-
传统的污水处理法为了使水质达标,采用“以能消能”的方式去除有机物和营养物质[1],但受到可持续发展观念的影响,能源回收也变成了污水处理的重要目的之一。尽管污水污泥的厌氧消化可以抵消部分能源需求,但考虑到能源回收效率,还是要借助其他工艺来进行更高效的能源回收。有机物的预浓缩对于提高能源回收至关重要,郭超然等[2]在对比了高负荷活性污泥法、絮凝、膜分离等富集技术后,认为絮凝技术可以更高效地富集有机物。絮凝技术的应用要借助絮凝剂,无机絮凝剂应用最为广泛但不仅用量大、会危害环境还不利于磷的回收[3],投加量少、对环境友好的有机高分子絮凝剂[4]是更好的选择,但有机高分子絮凝剂也会增加过程中的物料消耗,因此亟需寻找一种可重复利用的新型絮凝剂。
水热技术是一种可以在相对温和的反应条件下利用湿生物质来生产增值产品的热化学转化技术,水热产物包括被称为水热碳的固体碳质物质、主要成分为二氧化碳的气体以及包含有机物的水热液。目前,水热液的应用主要集中在以下几方面:将水热液中的蛋白质、腐殖质等有机物直接作为再生产品使用[5],进行厌氧消化生产沼气[6],培养藻类生长[7]等。在水热液能源回收的研究中,OLIVEIRA等[8]证明利用水相转化处理水热液可以回收能源;ZHANG等[9]证明可以通过纳滤从水热液中回收羧酸;王灵芝等[3]研究发现污水污泥中的蛋白质、多糖等在水热条件下发生水解、脱水、脱羧、聚合芳香化、美拉德等反应,该重聚与再缩合过程所形成的水溶性有机聚合物 (soluble organic polymers, SOP) 可用来制备聚集介质。因此提出一个工艺设想:将污水污泥经过水热处理得到的SOP,经过改性成为具有吸附功能的聚集介质后再次投入到污水中进行有机物的富集。因为SOP具有类腐殖酸特性[10]、分子量大[5]且具备大量吸附位点可用于接枝共聚,具备可被改性的潜力。
但有关此工艺设想的研究目前尚未见报道,水热条件改变所产生的影响暂不清晰。因此,本研究通过探究在不同水热条件下SOP的生成特性、元素组成、官能团变化以及可能发生的化学反应,得到使SOP产率较高且更适合作为聚集介质前体物的水热制备条件。利用污水污泥为原料制备聚集介质,不仅可以降低成本节约物耗,而且部分有机物可被循环利用,提高能源回收效率。
不同条件下污泥水热液相产物的生成特性
Character analysis of liquid products from hydrothermal treatment of sludge under different conditions
-
摘要: 将城市污水污泥作为研究对象进行水热处理,目的是得到可以改性成为聚集介质的水溶性有机聚合物 (soluble organic polymers, SOP) 。研究了不同温度 (150、175、200和225 ℃) 、反应时间 (0.5、1和1.5 h) 和碱性添加剂用量等水热条件下SOP的生成特性。结果表明,随着温度和反应时间的增加,SOP产率逐渐下降,由28.5% (150 ℃、0.5 h) 降低至14.73% (200 ℃、0.5 h) 。碱的投加提高了SOP产率,且NaOH的效果优于Na2CO3。元素分析表明,温度升高导致SOP的O/C和H/C下降,腐殖化、芳香化程度均增加。红外光谱和X射线光电子能谱表明,温度的升高导致SOP中改性可利用的含氧基团减少。因而150 ℃、0.5 h、NaOH投加量为污泥干重的10%时,水热反应条件是最适宜的,可以得到更适合作为聚集介质前体物的SOP。本研究结果可为污水污泥资源化利用提供参考。Abstract: Municipal sewage sludge was used as raw substrate for hydrothermal treatment in order to obtain soluble organic polymers (SOP), which can be modified to aggregation media. The characteristics of SOP were investigated under various hydrothermal conditions with different temperatures (150, 175, 200 and 225 ℃), reaction times (0.5, 1 and 1.5 h) and amounts of alkaline additives. The results showed that the SOP yield decreased gradually with increasing temperature and reaction time, from 28.5% (150 ℃-0.5 h) to 14.73% (200 ℃-0.5 h). The alkali addition boosted the SOP yield, besides, NaOH had a better effect than Na2CO3. Elemental analysis demonstrated that the increase of temperature led to the decrease of O/C and H/C of SOP, which meaned the increase of humification and aromatization. Results of infrared spectroscopy and X-ray photoelectron spectroscopy indicated that the increase in temperature led to a decrease in the oxygen-containing functional groups. Thus, the hydrothermal conditions at 150 °C, 0.5 h, and NaOH dosing of 10% (w/w of dry weight ) were optimal to obtain SOP as precursors for aggregation media preparation. This study can provide a reference for the reuse of sewage sludge.
-
Key words:
- reuse of sewage sludge /
- hydrothermal technology /
- soluble organic polymer
-
表 1 浓缩污泥特性
Table 1. Characteristics of thickened sludge
% 含水率 VSS SS C H O N S 97.51±0.46 1.41±0.32 2.50±0.46 21.34±0.05 3.36±0.02 71.38±0.11 3.02±0.01 0.87 表 2 不同温度下的水溶性有机聚合物的元素分析
Table 2. Elemental analysis of SOP at different temperatures
样品 C/% H/% O/% N/% S/% H/C O/C SOP-150-0.5 47.84±0.23 6.69±0.05 36.4±0.29 7.45±0.03 1.47±0.01 1.68 0.57 SOP-175-0.5 53.09±0.18 7.41±0.03 31.14±0.21 6.59±0.01 1.58±0.01 1.67 0.44 SOP-200-0.5 57.42±0.15 7.76±0.01 27.28±0.17 5.9±0.03 1.35±0.01 1.62 0.36 SOP-225-0.5 62.38 7.89±0.02 22.9±0.03 5.3±0.02 1.21 1.52 0.28 -
[1] 刘智晓. 未来污水处理能源自给新途径——碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52. doi: 10.19853/j.zgjsps.1000-4602.2017.08.008 [2] 郭超然, 黄勇, 朱文娟, 等. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633. doi: 10.16085/j.issn.1000-6613.2020-0878 [3] 王灵芝, 黄勇, 查晓, 等. 利用污水污泥制备有机物聚集介质的可行性探析[J]. 工业水处理, 2022, 42(10): 22-30. [4] 申娟娟, 刘根起, 宋金月, 等. 有机高分子絮凝剂的研究现状[J]. 材料开发与应用, 2011, 26(2): 96-99. doi: 10.3969/j.issn.1003-1545.2011.02.022 [5] WANG Q, XU Q, DU Z, et al. Mechanistic insights into the effects of biopolymer conversion on macroscopic physical properties of waste activated sludge during hydrothermal treatment: Importance of the Maillard reaction[J]. Science of The Total Environment, 2021, 769: 144798-144798. doi: 10.1016/j.scitotenv.2020.144798 [6] USMAN M, CHEN H, CHEN K, et al. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review[J]. Green Chemistry, 2019, 21(7): 1553-1572. doi: 10.1039/C8GC03957G [7] TSARPALI M, ARORA N, KUHN J N, et al. Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation[J]. Algal Research, 2021, 60: 102485. doi: 10.1016/j.algal.2021.102485 [8] OLIVEIRA A S, SARRIÓN A, BAEZA J A, et al. Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge[J]. Chemical Engineering Journal, 2022, 442: 136301. doi: 10.1016/j.cej.2022.136301 [9] ZHANG X, SCOTT J, SHARMA B K, et al. Advanced treatment of hydrothermal liquefaction wastewater with nanofiltration to recover carboxylic acids[J]. Environmental Science:Water Research & Technology, 2018, 4(4): 520-528. [10] DWYER J, STARRENBURG D, TAIT S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18): 4699-4709. doi: 10.1016/j.watres.2008.08.019 [11] CHEN P, YANG R, PEI Y, et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment, 2022, 828: 154440. doi: 10.1016/j.scitotenv.2022.154440 [12] WANG L, CHANG Y, LI A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. doi: 10.1016/j.rser.2019.04.011 [13] ZHANG D, FENG Y, HUANG H, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. doi: 10.1016/j.envint.2020.105629 [14] LI X, WANG J, YOU J, et al. Hazardous waste dewatering and dry mass reduction through hydrophobic modification by a facile one-pot, alkali-assisted hydrothermal reaction[J]. Water Research, 2019, 155: 225-232. doi: 10.1016/j.watres.2019.02.050 [15] 盛广宏, 陈蓓蓓, 刘金凤. 热碱处理破解污泥效果研究[J]. 环境科技, 2013, 26(2): 38-42. doi: 10.3969/j.issn.1674-4829.2013.02.010 [16] 吴鹏, 韩宇超, 白佳鑫, 等. 水热法从玉米秸秆中提取腐植酸的工艺条件优化[J]. 安徽农业科学, 2020, 48(11): 190-193. [17] ARANGANATHAN L, RAJASREE S R R, SUMAN T Y, et al. Comparison of molecular characteristics of Type A humic acids derived from fish waste and sugarcane bagasse co-compost influenced by various alkaline extraction protocols[J]. Microchemical Journal, 2019, 149: 104038. doi: 10.1016/j.microc.2019.104038 [18] YANG F, ZHANG S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. doi: 10.1016/j.scitotenv.2019.06.045 [19] SHAO Y, BAO M, HUO W, et al. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process[J]. Journal of Cleaner Production, 2022, 335: 130302. doi: 10.1016/j.jclepro.2021.130302 [20] RICE J A, MACCARTHY P. Statistical evaluation of the elemental composition of humic substances[J]. Organic Geochemistry, 1991, 17(5): 635-648. doi: 10.1016/0146-6380(91)90006-6 [21] XIAOLI C, SHIMAOKA T, QIANG G, et al. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS[J]. Waste Management, 2008, 28(5): 896-903. doi: 10.1016/j.wasman.2007.02.004 [22] WANG L, LI A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: The dewatering performance and the characteristics of products[J]. Water Research, 2015, 68: 291-303. doi: 10.1016/j.watres.2014.10.016 [23] LIN Y, WANG D, WANG T. Ethanol production from pulp & paper sludge and monosodium glutamate waste liquor by simultaneous saccharification and fermentation in batch condition[J]. Chemical Engineering Journal, 2012, 191: 31-37. doi: 10.1016/j.cej.2011.09.040 [24] AREEPRASERT C, ZHAO P, MA D, et al. Alternative solid fuel production from paper sludge employing hydrothermal treatment[J]. Energy & Fuels, 2014, 28(2): 1198-1206.