-
随着经济社会的发展和城市化进程的加快,城市生活垃圾产生量与日俱增。预计到2030年,我国垃圾填埋物数量将达到峰值[1-2],其资源化利用已成为研究热点。在填埋场封闭的环境条件下,生活垃圾经过长期的物理、化学和生物稳定化过程后,由散发出恶臭气体的原生垃圾逐渐转变为性质和组分相对稳定、具有泥土气味的类土壤物质[3],呈现出矿化状特性。在长期厌氧、高盐、高毒等填埋稳定化过程中,矿化状垃圾填埋物中大部分可降解有机物已被去除,存留的微生物菌群理论上具有更强的环境适应性与污染物降解/转化性能;另外,矿化状垃圾填埋物的比表面积可达5.46 m2·g−1,具有良好的污染吸附能力及微生物附着能力[4]。因此,可考虑将其用作水处理填料并开发矿化垃圾填料床处理工艺,发挥其对污染物的微生物降解/转化能力和吸附能力。
厌氧氨氧化(anammox)工艺具有无需曝气和外加碳源、操作成本低且剩余污泥少等优势,已成为最具发展潜力的生物脱氮技术[5]。Anammox需要
$\mathrm{NO}_{2}^{-} $ 作为电子受体,且反应产生$\mathrm{NO}_{3}^{-} $ ,而短程反硝化则将$\mathrm{NO}_{3}^{-} $ 还原为$\mathrm{NO}_{2}^{-} $ ,可为anammox提供$\mathrm{NO}_{2}^{-} $ ,同时可节省$\mathrm{NO}_{2}^{-} $ 继续还原所需的碳源,故短程反硝化和厌氧氨氧化受到广泛关注。低C/N氨氮废水中的$\mathrm{NH}_{4}^{+} $ 极易氧化为$\mathrm{NO}_{3}^{-} $ ,导致$\mathrm{NO}_{2}^{-} $ 积累难,anammox工艺易受影响。矿化填料中的亚硝酸盐氧化菌(NOB)以Nitrospira sp.为主,这类菌株对氧气的亲和力很强[6],且当$ \mathrm{NH}_{4}^{+}$ 转化为$\mathrm{NO}_{2}^{-} $ 后,Nitrospira sp.会随即利用多余氧气将$\mathrm{NO}_{2}^{-} $ 进一步氧化为$\mathrm{NO}_{3}^{-} $ ,很难通过短程硝化作用实现$\mathrm{NO}_{2}^{-} $ 的积累。短程反硝化则可将$\mathrm{NO}_{3}^{-} $ 转化为$\mathrm{NO}_{2}^{-} $ ,同时消耗水中有机物,避免其对后续anammox细菌发生抑制。综上所述,将短程反硝化耦合厌氧氨氧化工艺是低浓度、低C/N氨氮废水高效处理的重要选择[7]。本研究阐明了矿化状垃圾填埋物的理化性质,并以矿化状垃圾填埋物为填充物,分别研究了其短程反硝化性能和厌氧氨氧化反应器的性能,以期为其应用于低C/N氨氮废水的处理提供参考。
填充矿化状垃圾填埋物的短程反硝化−厌氧氨氧化反应器处理低C/N氨氮废水
Short−cut denitrification and anammox reactor inoculated with aged refuse improves nitrogen removal performance in the low C/N ammonia−rich wastewater treatment
-
摘要: 矿化状垃圾填埋物在长期厌氧稳定化过程中形成了一些独特的理化性质和微生物学特性,使其可用于水处理工艺。以矿化状垃圾填埋物为填充物,研究其在短程反硝化和厌氧氨氧化工艺中对系统性能的影响。结果表明:矿化状垃圾填埋物可通过短程反硝化实现亚硝酸盐积累,当进水C/N为2时
$\mathrm{NO}_{2}^{-} $ −N积累达50%,可为后续与厌氧氨氧化耦合脱氮提供基质;批次实验表明矿化状垃圾填埋物对厌氧氨氧化具有促进作用,使$\mathrm{NH}_{4}^{+} $ −N和$\mathrm{NO}_{2}^{-} $ −N去除率分别由62%和90%增至68%和96%;连续流实验表明,填充矿化状垃圾填埋物可通过强化厌氧氨氧化工艺实现废水高效脱氮,反应器容积氮负荷达0.63 kg·m−3·d−1,$\mathrm{NH}_{4}^{+} $ −N和$\mathrm{NO}_{2}^{-} $ −N的去除率分别为81%和91%。本研究结果可为矿化状垃圾填埋物应用于氨氮废水处理工艺,进而实现垃圾填埋物资源化利用并有效处理氨氮废水提供参考。Abstract: Distinctive physio-chemical and microbial properties have emerged over the long-term anaerobic stabilization of organics in landfill, which makes the aged refuse a promising additive for wastewater treatment. This study investigated the long-term performance of denitrification and anammox with the addition of aged refuse. The results showed that nitrite accumulated through shortcut denitrification with aged refuse. At influent C/N of 2, nearly 50% NO2--N was accumulated, providing the substrate for the subsequent anammox. Batch tests indicated that aged refuse improved anammox performance, with the removal efficiencies of NH4+-N and NO2--N increased from 62% and 90% to 68% and 96%, respectively. The continuous experiment showed that an enhanced anammox process could achieve efficient nitrogen removal. The reactor volumetric loading rate was 0.63 kg·m-3·d-1. The removal efficiencies of NH4+-N and NO2--N were 81% and 91 %, respectively. It is a promising way to treat the ammonium-rich wastewater by addition of aged refuse.-
Key words:
- aged refuse /
- ammonium-rich wastewater /
- low C/N /
- anammox /
- shortcut denitrification
-
表 1 反硝化体系(R1)中矿化状垃圾填埋物的阿尔法多样性分析
Table 1. Alpha diversity of aged refuse in denitrification system (R1)
样品来源 Chao Shannon PD 反硝化前的反应体系 598 5 45 C/N为4时反应体系 543 4 46 表 2 Pseudomonas种水平相对丰度的变化
Table 2. Relative abundance of Pseudomonas at species level
% 种名称 反硝化前 反硝化后 g__Pseudomonas | s__uncultured 0.315 0.079 g__Pseudomonas | s__Pseudomonas putida 0.182 ND g__Pseudomonas | s__ 0.012 18.78 g__Pseudomonas | s__Pseudomonas monteilii ND 0.062 注:ND表示未检测到。 表 3 厌氧氨氧化体系中矿化状垃圾填埋物阿尔法多样性变化
Table 3. Alpha diversity of aged refuse in anammox system
样品来源 Chao Observed species Shannon PD 反应体系的起始阶段 610 556 5 46 反应体系的稳定运行阶段 560 528 5 44 -
[1] World Bank. What a Waste: A Global Review of Solid Waste Management[J]. Washington:World Bank, 2012: 1-95. [2] ZHENG L, SONG J, LI C, et al. Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects[J]. Renewable & Sustainable Energy Reviews, 2014, 36: 135-148. [3] 赵由才, 柴晓利, 牛冬杰. 矿化垃圾基本特性研究[J]. 同济大学学报(自然科学版), 2006, 34(10): 1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017 [4] 聂发辉, 李文婷, 鲁秀国, 等. 矿化垃圾对渗滤液的吸附试验及其动力学研究[J]. 环境污染与防治, 2014, 36(11): 36-39. [5] TAN H, WANG Y Y, TANG X, et al. Quantitative determination of cavitation formation and sludge flotation in Anammox granules by using a new diffusion-reaction integrated mathematical model[J]. Water Research, 2020, 174: 115632. doi: 10.1016/j.watres.2020.115632 [6] DYTCZAK M A, LONDRY K L, OLESZKIEWICZ J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J]. Water Research, 2008, 42(8/9): 2320-2328. [7] 田夏迪, 茹临锋, 吕心涛, 等. 短程反硝化工艺的研究进展与展望[J]. 中国给水排水, 2020, 36(2): 7-15. [8] LI M, ZHAO Y, GUO Q, et al. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill[J]. Renewable Energy, 2008, 33(12): 2573-2579. doi: 10.1016/j.renene.2008.02.018 [9] MA Q, QU Y, SHEN W, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443. doi: 10.1016/j.biortech.2014.12.041 [10] SHA S, ZHONG J, CHEN B, et al. Novosphingobium guangzhouense sp. nov. , with the ability to degrade 1-methylphenanthrene[J]. International Journal of Systematic & Evolutionary Microbiology, 2016, 67(2): 489-497. [11] YUE X, YU G, LIU Z, et al. Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254: 347-352. doi: 10.1016/j.biortech.2018.01.107 [12] DU R, CAO S, LI B, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. doi: 10.1016/j.watres.2016.10.051 [13] RIJN J, TAL Y, SCHREIER H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364-376. doi: 10.1016/j.aquaeng.2005.04.004 [14] LI W, LI H, LIU Y, et al. Salinity-Aided Selection of Progressive Onset Denitrifiers as a Means of Providing Nitrite for Anammox[J]. Environmental Science & Technology, 2018, 52(18): 10665-10672. [15] 石磊, 张全, 牛冬杰, 等. 矿化垃圾反应床处理渗滤液的微生物学特性[J]. 同济大学学报(自然科学版), 2007, 35(8): 1085-1089. doi: 10.3321/j.issn:0253-374X.2007.08.017 [16] 吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53(2): 277-291. [17] LIU D, ZHANG Q, LINGLING W, et al. Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite[J]. Chemical Geology, 2016, 447: 199-207. doi: 10.1016/j.chemgeo.2016.11.013 [18] OKABE S, KINDAICHI T, ITO T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms[J]. Applied and Environmental Microbiology, 2005, 71(7): 3987-3994. doi: 10.1128/AEM.71.7.3987-3994.2005 [19] HU B, ZHENG P, TANG C, et al. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Research, 2010, 44(17): 5014-5020. doi: 10.1016/j.watres.2010.07.021 [20] ZHU G, WANG S, MA B, et al. Anammox granular sludge in low-ammonium sewage treatment: Not bigger size driving better performance[J]. Water Research, 2018, 142: 147-158. doi: 10.1016/j.watres.2018.05.048 [21] MIAO L, WANG S, LI B, et al. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate[J]. Water Research, 2016, 100: 405-412. doi: 10.1016/j.watres.2016.05.010 [22] CHUA A S M, ONUKI M, SATOH H, et al. Examining substrate uptake patterns of Rhodocyclus-related PAO in full-scale EBPR plants by using the MAR-FISH technique[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2006, 54(1): 63-70.