-
印染废水是工业废水中占比较大并且难以处理的废水之一. 大量印染废水的排放会造成水体、空气和土壤的污染,对生态环境的和谐共生造成严重的威胁,因此对有机染料废水的处理问题亟待解决[1]. 有机染料废水的常用处理方法有生物法[2]、物理法[3 − 8]、化学法[9 − 13],其中化学法中光催化氧化法应用研究最为广泛[14 − 17]. 光催化氧化法是利用紫外光或可见光照射半导体材料,使其与水体在接触的界面上产生的大量的空穴-电子,从而参与到氧化还原反应,在反应过程中产生的羟基自由基(·OH)和超氧自由基(·O2−)等能够破坏染料分子结构,进一步降解成无害小分子水、二氧化碳等[18 − 22]. 随着光催化基础研究的不断深入,推动光催化剂的研发与应用,其性能的优劣直接影响到光的利用率,因而其制备、改性提高催化剂的性能成为该领域的一个研究热点[23 − 26].
在常见的半导体催化剂中(如TiO2、CdS、WO3、Fe2O3、g-C3N4等),TiO2价格低廉、无毒,环境友好,化学稳定性好和耐光腐蚀性较强,因此在光催化领域内研究最多,是最具潜力的半导体光催化材料之一. 然而,TiO2禁带宽度大,仅能吸收约4%的太阳光,限制其在各个领域的应用. 并且TiO2激发产生的光生电子和空穴极易复合,使得该体系的量子效率不高[27 − 30]. 为提如高其量子效率,可以采用不同的策略如:离子掺杂、半导体复合等[31 − 32],并将它们组合在一起形成更多光吸收体系,以提高光催化效率. 光催化降解有机物废水是一种高效节能的催化氧化技术,对环境保护发挥重要作用. Zeng等[33]报道一种新型掺氟SnO2微球催化剂,在光照条件下高效去除废水Cr(VI)和甲基橙. Yu等[34]采用水热法制备出具有特殊层状形貌的SiO2/BiOCl材料,在降解苯酚、双酚A和罗丹明B等有机污染物方面表现出优异的光催化活性和稳定性. 此外TiO2表面的活性物质能够吸附有机染料并利用在水体中产生的强氧化基团羟基自由基等将有机物氧化为CO2、H2O及无机小分子等无害物质[35 − 39]. Bamwenda等[40]采用不同的方法分别制备了Pt/TiO2和Au/TiO2,探究其在乙醇溶液中的制氢效果. Zhang等[41]通过Pt、Au、Pd负载TiO2,研究其对酸性绿B的降解效果. Castro[42]认为,由于TiO2需要在近紫外区域受到激发,从而实现电子-空穴的分离,因此,在可见光的激发下染料会向TiO2的导电带中注入电子,从而实现催化氧化与光敏化的双重效应. Zangeneh等[43]在TiO2中加入窄带隙的CdS,发现TiO2的光催化吸收光谱红移,催化活性提高,分析发现当可见光的能量足够使CdS的价带电子向导带跃迁时,光生空穴将停滞在其价带上,由此延长电子与空穴的复合时间,提高了光生载流子的分离效率. Guo等[44]通过紫外-可见光谱表征,证实了C-N共掺杂的TiO2在紫外光下具有良好的光催化性能. Wu等[45]通过实验也发现,TiO2共掺C-N后其光催化活性有较大的提升. Wu等[46]研究发现,TiO2掺杂F与N后降解效果优于单掺N和F的TiO2. Wang等[47]通过溶胶-凝胶法制备了N-F掺杂TiO2,发现该催化剂降解苯酚的效果较好,可能是由于N与F的协同作用.
近年来,二硫化钼(MoS2)作为2D层状材料在过渡金属硫族化合物中的应用也取得了重大进展. MoS2的光吸收波长范围宽,可弥补其它半导体材料对可见光吸收低的缺点. 纳米MoS2具有更大的比表面积,可以暴露更多的催化活性位点. 在MoS2单层结构内,其类型类似于石墨烯结构,上层和下层由S组成,中层由Mo构成,两个S之间由共价键连接,每个Mo周围连接有6个S原子,因而一个S周围就有3个Mo原子,即为S-Mo-S三个原子层堆积而成. MoS2原子层间是较弱的范德华力,因此在反应中更容易剥离形成层状的二维结构,单层与单层之间的间距大致为0.65 nm[48]. Faglia等[49]通过磁控溅射方法在剥离得到的二维MoS2层片上,成功地沉积出一维垂直排列的ZnO纳米棒,并评价了其光致发光(PL)性能. Hsu等[50]采用热蒸镀法制备了MoS2/ZnO异质结,并对其光电导和光响应性能进行了分析,揭示了MoS2/ZnO异质结在光电子器件中的应用前景. Krishnan等[51]采用二步水热还原方法制备出对亚甲基蓝(MB)具有较好的光催化降解能力的MoS2/ZnO纳米复合物.
TiO2的导带电势高于MoS2,当电子被激发时MoS2迅速接收来自TiO2导带上的光生电子,从而促进TiO2中光生电子-空穴对的分离,提高其分离效率. 因而构建二氧化钛/二硫化钼异质结在光催化反应中具有一定发展前景. 例如,Zhou等[52]通过构建三维分层的异质结结构,当负载一定量的二硫化钼时,催化性能最佳;Zheng等[53]研究表明,在TiO2纳米管上复合MoS2所形成的异质结结有较好的光敏性、更好的光催化性能,成功提升了光催化活性和光电流响应. 此外,构建异质结是一种半导体复合改性的常见方法,由于不同半导体之间的能带结构不同,光生载流子的跃迁和运动发生变化从而促进电子空穴的分离,改善光催化剂的催化活性. Chen等[54]通过构建ZnTiO3/Zn2Ti3O8/ZnO三元Z型异质结光催化剂改善电子空穴的分离和迁移,使其在降解有机污染物和还原重金属Cr(Ⅵ)离子方面表现出优异的性能. 并研究了非贵金属(Cu NPs)沉积ZnTiO3/Zn2Ti3O8/ZnO,能进一步提高其在重金属Cr(Ⅵ)还原、染料降解和催化产氢的效能[55].
因此,MoS2复合TiO2,将可能减小带隙、增强TiO2对可见光的吸收能力和拓宽光响应范围,形成异质结降低光生载流子复合率,改善TiO2的催化性能. 本文通过沉淀胶溶法和超声辅助法制备出具有良好光催化性能的MoS2/F-TiO2异质结,并研究其吸附-光催化性能,为处理污水中的有机物提供一种策略.
MoS2/F-TiO2异质结的制备及光降解罗丹明B性能研究
Study on preparation of MoS2/F-TiO2 heterojunction and its photodegradation performance on rhodamine B
-
摘要: 构建异质结型光催化剂是提高半导体光催化性能的有效方法之一,同时也是光催化处理有机废水的重要技术策略. 采用沉淀胶溶法制备出F-TiO2,并与 MoS2复合构建兼具吸附-光催化性能的MoS2/F-TiO2异质结. 采用扫描电子显微镜(SEM)、比表面积分析仪(BET)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、紫可见吸收光谱(UV-Vis-Abs)、X射线光电子能谱仪(XPS)等技术分别对MoS2/F-TiO2复合材料进行表征,研究了MoS2/F-TiO2的光催化性能. 结果表明,1.0%MoS2/F-TiO2在降解有机污染物罗丹明B(RhB) 溶液过程中表现出优异的光催化活性和稳定性. MoS2和F-TiO2形成异质结催化剂有效抑制光生载流子复合,提高光生电子和空穴分离率和寿命,从而产生更多羟基自由基和超氧自由基以提高光催化效率;并且1.0%MoS2/F-TiO2异质结具有较大的比表面积,可增加催化反应的活性位点和有机物在材料表面的吸附,使其35 min后降解率高达95.73%,显著高于纯TiO2和F-TiO2. 此外,MoS2/F-TiO2复合材料具有良好的循环稳定性,经过5次重复降解测试,其对RhB的降解率仍保持在90%以上.Abstract: Constructing heterojunction photocatalysts is one of the effective methods to improve the photocatalytic performance of semiconductors, and is also an important strategy for photocatalytic treatment of organic wastewater. F-TiO2 was prepared by the precipitation-peptization method, followed by coupling with MoS2 to construct a MoS2/F-TiO2 heterojunction with the integrated adsorption-photocatalysis performance. Scanning electron microscope (SEM), specific surface area analyzer (BET), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FTIR), ultraviolet visible absorption spectrum (UV-Vis-Abs) and X-ray photoelectron spectroscopy (XPS) were used to characterize the obtained composites, and the photocatalytic activity of MoS2/F-TiO2 heterojunction was investigated. The results show that 1.0% MoS2/F-TiO2 exhibit excellent photocatalytic activity and stability in the degradation of organic pollutant Rhodamine B (RhB) solution. The heterojunction catalyst formed by MoS2 and F-TiO2 effectively inhibits the recombination of photo generated charge carriers, improves the separation rate and lifetime of photo generated electrons and holes, and generates more hydroxyl and superoxide radicals to improve photocatalytic efficiency. 1.0% MoS2/F-TiO2 heterojunction has a large specific surface area, which can increase the active sites of catalytic reactions and the adsorption of organic compounds on the material surface, resulting in a degradation rate of 95.73% after 35 min, significantly higher than pure TiO2 and F-TiO2. In addition, MoS2/F-TiO2 composites have a good cyclic stability, and the degradation rate of RhB still remains above 90% after 5 repeated degradation tests.
-
Key words:
- F-TiO2 /
- MoS2 /
- heterojunction /
- organic dye /
- adsorption-photocatalysis.
-
表 1 TiO2, F-TiO2和不同MoS2/F-TiO2的晶粒度
Table 1. The grain size of TiO2, F-TiO2 and different MoS2/F-TiO2
试样
Samples晶粒尺寸/nm
Crystallite sizeTiO2 7.06 F-TiO2 13.24 0.5%MoS2/F-TiO2 13.40 1.0%MoS2/F-TiO2 16.49 2.0%MoS2/F-TiO2 14.34 表 2 TiO2,F-TiO2和MoS2/F-TiO2的的BET数据
Table 2. BET data of TiO2,F-TiO2 and MoS2/F-TiO2.
试样
Samples比表面积/ (m2·g−1)
Surface area孔容/ (cm3·g−1)
Pore volume孔径/ nm
Pore diameterTiO2 46.244 0.075 4.282 F-TiO2 62.545 0.310 18.453 0.5%MoS2/F-TiO2 57.536 0.430 28.062 1%MoS2/F-TiO2 61.636 0.485 32.473 2%MoS2/F-TiO2 50.912 0.273 18.496 -
[1] KATSOYIANNIS I A, LAMMEL G, SAMARA C, et al. Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution[J]. Environmental Science and Pollution Research, 2021, 28(42): 58958-58968. doi: 10.1007/s11356-021-15370-8 [2] GAO L, GU J D. A new unified conceptual framework involving maintenance energy, metabolism and toxicity for research on degradation of organic pollutants[J]. International Biodeterioration & Biodegradation, 2021, 162: 105253. [3] NIE H Q, YANG X H, YANG S L, et al. The enhanced catalytic decomposition behaviors of RDX by using porous activated carbon loaded with nanosized metal oxides[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(10): 4255-4266. doi: 10.1007/s10973-023-11987-8 [4] YU H X, DING D, ZHAO S L, et al. Co/N co-doped porous carbon as a catalyst for the degradation of RhB by efficient activation of peroxymonosulfate[J]. Environmental Science and Pollution Research, 2023, 30(4): 10969-10981. [5] WANG P T, ZHANG C, WU L L, et al. MoF(ZB)/Potassium citrate-derived porous carbon composite and its Electrochemical Properties[J]. Russian Journal of Electrochemistry, 2023, 59(4): 299-312. doi: 10.1134/S1023193523040134 [6] WANG Y, LIANG X, WU X L, et al. Preparation of N-doped porous carbon matrix in a solid-liquid coexisted NaCl template and its applications in Li-S batteries[J]. Ionics, 2023, 29(1): 183-191. doi: 10.1007/s11581-022-04801-2 [7] MAHMOODI N M, SALEHI R, ARAMI M. Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies[J]. Desalination, 2011, 272(1-3): 187-195. doi: 10.1016/j.desal.2011.01.023 [8] DJILANI C, ZAGHDOUDI R, DJAZI F, et al. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 112-121. doi: 10.1016/j.jtice.2015.02.025 [9] WANG Y N, ZHANG C, ZENG Y Q, et al. Ag and MoFs-derived hollow Co3O4 decorated in the 3D g-C3N4 for creating dual transferring channels of electrons and holes to boost CO2 photoreduction performance[J]. Journal of Colloid and Interface Science, 2022, 609: 901-909. doi: 10.1016/j.jcis.2021.11.153 [10] OH W C, AREEROB Y. Photocatalytic CO2 reduction with new band gap energy evaluation from spectroscopic relationship of graphene-Mg2CuSnCoO6 composite bridged with organics[J]. Physica E:Low-dimensional Systems and Nanostructures, 2021, 134: 114864. doi: 10.1016/j.physe.2021.114864 [11] HUANG Y L, BAI J, ZHOU G T, et al. Improved intrinsic emission efficiency and photocatalysis of Nb2WO8 by Li+-doping[J]. Journal of Alloys and Compounds, 2021, 881: 160679. doi: 10.1016/j.jallcom.2021.160679 [12] ZHANG G X, ZHANG H M, WANG R F, et al. Preparation of Ga2O3/ZnO/WO3 double s-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity[J]. Journal of Materials Science:Materials in Electronics, 2021, 32: 7307-7318. doi: 10.1007/s10854-021-05441-4 [13] LIU Y, LIN Y T, LIU Z Y, et al. Self-generating CoFe2O4 as electric channel in z-scheme CoO(111)/CoFe2O4/Fe2O3 photocatalyst for synchronous photocatalytic degradation and hydrogen production[J]. Materials Science in Semiconductor Processing, 2022, 140: 106382. doi: 10.1016/j.mssp.2021.106382 [14] CHEN P, LI M L, PENG Q M, et al. Direct evidence for the electron-hole pair mechanism by studying the organic magneto-electroluminescence based on charge-transfer states[J]. Organic Electronics, 2012, 13(10): 1774-1778. doi: 10.1016/j.orgel.2012.05.019 [15] TORUBAEV Y V, SKABITSKY I V, ROZHKOV A V, et al. Highly polar stacking interactions wrap inorganics in organics: lone-pair-π-hole interactions between the PdO4 core and electron-deficient arenes[J]. Inorganic Chemistry Frontiers, 2021, 8(23): 4965-4975. doi: 10.1039/D1QI01067K [16] YAO S S, LI Y Y, XUE L H, et al. Photoluminescent properties of the monoclinic Ba2MgSi2O7: Eu2+ phosphor prepared by the combustion-assisted synthesis method[J]. Physica Status Solid(a), 2010, 207(9): 2164-2169. doi: 10.1002/pssa.200925524 [17] EL-NEWEHY M H, KIM H Y, KHATTAB T A, et al. Development of highly photoluminescent electrospun nanofibers for dual-mode secure authentication[J]. Ceramics International, 2022, 48(3): 3495-3503. doi: 10.1016/j.ceramint.2021.10.128 [18] HU X Y, ZHANG Q, NAN H S, et al. Heterojunction Cu2O/RGO/BiVO4 ternary nanocomposites with enhanced photocatalytic activities towards degradation of rhodamine B and tetracycline hydrochloride[J]. New Journal of Chemistry, 2019, 43(46): 18240-18250. doi: 10.1039/C9NJ04351A [19] 吕鲲, 张庆竹. 纳米二氧化钛光催化技术与大气污染治理[J]. 中国环境科学, 2018, 38(3): 852-861. doi: 10.3969/j.issn.1000-6923.2018.03.007 LV K, ZHANG Q Z. Nano-TiO2 photocatalytic technology and atmospheric pollution control[J]. China Environmental Science, 2018, 38(3): 852-861 (in Chinese). doi: 10.3969/j.issn.1000-6923.2018.03.007
[20] KAMPOURI S, STYLIANOU K C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances[J]. ACS Catalysis, 2019, 9(5): 4247-4270. doi: 10.1021/acscatal.9b00332 [21] HUMAYUN M, ULLAH H, USMAN M, et al. Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications[J]. Journal of Energy Chemistry, 2022, 66: 314-338. doi: 10.1016/j.jechem.2021.08.023 [22] ARIFIN K, YUNUS R M, MINGGU L J, et al. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review[J]. International Journal of Hydrogen Energy, 2021, 46(7): 4998-5024. doi: 10.1016/j.ijhydene.2020.11.063 [23] YAN J W, SHI L. The preparation of 0D/2D P‐doped MnxCd1‐ xS/Ni2P photocatalyst and its photocatalytic activity of pure water splitting for H2[J]. International journal of energy research, 2022, 46(6): 8218-8228. doi: 10.1002/er.7724 [24] ZHAO X P, LI J C, LIU J C, et al. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials[J]. International journal of biological macroMolecules, 2021, 193(Pt A): 874-892. [25] ZHANG L, HUANG K L, CHEN H, et al. Preparation and modification of Y2Cu2O5/Y2O3 photocatalysts for H2 evolution under simulated sunlight irradiation[J]. Advanced Materials Research, 2011, 239(242): 3001-3004. [26] WU H, WANG P, WANG Z, et al. Preparation of EDTA modified cotton fiber iron complex and catalytic properties for aqueous Cr(VI) reduction and dye degradation[J]. Water Practice and Technology, 2021, 16(3): 1000-1011. doi: 10.2166/wpt.2021.047 [27] ROSHINI R A, KANNAN E S. Pinched hysteresis as a regeneration marker for the semiconductor photocatalyst[J]. Materials Chemistry and Physics, 2022, 275: 125247. doi: 10.1016/j.matchemphys.2021.125247 [28] KAUSHIK B, RANA P, RAWAT D, et al. Magnetically separable type-II semiconductor based ZnO/MoO3 photocatalyst: a proficient system for heteroarenes arylation and rhodamine B degradation under visible light[J]. New Journal of Chemistry, 2022, 46(18): 8478-8488. doi: 10.1039/D2NJ00906D [29] ARENAS L T, VILLIS P C M, ARGUELLO J, et al. Niobium oxide dispersed on a carbon-ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor[J]. Talanta, 2010, 83(1): 241-248. doi: 10.1016/j.talanta.2010.09.014 [30] LIN Y, PAN D M, LUO H. Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production[J]. Materials Science in Semiconductor Processing, 2021, 121: 105453. doi: 10.1016/j.mssp.2020.105453 [31] REN Y W, XING S, WANG J, et al. Weak-light-driven Ag-TiO2 photocatalyst and bactericide prepared by coprecipitation with effective Ag doping and deposition[J]. Optical Materials, 2022, 124: 111993. doi: 10.1016/j.optmat.2022.111993 [32] DONG L, WANG X F, WANG P, et al. A one-step solvothermal synthesis of the topological insulator Bi2Te3 nanorod-modified TiO2 photocatalyst for enhanced H2-evolution activity[J]. Journal of Materials Chemistry C, 2022, 10(16): 6402-6410. doi: 10.1039/D2TC00594H [33] ZENG D B, YU C L, FAN Q Z, et al. Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants[J]. Chemical Engineering Journal, 2020, 391: 123607. doi: 10.1016/j.cej.2019.123607 [34] YU C L, HE H B, LIU X Q, et al. Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants[J]. Chinese Journal of Catalysis, 2019, 40(8): 1212-1221. doi: 10.1016/S1872-2067(19)63359-0 [35] YANG J F, SHI C Y, DONG Y H, et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles[J]. Journal of Colloid and Interface Science, 2022, 605: 373-384. doi: 10.1016/j.jcis.2021.07.106 [36] DU Y C, LIU M C, GUO L J. Numerical investigation on the optical properties of TiO2 photocatalyst suspension by light scattering model of particulate aggregates[J]. Journal of Photonics for Energy, 2021, 11(1): 016501. [37] MISHRA S, SUNDARAM B, MUTHUKUMAR S. Advanced oxidation process for leachate treatment: A critical review[M]. Advanced Oxidation Processes for Wastewater Treatment. Boca Raton: CRC Press, 2022: 169-182. [38] Di PAOLA A, BELLARDITA M, PALMISANO L. Brookite, the least known TiO2 photocatalyst[J]. Catalysts, 2013, 3(1): 36-73. doi: 10.3390/catal3010036 [39] ZHANG J W, FU D F, XU Y D, et al. Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyst by response surface methodology[J]. Journal of Environmental Sciences, 2010, 22(8): 1281-1289. doi: 10.1016/S1001-0742(09)60251-5 [40] BAMWENDA G R, TSUBOTA S, NAKAMURA T, et al. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au TiO2 and Pt TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1995, 89(2): 177-189. doi: 10.1016/1010-6030(95)04039-I [41] ZHANG Y, CRITTENDEN J C, HAND D W, et al. Fixed-bed photocatalysts for solar decontamination of water[J]. Environmental Science & Technology, 1994, 28(3): 435-442. [42] CASTRO C A, CENTENO A, GIRALDO S A. Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation[J]. Materials Chemistry and Physics, 2011, 129(3): 1176-1183. doi: 10.1016/j.matchemphys.2011.05.082 [43] ZANGENEH H, ZINATIZADEH A A, ZINADINI S, et al. A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater[J]. Journal of Hazardous Materials, 2019, 369: 384-397. doi: 10.1016/j.jhazmat.2019.02.049 [44] GUO Y, GUO T, CHEN J H, et al. Synthesis of C-N-S co-doped TiO2 mischcrystal with an isobandgap characteristic and its photocatalytic activity under visible light[J]. Catalysis Science & Technology, 2018, 8(16): 4108-4121. [45] WU Y C, JU L S. Annealing-free synthesis of CN co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities[J]. Journal of Alloys and Compounds, 2014, 604: 164-170. doi: 10.1016/j.jallcom.2014.03.023 [46] WU Y M, XING M Y, TIAN B Z, et al. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light[J]. Chemical Engineering Journal, 2010, 162(2): 710-717. doi: 10.1016/j.cej.2010.06.030 [47] WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11): 6855-6864. [48] RYU G H, LEE J, KIM N Y, et al. Line-defect mediated formation of hole and Mo clusters in monolayer molybdenum disulfide[J]. 2D Materials, 2016, 3(1): 014002. doi: 10.1088/2053-1583/3/1/014002 [49] FAGLIA G, FERRONI M, Le DANG T T L, et al. Vertically coupling ZnO nanorods onto MoS2 flakes for optical gas sensing[J]. Chemosensors, 2020, 8(1): 19. doi: 10.3390/chemosensors8010019 [50] HSU H P, LIN D Y, LU G T, et al. Optical and electrical transport properties of ZnO/MoS2 heterojunction p-n structure[J]. Materials Chemistry and Physics, 2018, 220: 433-440. doi: 10.1016/j.matchemphys.2018.09.002 [51] KRISHNAN U, KAUR M, KAUR G, et al. MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants[J]. Materials Research Bulletin, 2019, 111: 212-221. doi: 10.1016/j.materresbull.2018.11.029 [52] ZHOU W J, YIN Z Y, DU Y P, et al. Synthesis of few-layer MoS2, nanosheet-coated TiO2, nanobelt heterostructures for enhanced photocatalytic activities[J]. Small, 2013, 9(1): 140-147. doi: 10.1002/smll.201201161 [53] ZHENG L X, HAN S C, LIU H, et al. Hierarchical MoS2 nanosheet@ TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances[J]. Small, 2016, 12(11): 1527-1536. doi: 10.1002/smll.201503441 [54] CHEN F Y, YU C L, WEI L F, et al. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(Ⅵ) ions[J]. Science of The Total Environment, 2020, 706: 136026. doi: 10.1016/j.scitotenv.2019.136026 [55] CHEN F Y, LIU X Q, ZHOU W Q, et al. The distinct role of non-noble metal Cu NPs deposition in boosting the overall photocatalytic performance over a ternary Zn-based photocatalyst system[J]. Journal of Alloys and Compounds, 2021, 875: 160068. doi: 10.1016/j.jallcom.2021.160068 [56] ZHAO B, WANG X, ZHANG Y Z, et al. Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 382: 111928. doi: 10.1016/j.jphotochem.2019.111928 [57] CASTAÑEDA C, SANTOS D, HERNÁNDEZ J S, et al. Efficient NiO/F–TiO2 nanocomposites for 4-chlorophenol photodegradation[J]. Chemosphere, 2023, 315: 137606. doi: 10.1016/j.chemosphere.2022.137606 [58] ZHANG L Y, YANG J J, ZHOU B Q, et al. Fluorinated and bayberry tannin modified titanium dioxide and its photocatalytic performance[J]. Russian Journal of Physical Chemistry A, 2022, 96(14): 3264-3273. doi: 10.1134/S0036024423020309 [59] GOSTEAU J, ARRAS R, CHEN P, et al. Spin-orbit effects in ferroelectric PbTiO3 under tensile strain[J]. Physical Review B, 2021, 103(2): 024416. doi: 10.1103/PhysRevB.103.024416 [60] GUO S D. Importance of spin-orbit coupling in power factor calculations for half-Heusler ANiB (A= Ti, Hf, Sc, Y; BSn, Sb, Bi)[J]. Journal of Alloys and Compounds, 2016, 663: 128-133. doi: 10.1016/j.jallcom.2015.12.139 [61] MIAO F J, SUN B, TAO B R, et al. MoS2/Ag/TiO2 for photoanode of dye sensitized solar cells[J]. Journal of Materials Research and Technology, 2022, 20: 781-790. doi: 10.1016/j.jmrt.2022.07.134