-
污泥是常规水处理过程中的副产物,主要由微生物、胞外聚合物(EPS)、纤维和无机物质等组成,其处理处置在污水处理厂运营成本中占很大比例[1 − 2]. 污泥通常含有95%以上的水分[3 − 4],为了减少污泥体积,提高后处理效率并节约成本,有效实施泥水分离至关重要[3]. 然而由于污泥内亲水性EPS与部分水结合紧密,难以通过常规压滤及离心等机械作用完全去除,需要对污泥进行预处理调理[1,5].
污泥调理技术包括混凝、氧化、碱化、酸化、生物法等[6 − 10],其中混凝是一种常规污泥预处理技术,其操作简易,成本也低[11]. 目前常用的污泥调理混凝剂有聚丙烯酰胺和聚合氯化铝、氯化铁等铝铁盐无机混凝剂,它们普遍性价比高、处理效果佳[12]. 但是,上述传统混凝剂在使用时,高毒性有机单体和无机金属离子在水中不可避免地发生残留对水环境生态安全带来一定隐患[13 − 15]. 近年来,开发以木质素、淀粉、纤维素、单宁、壳聚糖等为代表的具有绿色环保等重要特征的天然高分子混凝剂已成为水处理行业中药剂研发的热点课题之一[16 − 20].
其中木质素是自然界中一类来源广泛且价格低廉的可再生资源,同时作为造纸制浆的副产品,每年产生约1.4亿t木质素黑液[21]. 然而由于缺乏有效的回收利用技术及应用途径,木质素目前尚未被完全有效利用[22]. 木质素化学结构复杂,其重复单元间缺乏规律,主要包括紫丁香基、对羟基苯基和愈创木基等三种苯丙烷结构单元[22],其详细分子结构至今尚未明确[23]. 但木质素含有丰富的易于改性的含氧功能基团,通过适当化学改性,其可制成混凝剂用于水处理[23 − 24]. Guo等[25]将二甲基二烯丙基氯化铵和丙烯酰胺(AM)通过接枝共聚技术链接到一种造纸污泥中提取的木质素上,获得一种阳离子木质素混凝剂,并发现该阳离子木质素混凝剂与聚合氯化铝联合使用能够实现废水中蓝色活性染料93%的去除率. 此外,还有报道将硫酸盐木质素与[2-(甲基丙烯氧基)乙基]三甲基氯化铵接枝反应生成木质素改性混凝剂[26],其在混凝高岭土悬浮液方面比单独使用聚([2-(甲基丙烯氧基)乙基]三甲基氯化铵)更为有效. 但是至今,将改性木质素混凝剂用于污泥调理的研究报道还不多[23,27]. 并且,木质素本身特有的刚性芳环结构不仅可起到骨料支撑作用,有利于改善泥饼可压缩性[28],同时其还可通过疏水缔合作用与EPS中疏水链片段结合有效压缩EPS,从而可进一步提高其污泥脱水性能. 此外,改性木质素除了具有污泥调理功能外,还可提高脱水后污泥的应用价值[21]. 由于木质素比生物污泥具有更高的热值,在焚烧处置时燃烧含木质素污泥比单独燃烧生物污泥可产生更高的能量. 因此,开发木质素基污泥调理剂具有重要的应用价值.
本文以木质素为原材,以AM和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为改性单体,采用接枝共聚技术,制备一系列电荷密度(CD)不同的阳离子改性木质素混凝剂(LN-CD). 以南京仙林某市政污水处理厂活性污泥为研究对象,系统考察LN-CD污泥调理性能,具体检测了污泥调理后的泥饼含水率(FCMC)、污泥比阻(SRF)、毛细吸水时间(CST)和压缩系数(s)等;结合污泥絮体结构、泥饼表面形貌和EPS不同形态及成分含量与分布变化情况等,详细讨论了LN-CD混凝剂的污泥脱水机理. 为改性木质素混凝剂的开发及其在污泥脱水中的应用提供一定的理论参考及实验实践.
阳离子改性木质素混凝剂污泥脱水性能研究
Sludge dewatering performance of a cationically modified lignin coagulant
-
摘要: 混凝调理是一种成本低廉、操作方便的污泥调理方法. 而传统无机盐混凝剂和合成有机高分子混凝剂在使用过程中存在金属离子及高毒性单体残留等问题. 本文以自然界中来源广泛的一种可再生资源——木质素为原材,以丙烯酰胺和甲基丙烯酰氧乙基三甲基氯化铵为改性单体,采用接枝共聚技术,制得一系列电荷密度(CD)不同的阳离子改性木质素混凝剂(LN-CD). 以南京仙林某市政污水处理厂活性污泥为研究对象,测定了活性污泥经系列LN-CD调理后的泥饼含水率(FCMC)、污泥比阻(SRF)、毛细吸水时间(CST)和压缩系数(s),系统考察了LN-CD污泥调理性能;结合污泥絮体结构、泥饼表面形貌和污泥中胞外聚合物(EPS)不同形态及成分含量与分布变化情况,详细讨论了LN-CD混凝剂的污泥脱水机理. 研究结果表明,LN-CD具有良好的污泥调理效果,CD是影响LN-CD脱水性能的重要因素,CD越高污泥脱水效果越佳,其中经CD最高的LN-CD1调理后,FCMC、SRF、CST和s分别为:68.91%、0.89×1012 m·kg−1、15.0 s及0.81;且获得的污泥絮体尺寸最大结构也最为紧密,污泥中不同形态EPS含量及蛋白质与多糖组分也均有效下降. 这是由于LN-CD通过电中和及粘结架桥作用有效聚集污泥颗粒,对EPS结构造成破坏,释放出结合水;此外,木质素本身特有的芳环结构不仅可利用其刚性结构特征起到骨料支撑作用有利于改善泥饼可压缩性,增强其泥饼渗透性,同时其疏水性能还可通过疏水缔合作用与EPS中疏水片段结合有效压缩EPS,从而进一步提高其污泥脱水性能. 综上所述,LN-CD制备简单,绿色环保,污泥调理性能优良,其在污泥脱水中应具有良好的应用前景.
-
关键词:
- 阳离子改性木质素混凝剂 /
- 电荷密度 /
- 污泥脱水性能 /
- 胞外聚合物 /
- 脱水机制
Abstract: Coagulation conditioning is a sludge pretreatment method with the characteristics of low cost and simple operation. However, the traditional inorganic salt coagulants and synthetic organic polymeric coagulants may have some serious potentials in health risks and cause some environmental problems due to their residues of metal ions and toxic organic monomers in practical applications. Lignin is a kind of renewable resources widely available in nature. In this paper, a series of cationically modified lignin-based coagulants (LN-CD) with different charge density (CD) were prepared by grafting copolymerization using lignin as raw material while acrylamide and methacryloxyethyl trimethyl ammonium chloride as co-monomers. The activated sludge obtained from a municipal sewage plant at Xianlin of Nanjing was used as the target. The filter cake moisture content (FCMC), specific resistance of filtration (SRF), time to filter (CST) and compression coefficient (s) of sludge after conditioned by various LN-CD coagulants were determined. The dewatering mechanisms of LN-CD were discussed in detail by combination of the apparent dewatering performance and the changes in the contents and distributions of the extracellular polymeric substance (EPS) fractions and components, sludge flocs, and microstructures of sludge cakes. The results show that LN-CD has a good dewatering performance, and the CD is an important structural factor of this lignin-based coagulant. Generally, the higher the CD is, the better the sludge dewatering performance is obtained. After the conditioning of LN-CD1 with the highest CD in this series of lignin-based coagulants, FCMC, SRF, CST and s reach to 68.91%, 0.89×1012 m·kg−1, 15.0 s and 0.81, respectively; the obtained sludge floc also showed the largest size and the most compact structure; and the contents of different EPS fractions and their components including protein and polysaccharide in sludge were effectively reduced also. These findings are ascribed to that LN-CD can effectively aggregate sludge particles through charge neutralization and bridging effects, compress and destroy EPS structure, and thus release the bound water. In addition, the unique aromatic ring structure of lignin can play the role of skeleton builder due to its rigid structural characteristics, which is conducive to the improved compressibility and permeability of sludge cakes; besides, its partially hydrophobic property can combine the hydrophobic fragments in EPS and effectively compress EPS through the hydrophobic association, further improving the dewatering performance. In summary, LN-CD has the advantages of simple preparation, environmental friendliness, good sludge dewatering performance, and thus exhibits a good application prospects in sludge treatment. -
图 5 污泥原泥及经不同LN-CD在最佳投加量条件下污泥絮体及泥饼的扫描电镜图像(a)原泥絮体、分别经(b)LN-CD1及(c)LN-CD5调理后絮体; (d)原泥泥饼、分别经(e)LN-CD1及(f)LN-CD5调理后泥饼
Figure 5. SEM images of raw sludge flocs and sludge cakes conditioned by various LN-CDs under optimal dosages: (a) raw sludge flocs, flocs obtained by (b) LN-CD1 and (c) LN-CD5; (d) raw sludge cakes, sludge cakes by (e) LN-CD1 and (f) LN-CD5
表 1 LN-CD混凝剂制备条件、结构参数及其最佳投加量条件下脱水效果和污泥絮体特性
Table 1. Preparation conditions and structural characteristics of various LN-CD coagulants, and their dewatering performance and flocs properties under the optimal dosages
混凝剂
CoagulantAM : DMC
摩尔比电荷密度/
(mmol·g−1)
CD最佳
投加量/
(mg·g−1
TSS)
Optimal
dosage泥饼
含水率/%
FCMC污泥比阻(×1012)/
(m·kg−1)
SRF毛细吸水
时间/s
Time to
filter
CST压缩系数
Compressi
on
coefficient
szeta电位/
mV
Zeta
potential平均絮体
粒径/µm
Average
particle size二维分型
维数
Two-dimensional
fractal dimension
D2原泥 — — — 98.50±0.25 2.56±0.10 28.10±0.50 1.24±0.02 -8.85±0.42 44.72±1.32 1.73±0.03 LN-CD1 0.5 : 5.5 2.69 28 69.51±0.26 0.79±0.12 15.00±0.25 0.81±0.02 -0.34±0.02 128.59±0.17 1.92±0.01 LN-CD2 1 : 5 2.32 30 70.87±0.73 0.92±0.06 15.40±0.12 0.82±0.01 -0.31±0.03 114.48±1.14 1.91±0.02 LN-CD3 2 : 4 2.27 40 71.32±1.12 1.11±0.16 16.20±0.31 0.90±0.03 -1.05±0.08 104.06±0.38 1.89±0.01 LN-CD4 3 : 3 2.07 45 71.83±0.68 1.17±0.03 16.70±0.42 0.89±0.02 -0.96±0.04 82.12±0.04 1.88±0.02 LN-CD5 4 : 2 1.61 50 72.05±0.54 1.21±0.11 17.70±0.14 0.97±0.03 -1.19±0.08 80.37±0.62 1.87±0.01 表 2 污泥脱水性能与PN、PS和TOC含量或不同EPS组分中各种三维荧光信号的强度之间的Pearson相关关系
Table 2. Pearson correlation between the sludge dewaterability and the PN, PS and TOC contents or the intensities of various 3D fluorescent signals in different EPS fractions
EPS组分
EPS fractionsEPS成分
EPS components污泥比阻
SRF泥饼含水率
FCMCR2 p n R2 p n S-EPS TOC 0.894* 0.041 5 0.929* 0.022 5 PS −0.528 0.361 5 −0.447 0.450 5 PN 0.905* 0.035 5 0.880* 0.049 5 λex/em 230/340 0.986** 0.002 5 0.984** 0.002 5 280/350 0.965** 0.008 5 0.991** 0.001 5 240/420 0.855 0.065 5 0.953* 0.012 5 350/440 0.978** 0.004 5 0.930* 0.022 5 270/450 0.912* 0.031 5 0.890* 0.043 5 LB-EPS TOC 0.564 0.322 5 0.592 0.293 5 PS −0.546 0.341 5 −0.453 0.443 5 PN 0.785* 0.016 5 0.909* 0.032 5 λex/em 230/340 0.904* 0.035 5 0.865 0.058 5 280/350 0.866 0.058 5 0.828 0.083 5 240/420 0.942* 0.017 5 0.937* 0.019 5 350/440 0.769 0.129 5 0.788 0.114 5 270/450 0.983** 0.003 5 0.924* 0.025 5 TB-EPS TOC −0.735 0.157 5 −0.801 0.104 5 PS −0.919* 0.027 5 −0.969** 0.007 5 PN −0.869 0.056 5 −0.803 0.102 5 λex/em 230/340 −0.667 0.218 5 −0.703 0.185 5 280/350 −0.746 0.147 5 −0.785 0.116 5 240/420 −0.657 0.228 5 −0.667 0.219 5 350/440 −0.858 0.063 5 −0.922* 0.026 5 270/450 −0.831 0.081 5 −0.891* 0.042 5 * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). -
[1] CAO B D, ZHANG T, ZHANG W J, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Research, 2021, 189: 116650. doi: 10.1016/j.watres.2020.116650 [2] WU B R, DAI X H, CHAI X L. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. doi: 10.1016/j.watres.2020.115912 [3] ZHANG X D, YE P, WU Y J. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review[J]. Journal of Environmental Management, 2022, 321: 115938. doi: 10.1016/j.jenvman.2022.115938 [4] MOWLA D, TRAN H N, ALLEN D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes[J]. Biomass and Bioenergy, 2013, 58: 365-378. doi: 10.1016/j.biombioe.2013.09.002 [5] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 [6] TURCHIULI C, FARGUES C. Influence of structural properties of alum and ferric flocs on sludge dewaterability[J]. Chemical Engineering Journal, 2004, 103(1/2/3): 123-131. [7] YU W B, YANG J K, SHI Y F, et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime[J]. Water Research, 2016, 95: 124-133. doi: 10.1016/j.watres.2016.03.016 [8] LI H, JIN Y Y, MAHAR R, et al. Effects and model of alkaline waste activated sludge treatment[J]. Bioresource Technology, 2008, 99(11): 5140-5144. doi: 10.1016/j.biortech.2007.09.019 [9] MASIHI H, BADALIANS GHOLIKANDI G. Using acidic-modified bentonite for anaerobically digested sludge conditioning and dewatering[J]. Chemosphere, 2020, 241: 125096. doi: 10.1016/j.chemosphere.2019.125096 [10] LÜ F, WANG J W, SHAO L M, et al. Enzyme disintegration with spatial resolution reveals different distributions of sludge extracellular polymer substances[J]. Biotechnology for Biofuels, 2016, 9: 29. doi: 10.1186/s13068-016-0444-y [11] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029 [12] MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. doi: 10.1016/j.cis.2010.06.007 [13] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012 [14] OKUDA T, NISHIJIMA W, SUGIMOTO M, et al. Removal of coagulant aluminum from water treatment residuals by acid[J]. Water Research, 2014, 60: 75-81. doi: 10.1016/j.watres.2014.04.041 [15] STECHEMESSER B, DOBIAS B. Coagulation and Flocculation, second ed [M]. CRC Press, 2005. [16] LIU Y Z, ZHENG H L, SUN Y J, et al. Synthesis of novel chitosan-based flocculants with amphiphilic structure and its application in sludge dewatering: Role of hydrophobic groups[J]. Journal of Cleaner Production, 2020, 249: 119350. doi: 10.1016/j.jclepro.2019.119350 [17] CHEN R J, DAI X H, DONG B. Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: Mechanistic of tannic acid aided[J]. Water Research, 2022, 217: 118450. doi: 10.1016/j.watres.2022.118450 [18] LIU Z Z, HUANG M, LI A M, et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119: 57-66. doi: 10.1016/j.watres.2017.04.043 [19] 陈炜, 沈少航, 闵广宇, 等. 接枝型阳离子淀粉絮凝剂在污泥脱水中的应用与机理研究[J]. 环境化学, 2021, 40(7): 2217-2225. doi: 10.7524/j.issn.0254-6108.2020111701 CHEN W, SHEN S H, MIN G Y, et al. Application and mechanism of a graft cationic starch-based flocculant in sludge dewatering[J]. Environmental Chemistry, 2021, 40(7): 2217-2225 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020111701
[20] 余伟, 黄牧, 李爱民, 等. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302 YU W, HUANG M, LI A M, et al. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017091302
[21] GHAZISAIDI H, WANG V, FATEHI P, et al. Determining the performance of lignin-based flocculants in improving biosludge dewaterability[J]. Journal of Environmental Management, 2023, 325: 116509. doi: 10.1016/j.jenvman.2022.116509 [22] WANG B, WANG S F, LAM S S, et al. A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110384. doi: 10.1016/j.rser.2020.110384 [23] CHIO C, SAIN M, QIN W S. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. doi: 10.1016/j.rser.2019.03.008 [24] KAI D, TAN M J, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. doi: 10.1039/C5GC02616D [25] GUO K Y, GAO B Y, LI R H, et al. Flocculation performance of lignin-based flocculant during reactive blue dye removal: Comparison with commercial flocculants[J]. Environmental Science and Pollution Research, 2018, 25(3): 2083-2095. doi: 10.1007/s11356-017-0835-z [26] WANG S J, KONG F G, GAO W J, et al. Novel process for generating cationic lignin based flocculant[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6595-6608. [27] HASAN A, FATEHI P. Cationic kraft lignin-acrylamide copolymer as a flocculant for clay suspensions: (2) Charge density effect[J]. Separation and Purification Technology, 2019, 210: 963-972. doi: 10.1016/j.seppur.2018.08.067 [28] WANG S Q, CHEN H B. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants[J]. Science of the Total Environment, 2023, 903: 166958. doi: 10.1016/j.scitotenv.2023.166958 [29] APHA. Standard methods for the examination of water and wastewater, twentiethed [M]. American Public Health Association, Washington DC, USA, 1998. [30] CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology[J]. Water Research, 2015, 83: 367-376. doi: 10.1016/j.watres.2015.06.026 [31] CHEN G W, LIN W W, LEE D J. Capillary suction time (CST) as a measure of sludge dewaterability[J]. Water Science and Technology, 1996, 34(3/4): 443-448. [32] GUO J Y, JIANG S L, PANG Y J. Rice straw biochar modified by aluminum chloride enhances the dewatering of the sludge from municipal sewage treatment plant[J]. Science of the Total Environment, 2019, 654: 338-344. doi: 10.1016/j.scitotenv.2018.10.429 [33] CHEN G H, SABY S, DJAFER M, et al. New approaches to minimize excess sludge in activated sludge systems[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2001, 44(10): 203-208. doi: 10.2166/wst.2001.0621 [34] HU P, ZHUANG S H, SHEN S H, et al. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant[J]. Water Research, 2021, 189: 116578. doi: 10.1016/j.watres.2020.116578 [35] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254 [36] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [37] GUO Z Y, MA L P, DAI Q X, et al. Dewatering performance of sewage sludge under pretreatment with modified corn-core powder[J]. Science of the Total Environment, 2019, 684: 402-412. doi: 10.1016/j.scitotenv.2019.05.366 [38] WU H, LIU Z Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water[J]. Water Research, 2016, 96: 126-135. doi: 10.1016/j.watres.2016.03.055 [39] LIU Z Z, WEI H, LI A M, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118: 160-166. doi: 10.1016/j.watres.2017.04.032 [40] RANI G U, MISHRA S, SEN G, et al. Polyacrylamide grafted Agar: Synthesis and applications of conventional and microwave assisted technique[J]. Carbohydrate Polymers, 2012, 90(2): 784-791. doi: 10.1016/j.carbpol.2012.05.069 [41] TUAN P A, SILLANPÄÄ M. Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process[J]. Chemical Engineering Journal, 2010, 164(1): 85-91. doi: 10.1016/j.cej.2010.08.028 [42] WU P, YI J X, FENG L, et al. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering[J]. International Journal of Biological Macromolecules, 2020, 155: 708-720. doi: 10.1016/j.ijbiomac.2020.04.011 [43] ZHANG W J, CHEN Z, CAO B D, et al. Improvement of wastewater sludge dewatering performance using titanium salt coagulants (TSCs) in combination with magnetic nano-particles: Significance of titanium speciation[J]. Water Research, 2017, 110: 102-111. doi: 10.1016/j.watres.2016.12.011 [44] NÁMER J, GANCZARCZYK J J. Settling properties of digested sludge particle aggregates[J]. Water Research, 1993, 27(8): 1285-1294. doi: 10.1016/0043-1354(93)90215-4 [45] ZHANG W J, CAO B D, WANG D S, et al. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage[J]. Biochemical Engineering Journal, 2016, 106: 37-47. doi: 10.1016/j.bej.2015.11.004 [46] MAHATA C, DHAR S, RAY S, et al. Flocculation characteristics of anaerobic sludge driven-extracellular polymeric substance (EPS) extracted by different methods on microalgae harvesting for lipid utilization[J]. Biochemical Engineering Journal, 2021, 167: 107898. doi: 10.1016/j.bej.2020.107898 [47] WANG W Y, GAO X M, ZHANG J, et al. Effect of SDS and neutral protease on the release of extracellular polymeric substances (EPS) from mechanical dewatered sludge[J]. Waste and Biomass Valorization, 2019, 10(4): 1053-1064. doi: 10.1007/s12649-017-0121-9 [48] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [49] JACQUIN C, LESAGE G, TRABER J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92. doi: 10.1016/j.watres.2017.04.009 [50] LI Y F, YUAN X Z, WU Z B, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645. doi: 10.1016/j.cej.2016.06.041 [51] WANG X, ZHANG B, SHEN Z Q, et al. The EPS characteristics of sludge in an aerobic granule membrane bioreactor[J]. Bioresource Technology, 2010, 101(21): 8046-8050. doi: 10.1016/j.biortech.2010.05.074 [52] ZHANG W J, YANG P, YANG X Y, et al. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process[J]. Bioresource Technology, 2015, 181: 247-253. doi: 10.1016/j.biortech.2015.01.003 [53] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138: 181-191. doi: 10.1016/j.watres.2018.03.038 [54] GAO J L, WENG W, YAN Y X, et al. Comparison of protein extraction methods from excess activated sludge[J]. Chemosphere, 2020, 249: 126107.34