[1]
|
李斌, 柏杨巍, 刘丹妮, 等. 全国地级及以上城市建成区黑臭水体的分布、存在问题及对策建议[J]. 环境工程学报, 2019, 13(3): 511-518. doi: 10.12030/j.cjee.201812150
CrossRef Google Scholar
Pub Med
|
[2]
|
王洪臣. 城镇污水处理的发展方向与技术需求[J]. 给水排水, 2013, 39(5): 1-3. doi: 10.3969/j.issn.1000-4602.2013.05.001
CrossRef Google Scholar
Pub Med
|
[3]
|
SCHLUTER-VORBERG L, KNOPP G, CORNEL P, et al. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes[J]. Aquatic Toxicology, 2017, 186: 171-179. doi: 10.1016/j.aquatox.2017.03.001
CrossRef Google Scholar
Pub Med
|
[4]
|
中华人民共和国国务院. 水污染防治行动计[EB/OL]. [2019-02-01]. http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm.
Google Scholar
Pub Med
|
[5]
|
苏俊新. 城镇污水处理厂一级A提标改造的关键因素及工艺选择[J]. 中国资源综合利用, 2018, 36(6): 45-48. doi: 10.3969/j.issn.1008-9500.2018.06.015
CrossRef Google Scholar
Pub Med
|
[6]
|
文建华, 王莎莎, 原建光. 我国城市污水处理现状及污水处理厂提标改造研究[J]. 焦作大学学报, 2018, 21(2): 76-80.
Google Scholar
Pub Med
|
[7]
|
张岩, 李闯, 宋超, 等. 城市污水处理厂一级A提标改造工程进展[J]. 广东化工, 2019, 46(6): 173-174.
Google Scholar
Pub Med
|
[8]
|
GATES A J, RICHARDSON D J, BUTT J N. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: Exploring the activity of a redox-balancing enzyme as a function of electrochemical potential[J]. Biochemical Journal, 2008, 409(1): 159-168. doi: 10.1042/BJ20071088
CrossRef Google Scholar
Pub Med
|
[9]
|
FOURMOND V, BURLAT B, DEMENTIN S, et al. Dependence of catalytic activity on driving force in solution assays and protein film voltammetry: Insights from the comparison of nitrate reductase mutants[J]. Biochemistry, 2010, 49(11): 2424-2432. doi: 10.1021/bi902140e
CrossRef Google Scholar
Pub Med
|
[10]
|
PANG J, MATSUDA M, KURODA M, et al. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR[J]. Frontiers of Environmental Science & Engineering, 2016, 10(4): 1-7.
Google Scholar
Pub Med
|
[11]
|
HOPPERT M, MAHONY T J, MAYER F, et al. Quaternary structure of the hydroxylamine oxidoreductase from Nitrosomonas europaea[J]. Archives of Microbiology, 1995, 163(4): 300-306. doi: 10.1007/BF00393384
CrossRef Google Scholar
Pub Med
|
[12]
|
LI M, LIANG Z, CALLIER M D, et al. Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes[J]. Aquaculture, 2018, 496: 247-254. doi: 10.1016/j.aquaculture.2018.06.016
CrossRef Google Scholar
Pub Med
|
[13]
|
LI B, YAN W, WANG Y, et al. Effects of key enzyme activities and microbial communities in a flocculentgranular hybrid complete autotrophic nitrogen removal over nitrite reactor under mainstream conditions[J]. Bioresource Technology, 2019, 280: 136-142. doi: 10.1016/j.biortech.2019.01.146
CrossRef Google Scholar
Pub Med
|
[14]
|
NAJMUDIN S, GONZALEZ P J, TRINCO J, et al. Periplasmic nitrate reductase revisited: A sulfur atom completes the sixth coordination of the catalytic molybdenum[J]. Journal of Biological Inorganic Chemistry, 2008, 13(5): 737-753. doi: 10.1007/s00775-008-0359-6
CrossRef Google Scholar
Pub Med
|
[15]
|
LI Y H, LI H B, WANG X, et al. Changes in microbial populations and enzyme activities during nitrogen biodegradation of domestic sewage treatment in the subsurface wastewater infiltration system[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(4): 431-435. doi: 10.1007/s00128-011-0359-z
CrossRef Google Scholar
Pub Med
|
[16]
|
CALDERON K, GONZALEZ-MARTINEZ A, MONTERO-PUENTE C, et al. Bacterial community structure and enzyme activities in a membrane bioreactor (MBR) using pure oxygen as an aeration source[J]. Bioresource Technology, 2012, 103: 87-94. doi: 10.1016/j.biortech.2011.09.133
CrossRef Google Scholar
Pub Med
|
[17]
|
PAN J, YU L, LI G Z, et al. Characteristics of microbial populations and enzyme activities in non-shunt and shunt subsurface wastewater infiltration systems during nitrogen removal[J]. Ecological Engineering, 2013, 61: 127-132. doi: 10.1016/j.ecoleng.2013.09.025
CrossRef Google Scholar
Pub Med
|
[18]
|
张扬, 陈豪, 宋英豪, 等. Orbal氧化沟的应用及发展趋势[J]. 环境工程, 2009, 27(4): 62-64. doi: 10.3969/j.issn.1671-1556.2009.04.017
CrossRef Google Scholar
Pub Med
|
[19]
|
张小燕, 王刚, 郭华, 等. Orbal氧化沟+深度处理在城镇污水处理厂中的应用[J]. 中国给水排水, 2017, 33(4): 56-58.
Google Scholar
Pub Med
|
[20]
|
HAN Y, LIU J, GUO X, et al. Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size[J]. Bioresource Technology, 2012, 124: 252-258. doi: 10.1016/j.biortech.2012.08.008
CrossRef Google Scholar
Pub Med
|
[21]
|
HARMS G, LAYTON A C, DIONISI H M, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant[J]. Environmental Science & Technology, 2003, 37(2): 343-351.
Google Scholar
Pub Med
|
[22]
|
LIMPIYAKORN T, SHINOHARA Y, KURISU F, et al. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo[J]. FEMS Microbiology Ecology, 2005, 54: 205-217. doi: 10.1016/j.femsec.2005.03.017
CrossRef Google Scholar
Pub Med
|
[23]
|
ZHAO B, HE Y L, HUGHES J, et al. Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR[J]. Bioresource Technology, 2010, 101: 5194-5200. doi: 10.1016/j.biortech.2010.02.043
CrossRef Google Scholar
Pub Med
|
[24]
|
ZHANG S M, LI W G, ZHANG D Y, et al. Purification and characterization of a low-temperature hydroxylamine oxidase from heterotrophic nitrifier Acinetobacter sp. Y16[J]. Biomedical and Environmental Sciences, 2014, 24(7): 515-522.
Google Scholar
Pub Med
|
[25]
|
SINGH D K, KUMAR S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments[J]. Chemosphere, 2008, 71(3): 412-418. doi: 10.1016/j.chemosphere.2007.11.005
CrossRef Google Scholar
Pub Med
|
[26]
|
SACHDEVA V, HOODA V. Effect of changing the nanoscale environment on activity and stability of nitrate reductase[J]. Enzyme and Microbial Technology, 2016, 89: 52-62. doi: 10.1016/j.enzmictec.2016.03.007
CrossRef Google Scholar
Pub Med
|
[27]
|
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
Google Scholar
Pub Med
|
[28]
|
ZHANG B, SUN B, JI M, et al. Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater[J]. Bioresource Technology, 2010, 101: 3054-3059. doi: 10.1016/j.biortech.2009.12.048
CrossRef Google Scholar
Pub Med
|
[29]
|
LU H J, CHANDRAN K. Diagnosis and quantification of glycerol assimilating denitrifying bacteria in an integrated fixed-film activated sludge reactor via 13C DNA stable-isotope probing[J]. Environmental Science & Technology, 2010, 44(23): 8943-8949.
Google Scholar
Pub Med
|
[30]
|
KONDO T, TSUNEDA S, EBIE Y. Characterization of the microbial community in the anaerobic/oxic/anoxic process combined with sludge ozonation and phosphorus adsorption[J]. Journal of Water Environmental Technology, 2009, 7(2): 135-142. doi: 10.2965/jwet.2009.135
CrossRef Google Scholar
Pub Med
|
[31]
|
GRAHAM D W, SMITH V H. Designed ecosystem services: application of ecological principles in wastewater treatment engineering[J]. Frontiers in Ecology and the Environment, 2004, 2(4): 199-206. doi: 10.1890/1540-9295(2004)002[0199:DESAOE]2.0.CO;2
CrossRef Google Scholar
Pub Med
|
[32]
|
HASHIMOTO K, MATSUDA M, INOUE D, et al. Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process[J]. Journal of Bioscience and Bioengineering, 2014, 118(1): 64-71. doi: 10.1016/j.jbiosc.2013.12.008
CrossRef Google Scholar
Pub Med
|
[33]
|
ZHOU X, HAN Y, GUO X. Enhanced total nitrogen removal performance in a modified Orbal oxidation ditch system with internal nitrate recycle[J]. Chemical Engineering Journal, 2013, 228: 124-131. doi: 10.1016/j.cej.2013.04.096
CrossRef Google Scholar
Pub Med
|
[34]
|
赵群英, 田敏, 李侃. DO浓度及其空间分布对Orbal氧化沟去除污染物效果[J]. 净水技术, 2018, 37(8): 87-89.
Google Scholar
Pub Med
|