[1] CAO B D, ZHANG T, ZHANG W J, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Research, 2021, 189: 116650. doi: 10.1016/j.watres.2020.116650
[2] WU B R, DAI X H, CHAI X L. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. doi: 10.1016/j.watres.2020.115912
[3] ZHANG X D, YE P, WU Y J. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review[J]. Journal of Environmental Management, 2022, 321: 115938. doi: 10.1016/j.jenvman.2022.115938
[4] MOWLA D, TRAN H N, ALLEN D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes[J]. Biomass and Bioenergy, 2013, 58: 365-378. doi: 10.1016/j.biombioe.2013.09.002
[5] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037
[6] TURCHIULI C, FARGUES C. Influence of structural properties of alum and ferric flocs on sludge dewaterability[J]. Chemical Engineering Journal, 2004, 103(1/2/3): 123-131.
[7] YU W B, YANG J K, SHI Y F, et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime[J]. Water Research, 2016, 95: 124-133. doi: 10.1016/j.watres.2016.03.016
[8] LI H, JIN Y Y, MAHAR R, et al. Effects and model of alkaline waste activated sludge treatment[J]. Bioresource Technology, 2008, 99(11): 5140-5144. doi: 10.1016/j.biortech.2007.09.019
[9] MASIHI H, BADALIANS GHOLIKANDI G. Using acidic-modified bentonite for anaerobically digested sludge conditioning and dewatering[J]. Chemosphere, 2020, 241: 125096. doi: 10.1016/j.chemosphere.2019.125096
[10] LÜ F, WANG J W, SHAO L M, et al. Enzyme disintegration with spatial resolution reveals different distributions of sludge extracellular polymer substances[J]. Biotechnology for Biofuels, 2016, 9: 29. doi: 10.1186/s13068-016-0444-y
[11] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029
[12] MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. doi: 10.1016/j.cis.2010.06.007
[13] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012
[14] OKUDA T, NISHIJIMA W, SUGIMOTO M, et al. Removal of coagulant aluminum from water treatment residuals by acid[J]. Water Research, 2014, 60: 75-81. doi: 10.1016/j.watres.2014.04.041
[15] STECHEMESSER B, DOBIAS B. Coagulation and Flocculation, second ed [M]. CRC Press, 2005.
[16] LIU Y Z, ZHENG H L, SUN Y J, et al. Synthesis of novel chitosan-based flocculants with amphiphilic structure and its application in sludge dewatering: Role of hydrophobic groups[J]. Journal of Cleaner Production, 2020, 249: 119350. doi: 10.1016/j.jclepro.2019.119350
[17] CHEN R J, DAI X H, DONG B. Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: Mechanistic of tannic acid aided[J]. Water Research, 2022, 217: 118450. doi: 10.1016/j.watres.2022.118450
[18] LIU Z Z, HUANG M, LI A M, et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119: 57-66. doi: 10.1016/j.watres.2017.04.043
[19] 陈炜, 沈少航, 闵广宇, 等. 接枝型阳离子淀粉絮凝剂在污泥脱水中的应用与机理研究[J]. 环境化学, 2021, 40(7): 2217-2225. doi: 10.7524/j.issn.0254-6108.2020111701 CHEN W, SHEN S H, MIN G Y, et al. Application and mechanism of a graft cationic starch-based flocculant in sludge dewatering[J]. Environmental Chemistry, 2021, 40(7): 2217-2225 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020111701
[20] 余伟, 黄牧, 李爱民, 等. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302 YU W, HUANG M, LI A M, et al. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017091302
[21] GHAZISAIDI H, WANG V, FATEHI P, et al. Determining the performance of lignin-based flocculants in improving biosludge dewaterability[J]. Journal of Environmental Management, 2023, 325: 116509. doi: 10.1016/j.jenvman.2022.116509
[22] WANG B, WANG S F, LAM S S, et al. A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110384. doi: 10.1016/j.rser.2020.110384
[23] CHIO C, SAIN M, QIN W S. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. doi: 10.1016/j.rser.2019.03.008
[24] KAI D, TAN M J, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. doi: 10.1039/C5GC02616D
[25] GUO K Y, GAO B Y, LI R H, et al. Flocculation performance of lignin-based flocculant during reactive blue dye removal: Comparison with commercial flocculants[J]. Environmental Science and Pollution Research, 2018, 25(3): 2083-2095. doi: 10.1007/s11356-017-0835-z
[26] WANG S J, KONG F G, GAO W J, et al. Novel process for generating cationic lignin based flocculant[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6595-6608.
[27] HASAN A, FATEHI P. Cationic kraft lignin-acrylamide copolymer as a flocculant for clay suspensions: (2) Charge density effect[J]. Separation and Purification Technology, 2019, 210: 963-972. doi: 10.1016/j.seppur.2018.08.067
[28] WANG S Q, CHEN H B. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants[J]. Science of the Total Environment, 2023, 903: 166958. doi: 10.1016/j.scitotenv.2023.166958
[29] APHA. Standard methods for the examination of water and wastewater, twentiethed [M]. American Public Health Association, Washington DC, USA, 1998.
[30] CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology[J]. Water Research, 2015, 83: 367-376. doi: 10.1016/j.watres.2015.06.026
[31] CHEN G W, LIN W W, LEE D J. Capillary suction time (CST) as a measure of sludge dewaterability[J]. Water Science and Technology, 1996, 34(3/4): 443-448.
[32] GUO J Y, JIANG S L, PANG Y J. Rice straw biochar modified by aluminum chloride enhances the dewatering of the sludge from municipal sewage treatment plant[J]. Science of the Total Environment, 2019, 654: 338-344. doi: 10.1016/j.scitotenv.2018.10.429
[33] CHEN G H, SABY S, DJAFER M, et al. New approaches to minimize excess sludge in activated sludge systems[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2001, 44(10): 203-208. doi: 10.2166/wst.2001.0621
[34] HU P, ZHUANG S H, SHEN S H, et al. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant[J]. Water Research, 2021, 189: 116578. doi: 10.1016/j.watres.2020.116578
[35] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254
[36] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
[37] GUO Z Y, MA L P, DAI Q X, et al. Dewatering performance of sewage sludge under pretreatment with modified corn-core powder[J]. Science of the Total Environment, 2019, 684: 402-412. doi: 10.1016/j.scitotenv.2019.05.366
[38] WU H, LIU Z Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water[J]. Water Research, 2016, 96: 126-135. doi: 10.1016/j.watres.2016.03.055
[39] LIU Z Z, WEI H, LI A M, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118: 160-166. doi: 10.1016/j.watres.2017.04.032
[40] RANI G U, MISHRA S, SEN G, et al. Polyacrylamide grafted Agar: Synthesis and applications of conventional and microwave assisted technique[J]. Carbohydrate Polymers, 2012, 90(2): 784-791. doi: 10.1016/j.carbpol.2012.05.069
[41] TUAN P A, SILLANPÄÄ M. Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process[J]. Chemical Engineering Journal, 2010, 164(1): 85-91. doi: 10.1016/j.cej.2010.08.028
[42] WU P, YI J X, FENG L, et al. Microwave assisted preparation and characterization of a chitosan based flocculant for the application and evaluation of sludge flocculation and dewatering[J]. International Journal of Biological Macromolecules, 2020, 155: 708-720. doi: 10.1016/j.ijbiomac.2020.04.011
[43] ZHANG W J, CHEN Z, CAO B D, et al. Improvement of wastewater sludge dewatering performance using titanium salt coagulants (TSCs) in combination with magnetic nano-particles: Significance of titanium speciation[J]. Water Research, 2017, 110: 102-111. doi: 10.1016/j.watres.2016.12.011
[44] NÁMER J, GANCZARCZYK J J. Settling properties of digested sludge particle aggregates[J]. Water Research, 1993, 27(8): 1285-1294. doi: 10.1016/0043-1354(93)90215-4
[45] ZHANG W J, CAO B D, WANG D S, et al. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage[J]. Biochemical Engineering Journal, 2016, 106: 37-47. doi: 10.1016/j.bej.2015.11.004
[46] MAHATA C, DHAR S, RAY S, et al. Flocculation characteristics of anaerobic sludge driven-extracellular polymeric substance (EPS) extracted by different methods on microalgae harvesting for lipid utilization[J]. Biochemical Engineering Journal, 2021, 167: 107898. doi: 10.1016/j.bej.2020.107898
[47] WANG W Y, GAO X M, ZHANG J, et al. Effect of SDS and neutral protease on the release of extracellular polymeric substances (EPS) from mechanical dewatered sludge[J]. Waste and Biomass Valorization, 2019, 10(4): 1053-1064. doi: 10.1007/s12649-017-0121-9
[48] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[49] JACQUIN C, LESAGE G, TRABER J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92. doi: 10.1016/j.watres.2017.04.009
[50] LI Y F, YUAN X Z, WU Z B, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645. doi: 10.1016/j.cej.2016.06.041
[51] WANG X, ZHANG B, SHEN Z Q, et al. The EPS characteristics of sludge in an aerobic granule membrane bioreactor[J]. Bioresource Technology, 2010, 101(21): 8046-8050. doi: 10.1016/j.biortech.2010.05.074
[52] ZHANG W J, YANG P, YANG X Y, et al. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process[J]. Bioresource Technology, 2015, 181: 247-253. doi: 10.1016/j.biortech.2015.01.003
[53] XU Q Y, WANG Q D, ZHANG W J, et al. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants[J]. Water Research, 2018, 138: 181-191. doi: 10.1016/j.watres.2018.03.038
[54] GAO J L, WENG W, YAN Y X, et al. Comparison of protein extraction methods from excess activated sludge[J]. Chemosphere, 2020, 249: 126107.34