and phosphorous elements in the input of the reactor and adjusting the pH, simultaneous removal of nitrogen and phosphorous in the expanded bed reactor was achieved. The results showed that HAP-anammox granular sludge expanded bed reactor can be operated with stabilized performance at 35℃, 25℃, and 15℃, with the nitrogen removal rates of (44.90±0.32), (17.12±0.97), and (8.79±0.14) g·(L·d)-1, respectively. The total nitrogen removal rate was constantly maintained above 85%. The phosphorus element accumulates in the anammox granules as the core of HAP, which can be recovered from the excess sludge. The sedimentation performance of the granular sludge in the HAP-anammox reactor was remarkably higher than that of the conventional anammox granular sludge, and it was positively correlated with the phosphorus content in the granules. This study also characterized the HAP-anammox granular sludge expanded bed reactor, which can provide new insights for nitrogen and phosphorus removal in wastewater treatment. -
表 1 不同阶段各反应器的运行参数
Table 1. Staged experimental operating conditions in each reactor
反应器编号 温度/°C 氮负荷/(g·(L·d)−1) 进水总氮 /(mg·L−1) 进水总磷 /(mg·L−1) 进水Ca2+ /(mg·L−1) RIS HRT /h R1 35 5 313 11.40 81.60 1.32 1.50 35 10 625 11.40 81.60 1.00 1.50 35 15 625 11.40 81.60 1.20 1.00 35 20 625 11.40 81.60 1.20 0.75 35 30 625 11.40 81.60 1.20 0.50 35 40 830 11.40 81.60 1.20 0.50 35 50 1 040 11.40 81.60 1.20 0.50 R2 25 5 625 22.80 81.60 1.20 3.00 25 7.5 937.5 22.80 81.60 1.20 3.00 25 11 1 375 22.80 81.60 1.20 3.00 25 16 1 500 22.80 81.60 1.20 2.25 25 20 1 500 22.80 81.60 1.20 1.80 R3 15 2.5 625 22.80 81.60 1.20 6.00 15 3.5 875 22.80 81.60 1.20 6.00 15 5 1 250 22.80 81.60 1.20 6.00 15 7.5 1 375 22.80 81.60 1.20 4.40 15 10 1 375 22.80 81.60 1.20 3.30 -
[1] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 [2] ZHANG Y, MA H, NIU Q, et al. Effects of substrate shock on extracellular polymeric substance (EPS) excretion and characteristics of attached biofilm anammox granules[J]. RSC Advances, 2016, 6(114): 113289-113297. doi: 10.1039/C6RA20097D [3] WINKLER M K H, KLEEREBEZEM R, STROUS M, et al. Factors influencing the density of aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7459-7468. doi: 10.1007/s00253-012-4459-4 [4] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science and Technology, 2011, 45(17): 7330-7337. doi: 10.1021/es201388t [5] LIN Y M, LOTTI T, SHARMA P K, et al. Apatite accumulation enhances the mechanical property of anammox granules[J]. Water Research, 2013, 47(13): 4556-4566. doi: 10.1016/j.watres.2013.04.061 [6] CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought[J/OL][J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009 [7] ANGELA M, BÉATRICE B, MATHIEU S. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. doi: 10.1016/j.watres.2011.04.031 [8] DRIVER J, LIJMBACH D, STEEN I. Why recover phosphorus for recycling, and how?[J]. Environmental Technology (United Kingdom), 1999, 20(7): 651-662. [9] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Phosphorus recovery from wastewater by struvite crystallization: A review[J]//Critical Reviews in Environmental Science and Technology, 2009, 39(6): 433-477. [10] ZHANG C, CHEN Y. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal[J]. Environmental Science and Technology, 2009, 43(16): 6164-6170. doi: 10.1021/es9005948 [11] MA H Y, NIU Q, ZHANG Y, et al. Substrate inhibition and concentration control in an UASB-Anammox process[J]. Bioresource Technology, 2017, 238: 263-272. doi: 10.1016/j.biortech.2017.04.017 [12] APHA, AWWA, WEF. Standard Methods for the examination of Water and Wastewater, 23rd Edition, Washington, D. C. : American Public Health Association, 2017. [13] MA H Y, ZHANG Y, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of the Total Environment, 2019, 659: 568-577. doi: 10.1016/j.scitotenv.2018.12.377 [14] LLOBET-BROSSA E, ROSSELLÓ-MORA R, AMANN R. Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization[J]. Applied and Environmental Microbiology, 1998, 64(7): 2691-2696. doi: 10.1128/AEM.64.7.2691-2696.1998 [15] MANZ W, AMANN R, LUDWIG W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions[J]. Systematic and Applied Microbiology, 1992, 15(4): 593-600. doi: 10.1016/S0723-2020(11)80121-9 [16] LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60: 1-14. doi: 10.1016/j.watres.2014.04.017 [17] TANG C J, ZHENG P, MAHMOOD Q, et al. Effect of substrate concentration on stability of anammox biofilm reactors[J]. Journal of Central South University of Technology (English Edition), 2010, 17(1): 79-84. doi: 10.1007/s11771-010-0014-6 [18] MAÑAS A, POCQUET M, BISCANS B, et al. Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor[J]. Chemical Engineering Science, 2012, 77: 165-175. doi: 10.1016/j.ces.2012.01.009 [19] BELLIER N, CHAZARENC F, COMEAU Y. Phosphorus removal from wastewater by mineral apatite[J]. Water Research, 2006, 40(15): 2965-2971. doi: 10.1016/j.watres.2006.05.016 [20] OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. doi: 10.1111/1462-2920.13134 [21] TOMASZEWSKI M, CEMA G, ZIEMBIŃSKA-BUCZYŃSKA A. Influence of temperature and pH on the anammox process: A review and meta-analysis[Z/OL](2017). [22] ZHANG Y, MA H Y, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. doi: 10.1016/j.biortech.2018.01.043 [23] MA H Y, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C[J]. Water Research, 2020, 172: 115510. doi: 10.1016/j.watres.2020.115510 [24] MCKEOWN R M, SCULLY C, MAHONY T, et al. Long-term (1243 days), low-temperature (4-15 °C), anaerobic biotreatment of acidified wastewaters: Bioprocess performance and physiological characteristics[J]. Water Research, 2009, 43(6): 1611-1620. doi: 10.1016/j.watres.2009.01.015 [25] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [26] DE GRAAFF M S, TEMMINK H, ZEEMAN G, et al. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability[J]. Water Research, 2011, 45(1): 63-74. doi: 10.1016/j.watres.2010.08.010 [27] HULSHOFF POL L W, DE CASTRO LOPES S I, LETTINGA G, et al. Anaerobic sludge granulation[J]. Water Research, 2004, 38(6): 1376-1389. doi: 10.1016/j.watres.2003.12.002 [28] WEINER S. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 1-29. doi: 10.2113/0540001 [29] SARMA B K, BARMAN P, SARMA B, et al. Biomimetic deposition of carbonate apatite and role of carbonate substitution on mechanical properties at nanoscale[J]. Materials Letters, 2016, 185: 387-390. doi: 10.1016/j.matlet.2016.09.028 [30] VALSAMI-JONES E. Mineralogical controls on phosphorus recovery from wastewaters[J]. Mineralogical Magazine, 2001, 65(5): 611-620. doi: 10.1180/002646101317018433 [31] KINDAICHI T, TSUSHIMA I, OGASAWARA Y, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms[J]. Applied and Environmental Microbiology, 2007, 73(15): 4931-4939. doi: 10.1128/AEM.00156-07