[1] |
刘智晓. 未来污水处理能源自给新途径——碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52. doi: 10.19853/j.zgjsps.1000-4602.2017.08.008
|
[2] |
郭超然, 黄勇, 朱文娟, 等. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633. doi: 10.16085/j.issn.1000-6613.2020-0878
|
[3] |
王灵芝, 黄勇, 查晓, 等. 利用污水污泥制备有机物聚集介质的可行性探析[J]. 工业水处理, 2022, 42(10): 22-30.
|
[4] |
申娟娟, 刘根起, 宋金月, 等. 有机高分子絮凝剂的研究现状[J]. 材料开发与应用, 2011, 26(2): 96-99. doi: 10.3969/j.issn.1003-1545.2011.02.022
|
[5] |
WANG Q, XU Q, DU Z, et al. Mechanistic insights into the effects of biopolymer conversion on macroscopic physical properties of waste activated sludge during hydrothermal treatment: Importance of the Maillard reaction[J]. Science of The Total Environment, 2021, 769: 144798-144798. doi: 10.1016/j.scitotenv.2020.144798
|
[6] |
USMAN M, CHEN H, CHEN K, et al. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review[J]. Green Chemistry, 2019, 21(7): 1553-1572. doi: 10.1039/C8GC03957G
|
[7] |
TSARPALI M, ARORA N, KUHN J N, et al. Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation[J]. Algal Research, 2021, 60: 102485. doi: 10.1016/j.algal.2021.102485
|
[8] |
OLIVEIRA A S, SARRIÓN A, BAEZA J A, et al. Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge[J]. Chemical Engineering Journal, 2022, 442: 136301. doi: 10.1016/j.cej.2022.136301
|
[9] |
ZHANG X, SCOTT J, SHARMA B K, et al. Advanced treatment of hydrothermal liquefaction wastewater with nanofiltration to recover carboxylic acids[J]. Environmental Science:Water Research & Technology, 2018, 4(4): 520-528.
|
[10] |
DWYER J, STARRENBURG D, TAIT S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18): 4699-4709. doi: 10.1016/j.watres.2008.08.019
|
[11] |
CHEN P, YANG R, PEI Y, et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment, 2022, 828: 154440. doi: 10.1016/j.scitotenv.2022.154440
|
[12] |
WANG L, CHANG Y, LI A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. doi: 10.1016/j.rser.2019.04.011
|
[13] |
ZHANG D, FENG Y, HUANG H, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. doi: 10.1016/j.envint.2020.105629
|
[14] |
LI X, WANG J, YOU J, et al. Hazardous waste dewatering and dry mass reduction through hydrophobic modification by a facile one-pot, alkali-assisted hydrothermal reaction[J]. Water Research, 2019, 155: 225-232. doi: 10.1016/j.watres.2019.02.050
|
[15] |
盛广宏, 陈蓓蓓, 刘金凤. 热碱处理破解污泥效果研究[J]. 环境科技, 2013, 26(2): 38-42. doi: 10.3969/j.issn.1674-4829.2013.02.010
|
[16] |
吴鹏, 韩宇超, 白佳鑫, 等. 水热法从玉米秸秆中提取腐植酸的工艺条件优化[J]. 安徽农业科学, 2020, 48(11): 190-193.
|
[17] |
ARANGANATHAN L, RAJASREE S R R, SUMAN T Y, et al. Comparison of molecular characteristics of Type A humic acids derived from fish waste and sugarcane bagasse co-compost influenced by various alkaline extraction protocols[J]. Microchemical Journal, 2019, 149: 104038. doi: 10.1016/j.microc.2019.104038
|
[18] |
YANG F, ZHANG S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. doi: 10.1016/j.scitotenv.2019.06.045
|
[19] |
SHAO Y, BAO M, HUO W, et al. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process[J]. Journal of Cleaner Production, 2022, 335: 130302. doi: 10.1016/j.jclepro.2021.130302
|
[20] |
RICE J A, MACCARTHY P. Statistical evaluation of the elemental composition of humic substances[J]. Organic Geochemistry, 1991, 17(5): 635-648. doi: 10.1016/0146-6380(91)90006-6
|
[21] |
XIAOLI C, SHIMAOKA T, QIANG G, et al. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS[J]. Waste Management, 2008, 28(5): 896-903. doi: 10.1016/j.wasman.2007.02.004
|
[22] |
WANG L, LI A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: The dewatering performance and the characteristics of products[J]. Water Research, 2015, 68: 291-303. doi: 10.1016/j.watres.2014.10.016
|
[23] |
LIN Y, WANG D, WANG T. Ethanol production from pulp & paper sludge and monosodium glutamate waste liquor by simultaneous saccharification and fermentation in batch condition[J]. Chemical Engineering Journal, 2012, 191: 31-37. doi: 10.1016/j.cej.2011.09.040
|
[24] |
AREEPRASERT C, ZHAO P, MA D, et al. Alternative solid fuel production from paper sludge employing hydrothermal treatment[J]. Energy & Fuels, 2014, 28(2): 1198-1206.
|