-
石油类污染物的意外泄漏事故频繁发生,导致一定数量的非水相液体 (NAPL) 通过包气带进入地下造成污染[1]。在包气带内挥发性有机物 (VOCs) 会通过挥发作用进入土壤气体,VOCs气体在迁移过程中发生生物降解,源区轻非水相液体 (LNAPL) 由生物降解作用导致的衰减占LNAPL总质量损失的90%~99% [2-3]。因此,挥发性石油烃在包气带中的气相自然衰减和生物降解动力学规律的研究对VOCs蒸气入侵风险评估和石油场地监测自然衰减应用都具有重要意义[4-5],气相生物降解速率是蒸气入侵建模和定量风险评估的关键输入参数[6-7]。
当VOCs在污染源挥发成为气态在包气带扩散迁移过程中,吸附、生物降解等机制会导致显著的质量衰减,这被称为气相自然衰减[8-9]。在某汽油污染场地,从地下水源挥发的总碳氢化合物质量的68%在毛细管层被生物降解,石油烃蒸气潜水面上1 m内包气带内被降解殆尽[10]。HÖHENER等[11]通过微宇宙实验、柱实验及现场研究测定了包气带中13种VOCs的气相生物降解规律。VOCs气相自然衰减受到土壤类型、温度、含水率、营养水平等多种因素影响。土壤类型,特别是土壤孔隙度、含水量、土壤渗透性、有效扩散性和有机碳吸附能力是影响VOCs气相迁移归趋的重要因素[12]。YAO等[13]报道,土壤质地对VOCs浓度衰减的影响,其中土壤粒径的对底板下土壤气衰减因子的影响平均约为0.4个数量级。BEKELE等[14]研究了三氯乙烯 (TCE) 在5种不同的土壤中的气相吸附,粘土质量分数增加1倍会导致TCE蒸气吸附量增加11倍。但是,目前关于包气带VOCs气相自然衰减的研究仍然很不充分,对于不同种类石油烃蒸气在不同土壤中的吸附与生物降解规律以及我国不同区域土壤的气相自然衰减潜力尚不清楚。
本研究采用微宇宙实验,选取4种正构烷烃 (正戊烷、正己烷、正庚烷、正辛烷) 、4种环烷烃 (环戊烷、环己烷、环庚烷、环辛烷) 及4种苯系物 (苯、甲苯、乙苯、对二甲苯) ,对其在黑土、黄土、红土及石英砂等4种土壤中的气相自然衰减规律和生物降解速率进行了系统研究。
-
实验试剂采用色谱纯的正戊烷、正己烷、正庚烷、正辛烷、环戊烷、环己烷、环庚烷、环辛烷、苯、甲苯、乙苯、对二甲苯。本研究所用的黄土、黑土、红土和石英砂分别取自河北省、黑龙江省、云南省和江西省,土壤经自然风干后过2 mm标准方孔筛备用,其基本理化性质如表1所示。
-
微宇宙实验在50 mL的玻璃旋盖小瓶中进行,分别取20 g土壤及20 μL混合污染物于瓶中,使用特氟龙微型阀瓶盖密封。为了研究非生物作用对气相自然衰减的贡献,同时做灭菌对照组,使用120 ℃高压蒸汽灭菌30 min。每隔一段时间进行气体取样,采用250 μL气密性微量取样针取100 μL气体,用气相色谱仪测定污染物蒸气的质量浓度 (g·m−3) 。
-
污染物气体质量浓度采用安捷伦7890B 气相色谱仪,检测器为火焰离子化检测器(FID),温度250 ℃,HP-5毛细管柱( 30 m×0. 32 mm×0. 25 μm),进样口温度设置为200 ℃,分流比10∶1。测试正构烷烃时,柱箱升温程序为初始温度55 ℃保持时间2.5 min,升温至140 ℃,保持时间0.2 min,升温速率为30 ℃·min−1。测试环烷烃时,柱箱温度为50 ℃保持时间2 min,升温至75 ℃,保持时间0.2 min,升温速率为10 ℃·min−1。测试苯系物时色谱柱箱恒温120 ℃。
自然衰减通常用一级动力学模型描述。气态烃的表观一级衰减速率是通过质量浓度数据明显下降阶段的ln (Ct/C0) 与时间 (t) 线性回归来确定,其中C0是污染蒸气的初始质量浓度,Ct是t时刻污染蒸气质量浓度[15]。非灭菌土壤中的表观一级衰减速率是生物降解和非生物自然衰减速率的总和,而灭菌土壤中的污染物质量浓度下降仅由非生物机制引起,因此标记为“非生物衰减速率”。对于同一种气态烃,非灭菌土壤中的“表观一级衰减速率”减去灭菌土壤中的“非生物衰减速率”是生物降解的真正贡献,标记为“生物降解速率”[16]。
-
4种正构烷烃 (正戊烷、正己烷、正庚烷、正辛烷) 在灭菌组和非灭菌组的衰减去除率均表现为黑土>黄土>红土>石英砂 (表2) 。4种正构烷烃的生物降解速率表现为黑土>黄土>红土,石英砂未发生明显的生物降解,因此无法拟合石英砂的降解速率 (图1、表3) 。灭菌组中气态烃的自然衰减机制主要是吸附,而土壤有机质质量分数是4种土壤气相吸附能力差异大的主要原因。4种土壤的有机质的质量分数顺序:黑土 (36.70%) >黄土 (0.66%) >红土 (0.33%) >石英砂 (0.32%) 。这与灭菌组中的气态烃衰减去除率一致。其他研究[14,17]也发现,土壤有机质质量分数是土壤对气态VOCs吸附的主要因素,高有机质质量分数会增加土壤对VOCs的吸附。BEKELE等[14]报道,土壤有机质质量分数增加1倍导致总三氯乙烯蒸气吸附量增加7倍。UGWOHA和ANDRESEN [17]发现,土壤有机质质量分数从0增加至5%后气态烷烃的吸附质量增加了2倍,土壤有机质量分数的增加会增强汽油烃蒸气的吸附速度和吸附量。气态VOCs需要首先被土壤吸附固定,然后才能被土壤微生物代谢降解[18],较高的有机质质量分数会提高土壤吸附固定VOCs的能力,从而会提高其生物降解能力。因此,土壤有机质质量分数是4种土壤气相吸附能力和生物降解能力差异大的主要原因。除有机质质量分数外,土壤的生物降解能力还与土壤土著微生物数量密切相关,经测试发现,本研究所用的黑土 (5.2×106 cfu·g−1) 和黄土 (2.1×106 cfu·g−1) 中的微生物数量远大于红土 (1.2×105 cfu·g−1) 和石英砂 (2.0×103 cfu·g−1) 。综上所述,较高有机质质量分数和微生物数量使得黑土对于气态烃具有较强的自然衰减能力。
-
4种环烷烃 (环戊烷、环己烷、环庚烷、环辛烷) 在不同土壤中的衰减规律与正构烷烃相似,在灭菌组和非灭菌组的衰减去除率整体上符合黑土>黄土>红土>石英砂的规律 (表2、图2) 。环烷烃在黑土、黄土和红土中的生物降解速率均很小 (<0.06 d−1) ,而石英砂中几乎不存在生物降解。这说明环烷烃蒸气的生物降解性极低 (表3) 。HöHENER等[11]也发现,气相环烷烃的自然衰减速率很低,实验和场地等不同方式获得的气相一级衰减速率常数均低于0.31 d−1。这可能由于环烷烃的溶解度较低,导致土壤气体和水之间的界面传质速率较低[19]。而且短链烷烃 (<C9) 对许多微生物都有毒性,中间链长的正构烷烃 (C10~C24) 降解速度最快,短链烷烃通过其溶剂作用来抑制微生物活性,它们在作为溶剂存在时会破坏脂质膜[20-21]。大量有机地球化学研究证实环烷烃的生物降解性低于正构烷烃[22-23],且生物降解随着环数的增加而降低[24]。环烷烃通过氧化酶的作用降解为环醇,进一步脱氢为酮,环烷烃代谢的主要产物是环酮和环烷烃-羧酸[20,24]。
-
4种苯系物 (苯、甲苯、乙苯、对二甲苯) 在4种土壤在灭菌组和非灭菌组中的自然衰减去除率均表现为黑土>黄土>红土>石英砂 (表2、图3) 。4种苯系物的生物降解速率均符合黑土 (3.90~9.76 d−1) >黄土 (1.18~8.24 d−1) >红土 (0.90~2.76 d−1) 的规律,而石英砂几乎不存在生物降解 (表3) 。因为黑土中的高有机质质量分数会促进苯系物蒸气的吸附,进而促进生物降解。UGWOHA和ANDRESEN[17]发现土壤有机质的质量分数增加5%导致E20乙醇汽油中苯的吸附量增加76%。在不同的土壤中苯系物的一级生物降解速率均为甲苯>苯>乙苯>对二甲苯。苯系物的生物降解速率依赖于分子化学结构,甲苯通常认为是苯系物中最容易被生物降解的。因为环上存在取代基提供了攻击侧链或氧化芳香环的替代途径[25]。苯氧化的第一步是由双加氧酶催化的羟基化,苯环上取代基的存在允许两种可能的机制:攻击侧链或氧化芳环,所有这些途径汇聚形成邻苯二酚中间体。苯主要中间产物是邻苯二酚,甲苯和乙苯在单独的途径上降解,产生各自的主要中间体3甲基邻苯二酚和3-乙基邻苯二酚,二甲苯均代谢为单甲基化儿茶酚[25]。BTEX化合物之间存在复杂的底物相互作用以及其生物降解过程中的竞争性抑制效应[26];有研究报道[27],在混合物中苯和甲苯根据竞争性抑制动力学被去除,而对二甲苯在苯和甲苯的存在下通过共代谢过程部分去除,甲苯、苯或乙苯的存在对二甲苯的降解速率有负面影响。尽管芳环上没有官能团可能使苯难以被生物转化,但苯在水中的溶解度 (1 791.00 mg·L−1) 在4种苯系物中最高(甲苯、乙苯及对二甲苯溶解度分别为535.00、161.00、156.00 mg·L−1),也促进了苯的生物降解[25]。
-
苯系物的自然衰减去除率和生物降解速率远高于正构烷烃和环烷烃,环烷烃最难被生物降解。4种苯系物中一级生物降解速率均为甲苯>苯>乙苯>对二甲苯,甲苯最容易被生物降解。苯、甲苯、乙苯、对二甲苯生物降解速率0.90~9.76 d−1,正戊烷、正己烷、正庚烷、正辛烷生物降解速率小于0.28 d−1,环戊烷、环己烷、环庚烷、环辛烷生物降解速率小于0.06 d−1。苯系物的表观一级衰减速率和生物降解速率都远高于正构烷烃和环烷烃,可能因为苯系物的溶解度远高于正构烷烃和环烷烃[22]。PASTERIS等[21]也报道过,柱实验数据拟合的甲苯的一级生物降解速率常数为3.2 d−1,而短链烷烃如戊烷和己烷、环烷烃和的生物降解速率较慢,估计为0.1~1.2 d−1。脂肪族烃缺乏官能团且水溶性极低,微生物对脂肪烃都表现出较低的化学反应性和生物利用度,烷烃的微生物降解的敏感性:正构烷烃>异构烷烃>环烷烃[20]。
-
1) 正构烷烃、环烷烃和苯系物蒸气在4种土壤中的自然衰减,整体自然衰减去除率黑土>黄土>红土>石英砂,黑土生物降解速率高于黄土,红土和石英砂的生物降解能力很低。
2) 苯系物的气相自然衰减速率和生物降解速率远高于正构烷烃和环烷烃。包气带中的气相生物降解是石油污染场地一种重要但被忽视的自然衰减机制,该过程对于挥发性石油烃蒸气入侵暴露以及污染物自然衰减均具有重要的影响。
3) 气相自然衰减和气相生物降解动力学数据可以为蒸气入侵定量风险评估和石油污染场地自然衰减速率定量评估模型提供关键输入参数。
石油烃在不同土壤中的气相自然衰减规律
Natural attenuation of petroleum hydrocarbon vapors in different soils
-
摘要: 挥发性有机物 (VOCs) 在包气带中的迁移扩散是土壤和地下水中可挥发污染物自然衰减的重要机制,也与蒸气入侵暴露和风险评估密切相关。采用微宇宙实验对12种挥发性石油烃 (正戊烷、正己烷、正庚烷、正辛烷、环戊烷、环己烷、环庚烷、环辛烷、苯、甲苯、乙苯、对二甲苯) 在4种土壤 (黑土、黄土、红土、石英砂) 中的气相自然衰减机制和气态生物降解动力学规律进行了研究。结果表明,正构烷烃、环烷烃和苯系物蒸气在4种土壤中的气相自然衰减去除率都遵循黑土>黄土>红土>石英砂的规律;黑土中生物降解对污染物去除率的贡献高于黄土,而红土和石英砂中的生物降解速率极低;4种苯系物的自然衰减和生物降解潜力远高于正构烷烃和环烷烃;苯系物气相生物降解速率排序为:甲苯>苯>乙苯>对二甲苯。本研究结果可为蒸气入侵定量风险评估和石油污染场地自然衰减速率定量评估提供参考。Abstract: The transport of volatile organic compounds (VOCs) in the vadose zone is an important mechanism for the natural attenuation of volatile pollutants in soil and groundwater and is also closely related to vapor intrusion and risk assessment. The natural attenuation mechanism and biodegradation kinetics of 12 volatile petroleum hydrocarbons (n-pentane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, benzene, toluene, ethylbenzene, p-xylene) in four soils (black soil, yellow earth, lateritic red earth, and quartz sand) were studied by microcosm experiments in detail. The results showed that the natural attenuation removal rates of n-alkane, cycloalkane and monoaromatic hydrocarbon vapors in four soils followed the order: black soil > yellow earth > lateritic red earth > quartz sand; the biodegradation contribution in black soil was higher compared to yellow earth, and the biodegradation rates of petroleum hydrocarbon vapors in lateritic red earth and quartz sand were very low; the natural attenuation removal rates and biodegradation contribution of the four monoaromatic hydrocarbons were much higher than n-alkanes and cycloalkane; the biodegradation rates of four monoaromatic hydrocarbons were in the order of toluene > benzene> ethylbenzene > p-xylene. This study provided valuable insights into vapor intrusion risk assessment and natural attenuation rate quantification at petroleum contaminated sites.
-
Key words:
- contaminated site /
- soil remediation /
- groundwater remediation /
- petroleum /
- natural attenuation /
- biodegradation /
- unsaturated zone
-
锑(Sb)和砷(As)及其化合物因其强生物毒性和潜在的致癌性而受到广泛关注和重视,许多国家与组织已将他们列为优先控制污染物,并对其在饮用水中的浓度进行了限定。世界卫生组织规定饮用水中锑、砷的最大质量浓度分别为0.01 mg∙L−1和0.02 mg∙L−1[1]。此外,由于锑和砷的地球化学行为和理化性质的相似性[2],加之目前许多地区对工业废水进行集中化处理[3],导致了废水水体中他们的共存。例如,国内湖南锡矿山和广西大厂等矿山附近水体以及贵州省独山县某厂的冶炼废水中均同时检测到了较高浓度的Sb(Ⅴ)和As(Ⅴ),尤其是锡矿山周围水体中锑和砷的质量浓度可达10.09 mg∙L−1和1.62 mg∙L−1[4-6]。而当Sb(Ⅴ)和As(Ⅴ)共存时,不仅会对生态环境造成更大的威胁,对其处理也提出更高要求。由此,选择一种合适的工艺处理复合重金属废水对实际废水治理具有重要实际意义。
在众多处理工艺中,吸附法因操作简单、效率高、经济适用等优势被广泛采用。开发高性能吸附剂成为当前的研究热点。目前,众多吸附剂被开发用于处理Sb(Ⅴ)和As(Ⅴ)废水,包括铁氧(氢氧)化物、活性氧化铝、沸石、阴离子粘土矿物[7]等。其中,水滑石(layered double hydroxides, LDHs)作为一种新型环境功能材料,因其比表面积大、阴离子交换容量大、热稳定性好等优点被广泛应用于去除Sb(Ⅴ)、As(Ⅴ)等离子污染物[8]。李杨等[9]研究表明,MgAl LDHs对Sb(Ⅴ)的最大吸附量可达50.52 mg∙g−1;ARDAU等[10]研究表明,ZnAl LDHs对Sb(Ⅴ)的最大离子交换容量为30.3 mg∙g−1。郭亚祺等[11]研究表明,煅烧水滑石在共存氟砷的水体中对砷的最大吸附量为51.02 mg∙g−1;VIOLANTE等[12]通过共沉淀法制备的LDHs对AsO4的吸附量为52.58 mg∙g−1。然而,LDHs材料对2种污染物的去除效果仍然有限,且鲜有关于二者共存体系的去除研究。
LDHs具有高度可变的矿物结构,LDHs板层结构类似水镁石Mg(OH)2的正八面体,可以看作是Mg2+离子通过类质同象作用部分地被M3+离子取代。为了中和M3+/Mg2+的正电荷,需要更多的阴离子达到电荷平衡。因此,其层间阴离子具有可交换性,为含有功能基团的有机分子插入层间来改性LDHs增强其吸附性能提供了可行性[13-14]。氨基酸是蛋白质的基本组成单元,通常以兼性离子的形式存在于水溶液中。在碱性环境中,其可以电离成阴离子,呈现出负电性,通过与LDHs主层板间的静电吸引、氢键等作用插入LDHs层间[15]。使用氨基酸作为客体阴离子改性LDHs时,其中所含的氮、氧等官能团均对Sb(Ⅴ)、As(Ⅴ)这类重金属离子有着较强的络合作用。此外,氨基酸属于环境友好的生物大分子,对环境没有任何危害。因此,利用氨基酸改性来提升LDHs对Sb(Ⅴ)和As(Ⅴ)去除性能的潜力巨大[16]。在众多氨基酸中,甲硫氨酸(Methionine, Met)作为功能基团丰富的代表已经被用于改性环境材料以提升污染物的去除性能。例如,甲硫氨酸改性的蒙脱石和纤维素对Pb2+和氨基黑10B的吸附量分别提高了16.5%和400%[17-18]。基于此,本研究选择甲硫氨酸作为模型分子,采用共沉淀法合成了改性水滑石(Met/LDHs),通过XRD、FTIR、XPS等多种分析测试手段对合成产物的物相组成、表面官能团等进行了表征和分析;采用静态批处理法考察了Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附能力,且探究了其对Sb(Ⅴ)和As(Ⅴ)的吸附机制,以期为废水去除含锑、砷治理技术提供参考。
1. 材料与方法
1.1 实验试剂及仪器
主要试剂有六水合硝酸镁(Mg(NO3)2∙6H2O)、九水合硝酸铁(Fe(NO3)3∙9H2O)、焦锑酸钾(KSbO6H6)、砷酸钠(Na3AsO4)、氢氧化钠(NaOH)、硝酸(HNO3)、无水乙醇(C2H6O)和甲硫氨酸(C5H11O2NS),以上试剂均为分析纯级别;实验用水为去离子水,电阻率为18.25 MΩ∙cm−1。主要仪器有pH计(SevenMulti S40,美国 梅特勒-托利公司)、蠕动泵(BT100L,保定雷弗流体科技有限公司)、恒温摇床(TS-2102C,常州 恩培仪器制造有限公司)。
1.2 吸附剂制备
首先将0.02 mol Mg(NO3)2∙6H2O和0.01 mol Fe(NO3)3∙9H2O溶解于150 mL去离子水中,再与1 mol∙L−1 NaOH溶液同时通过蠕动泵滴入已含有150 mL去离子水的圆底烧瓶中,并于室温下保持匀速地搅拌,控制溶液pH在9.5~10,整个反应过程在N2保护下进行,再将所得悬浮液置于80 ℃晶化12 h,最后用去离子水和无水乙醇离心洗涤5次,干燥后研磨得到LDHs样品。称取0.02 mol甲硫氨酸搅拌溶解于150 mL的去离子水中,用NaOH调节pH至10置于圆底烧瓶中,其余步骤同上,制得甲硫氨酸改性的LDHs,记为Met/LDHs。
1.3 实验方法
采用静态批处理法开展吸附实验。典型步骤是称取0.01 g吸附剂加入到20 mL装有一定浓度的Sb(Ⅴ)或As(Ⅴ)溶液的锥形瓶中,再将其置入转速为150 r∙min−1、温度为25 ℃的恒温摇床中进行反应,待到指定时间后取出锥形瓶,并用0.45 μm微孔滤膜过滤悬浮液,所得清液用ICP-AES进行浓度测试。分别考察吸附时间、吸附质的初始浓度、初始pH、共存体系以及解吸循环对吸附性能的影响。
1)接触时间。在Sb(Ⅴ)和As(Ⅴ)初始质量浓度分别为50 mg∙L−1、初始pH=5.0±0.1的条件下,研究了LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附过程与接触时间的关系。
2)吸附质的初始浓度。在溶液初始pH=5.0±0.1,接触时间为12 h的条件下,研究LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附等温线。
3)初始pH。设定初始pH在3~10,初始质量浓度为50 mg∙L−1,接触时间为12 h,考察了pH对Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)效果的影响。
4)共存体系。设定一种重金属离子的初始质量浓度为0~200 mg∙L−1,在其中投加0~50 mg∙L−1另一种重金属离子,并在初始pH为5.0±0.1,接触时间为12 h的条件下考察了在Sb(Ⅴ)和As(Ⅴ)共存体系中Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附性能。
5)解析循环。在Met/LDHs分别对Sb(Ⅴ)和As(Ⅴ)吸附饱和后,选用0.1 mol∙L−1 NaOH为解吸剂,考察了Met/LDHs在吸附-解吸循环过程中对Sb(Ⅴ)和As(Ⅴ)的去除性能。
1.4 表征方法
采用X-射线衍射仪(Ultima IV,日本理学公司)分析产物的物相组成及晶体结构;使用傅里叶变换红外光谱仪(Spectrum One,美国铂金埃尔默公司)测定吸附剂的官能团;使用X射线光电子能谱仪(Thermo Escalab 250Xi,美国赛默飞世尔公司)测定样品表面的元素组成;使用Zeta电位分析仪(Zetasize Nano 250Xi,英国马尔文公司)测定样品表面电位;使用电感耦合等离子发射光谱仪(iCAP 6500,美国赛默飞世尔公司)测定吸附后Sb(Ⅴ)和As(Ⅴ)的质量浓度。
1.5 数据处理方法
1)实验中Met/LDHs分别对Sb(Ⅴ)和As(Ⅴ)的吸附量和去除率分别根据式(1)和式(2)计算。
qe=(Co−Ce)Vm (1) R=Co−CeCo×100% (2) 式中:qe为平衡吸附量,mg∙g−1;Co和Ce分别为Sb(Ⅴ)和As(Ⅴ)溶液的起始浓度和平衡浓度,mg∙L−1;V为溶液体积,mL;m为吸附剂质量,mg;R为表示去除率,%。
2)为评估吸附系统的质量传递过程,采用拟一级动力学(式(3))和拟二级动力学模型(式(4))拟合实验结果。
ln(qe−qe)=lnqe−k1t (3) tqt=1k2q2e+1qtt (4) 式中:qe为平衡吸附容量,mg∙g−1;qt为t时刻吸附容量,mg∙g−1;k1为拟一级动力学吸附速率常数,h−1;k2为拟二级动力学吸附速率常数,g∙(mg∙h) -1;t为吸附时间,h。
3)并对吸附数据应用Langmuir等温线模型(式(5))和Freundlich等温线模型(式(6))进行拟合。
qe=qmKLCe1+KLCe (5) qe=KFC1ne (6) 式中:Ce为平衡浓度,mg∙L−1;qm为饱和吸附量,mg∙g−1;KL为Langmuir常数;n,KF为Freundlich常数。
2. 结果与讨论
2.1 材料的表征
1) XRD分析。样品LDHs和Met/LDHs的XRD图谱如图1(a)所示。由图1(a)可知,2种材料的全部衍射峰均能与水滑石相对应,未见杂峰,并且基线平稳,说明实验制备得到了结晶度较好的纯相水滑石。与LDHs相比较而言,Met/LDHs的(003)晶面的向低衍射角度的方向偏移(图1(b)),表明其层间距发生变化。根据布拉格方程可以进一步地计算出甲硫氨酸分子改性后的水滑石(003)晶面对应的基底间距值(d003)由0.776 nm增大到0.801 nm,表明甲硫氨酸分子成功插入到LDHs层间,并与LDHs主层板平行排列[16, 19]。
2)FTIR和XPS分析。样品LDHs和Met/LDHs的FTIR光谱如图2(a)所示。可见,未改性镁铁水滑石在3 438 cm−1和1 632 cm−1附近的吸收峰对应于—OH的伸缩振动和弯曲振动;1 384 cm−1处的吸收峰归属于NO3−的伸缩振动,而在500~1 010 cm−1处出现的吸收峰则来源于LDHs层板中M—O、O—M—O和M—O—M的晶格振动(M指的是Mg或者Fe[20])。合成过程中加入甲硫氨酸分子后,样品在2 920 cm−1附近新增了对应—CH2的伸缩振动,在1 500 cm−1处新增了对应于—COO−的伸缩振动峰。而且,—OH对应吸收峰偏移至3 432 cm−1和1 624 cm−1,表明插入分子可能与水滑石发生氢键作用[21]。利用XPS技术对Met/LDHs进行了进一步分析如图2(b)所示。结果表明,Met/LDHs光谱中位于163.29 eV峰与C—S相对应,进一步表明材料中具有甲硫氨酸分子[22]。上述结果表明,在合成中引入甲硫氨酸分子可以丰富镁铁水滑石的功能基团。
2.2 吸附动力学分析
接触时间对LDHs和Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)性能影响见图3(a)~(b)。由图3(a)~(b)可见,2种材料对Sb(Ⅴ)和As(Ⅴ)的吸附量随时间呈相同变化趋势,即在前2 h的吸附速率较快,之后则以较慢的速度进行,约在12 h时达到吸附平衡。在吸附初始阶段,快速的吸附速率可能是由于吸附剂表面存在大量的活性位点;而随着Sb(Ⅴ)和As(Ⅴ)不断占据这些活性位点,吸附质需进入吸附剂内部反应,需要克服更大的空间位阻,从而导致吸附速率的降低[1]。为了分析吸附机制,进一步对实验结果进行了吸附动力学模拟,结果见图3和表1。结果表明,LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附数据使用拟二级动力学模型模拟的相关系数更高,这表明限制反应速率的主要步骤为化学吸附[23]。
表 1 吸附动力学参数Table 1. Adsorption kinetic parameters吸附剂 吸附质 拟一级动力学参数 拟二级动力学参数 qe k1 R2 qe k2 R2 LDHs Sb(V) 17.58 10.65 0.978 5 18.09 1.26 0.993 6 Met/LDHs Sb(V) 24.75 8.79 0.979 8 25.59 0.68 0.997 0 LDHs As(V) 35.36 6.58 0.991 0 36.37 0.35 0.995 9 Met/LDHs As(V) 39.17 6.63 0.967 9 40.46 0.30 0.989 5 2.3 吸附等温线分析
在不同起始浓度条件下的实验研究了LDHs和Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附等温式,并用Langmuir及Freundlich模型对实验数据进行了拟合,结果如图4和表2所示。结果表明,LDHs和Met/LDHs对Sb(Ⅴ)的吸附数据用Langmuir等温线模型拟合相关系数更高,表明改性前后的吸附剂对Sb(Ⅴ)的吸附均为单分子层吸附;而对As(Ⅴ)的吸附行为更为适用Freundlich等温线模型描述,表明他们对As(Ⅴ)的去除可能是物理和化学吸附综合作用的结果。根据Langmuir等温线模型的拟合结果,甲硫氨酸改性后水滑石对Sb(Ⅴ)和As(Ⅴ)的最大吸附量分别由改性前的44.32 mg∙g−1和64.23 mg∙g−1提升至66.23 mg∙g−1和67.20 mg∙g−1,说明Met/LDHs具有更强的对污染物的去除能力。对比其他类型材料的吸附量可以发现,Met/LDHs对Sb(Ⅴ)的最大吸附量高于针铁矿(0.186 mg∙g−1)和高岭石(59 mg∙g−1),对As(Ⅴ)的最大吸附量高于纳米磁铁矿(13.2 mg∙g−1)和人造沸石(35.8 mg∙g−1)[24-25]。
表 2 吸附等温线参数Table 2. Adsorption isotherm parameters吸附剂 吸附质 Langmuir等温线参数 Freundlich等温线参数 qm KL R2 n KF R2 LDHs Sb(V) 44.32 0.020 0.964 0 2.01 2.80 0.895 3 Met/LDHs Sb(V) 66.23 0.022 0.962 4 2.08 4.78 0.936 2 LDHs As(V) 64.23 0.058 0.775 9 3.43 14.36 0.975 4 Met/LDHs As(V) 67.20 0.074 0.820 1 3.50 16.15 0.988 3 2.4 初始pH对吸附行为的影响
污染体系初始pH与Sb(Ⅴ)和As(Ⅴ)形态及吸附剂表面电性密切相关,因此重点研究了pH对Met/LDHs对Sb(Ⅴ)和As(Ⅴ)吸附行为的影响。由图5(a)可知,在初始pH为3时,Met/LDHs对Sb(Ⅴ)的吸附量最大,这可能是由于吸附剂表面发生质子化,产生大量正电荷,对Sb(OH)6−有较强的静电吸引作用;在pH为4~10范围内,其吸附量略有降低,可归因于溶液中OH−与吸附质之间的竞争作用,此外,由于Met/LDHs具有良好的pH缓冲作用且Sb(Ⅴ)的存在形态稳定[26],使得其吸附量在此区间保持稳定;在pH为3~7时,其对As(Ⅴ)的吸附量变化与Sb(Ⅴ)相似,而当pH>7时,As(Ⅴ)主要以HAsO42-的形式存在[27],与去质子化表面存在较强的静电排斥作用,导致其吸附量显著降低。吸附剂表面的电性对污染物的去除有重要影响。Met/LDHs对Sb(Ⅴ)和As(Ⅴ)吸附前后的Zeta电位变化如图5(b)所示,分析发现,在Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后,等电点(pHPZC)从9.4分别降低至4.38和4.05。有研究表明[27],当吸附质以内球表面络合的形式被吸附时,与吸附剂表面的羟基结合成键,才会导致pHPZC发生变化。据此推测Met/LDHs可能与Sb(Ⅴ)、 As(Ⅴ)之间形成络合物。
2.5 共存体系的吸附性能分析
鉴于在实际废水中已经发现Sb(Ⅴ)和As(Ⅴ)有共存情况,故设计二者共存的模拟体系进行Met/LDHs吸附性能的研究,结果如图6(a)~(b)和表3所示。由图6(a)~(b)可知,在分别含有10 mg∙L−1和50 mg∙L−1的As(Ⅴ)体系中,Met/LDHs对Sb(Ⅴ)的最大吸附量将分别降低至46.11 mg∙g−1和42.09 mg∙g−1;然而,当溶液中共存一定浓度Sb(Ⅴ)时,Met/LDHs对As(Ⅴ)的吸附效果保持稳定。说明Met/LDHs倾向于优先吸附As(Ⅴ)。这可能是由于As(Ⅴ)的离子半径更小,易与Met/LDHs发生层间阴离子交换,这与吸附动力学中所得结论一致[28]。
表 3 共存体系中的Langmuir吸附等温线参数Table 3. Langmuir adsorption isotherm parameters in the coexisting system处理离子浓度/(mg∙L−1) 掺入离子浓度/(mg∙L−1) Langmuir等温线参数 qm KL R2 Sb(Ⅴ)/(0~200) As(Ⅴ)/0 66.23 0.022 0.962 4 As(Ⅴ)/10 46.11 0.014 0.956 5 As(Ⅴ)/50 42.09 0.007 0.980 9 As(Ⅴ)/(0~200) Sb(Ⅴ)/0 67.20 0.074 0.820 1 Sb(Ⅴ)/10 68.47 0.083 0.853 2 Sb(Ⅴ)/50 67.50 0.088 0.799 0 2.6 解吸循环分析
为了进一步探究Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)的重复利用的性能,进行了5次解吸循环实验结果如图7所示。结果表明,在经过第2次循环后,Met/LDHs对Sb(Ⅴ)、As(Ⅴ)的去除率分别降低了41.4%、37.5%,并在后几次的吸附-解吸循环中,去除率保持稳定。这可能是由于经过Met/LDHs吸附后,部分Sb(Ⅴ)和As(Ⅴ)能够牢固地附着在吸附剂上,难以被解吸释放,随着吸附位点的减少,导致后续循环过程中去除率的降低。若Sb(Ⅴ)和As(Ⅴ)仅通过物理吸附或表面静电作用被Met/LDHs去除,则吸附质的选择性较小,容易被释放到溶液中[29]。由此,可以推断Met/LDHs与Sb(Ⅴ)和As(Ⅴ)之间存在一些化学作用[30]。
2.7 吸附机理
为了更深入分析Met/LDHs去除污染物的作用机理,本文首先对比了其吸附Sb(Ⅴ)和As(Ⅴ)前后的XRD图谱。如图8(a)所示,Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后仍具备典型类水滑石特征峰,表明其结构并未受到破坏。然而,吸附Sb(Ⅴ)和As(Ⅴ)后Met/LDHs基底间距值d003由0.801 nm分别减小到0.777 nm和0.786 nm,表明这2种污染物可能与层间阴离子发生交换而被去除[31-32]。此外,由图8(b)可见,Met/LDHs吸附Sb(Ⅴ)和As(Ⅴ)后其中羟基对应伸缩振动峰由3 432 cm−1减小到3 417 cm−1和3 406 cm−1,弯曲振动峰从1 624 cm−1偏移至1 632 cm−1和1 632 cm−1。说明吸附剂中的羟基可能与Sb(Ⅴ)和As(Ⅴ)之间存在氢键作用[33]。而且,位于1 384 cm−1处硝酸根的伸缩振动峰强度明显减弱[34-35],表明Sb(Ⅴ)和As(Ⅴ)与Met/LDHs层间的硝酸根之间发生了离子交换,这与XRD分析结果相对应。另外,在Met/LDHs吸附As(Ⅴ)后,856 cm−1附近出现新的吸收峰,其对应于As—O[36],说明As(Ⅴ)与Met/LDHs之间可能发生内球表面络合反应[37]。而在吸附Sb(Ⅴ)后,FTIR谱图中无法区分特定的Sb—O吸收峰,这可能是由于Met/LDHs层板中的M—O晶格振动与Sb—O的振动峰重合而不易区别[38]。处于437~587 cm−1内的振动峰未发生明显变化,表明在Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附过程中,其主体层板没有改变。
Met/LDHs吸附Sb(Ⅴ)、As(Ⅴ)前后的高分辨C1s XPS图谱如图9(a)~(c)所示。由图9(a)~(c)可知,位于284.7 eV处的—C—C特征峰在吸附前后未发生位移。这说明吸附过程没有改变甲硫氨酸的主碳链的碳原子的化学状态;在吸附Sb(Ⅴ)、As(Ⅴ)后,结合能为285.6 eV对应的—C—S特征峰偏移了0.5 eV和0.6 eV,说明—C—S中碳原子周围电子密度改变。这可归因于Sb(Ⅴ)和As(Ⅴ)与—C—S之间的氢键作用[22]。与此同时,—C=O的结合能均增加了0.4 eV,表明其化学环境发生变化。这可能是由于—C=O中氧原子上的电子转移到了Sb(OH)6−或H2AsO4−的羟基中形成氢键[39-40]。图9(d)为Met/LDHs吸附Sb(Ⅴ)、As(Ⅴ)前后Fe2p高分辨XPS图谱。如图9(d)所示,在吸附Sb(Ⅴ)、As(Ⅴ)后,Fe2p的特征峰均向更低电子结合能方向移动。结合FTIR分析结果推测,这可能是因为Sb(Ⅴ)或As(Ⅴ)与Met/LDHs中的Fe原子发生了内球表面络合反应[26, 41]。综上所述,推测Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附主要包括层间阴离子交换、氢键作用以及内球表面络合反应。
3. 结论
1)本研究通过共沉淀法成功将甲硫氨酸插入水滑石层间,得到具有羧基和甲巯基等基团的Met/LDHs吸附剂。
2) Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附动力学符合拟二级动力学模型,对Sb(Ⅴ)的吸附数据更加符合Langmuir模型,对于As(Ⅴ)的吸附数据更适合用Freundlich等温线模型。在Sb(Ⅴ)和As(Ⅴ)的二元体系中,Sb(Ⅴ)和As(Ⅴ)之间存在竞争吸附去除,Met/LDHs会优先吸附离子半径更小的As(Ⅴ)。
3)第1次经NaOH解吸后的Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的去除率分别降低了41.4%和37.5%,但后续循环利用去除率稳定,说明在第1次吸附后有一部分Sb(Ⅴ)和As(Ⅴ)通过化学作用牢固附着在Met/LDHs上。
4) Met/LDHs对Sb(Ⅴ)和As(Ⅴ)去除主要依靠层间阴离子交换、氢键作用以及内球表面络合反应。由此可见,甲硫氨酸改性镁铁水滑石可以提升对Sb(Ⅴ)和As(Ⅴ)去除率,具有良好的应用前景。
-
表 1 实验土壤的基本理化性质
Table 1. Basic physical-chemical characteristics of experimental soils
土壤类型 pH 孔隙度 含水率 有效扩散系数 (20 ℃)/ (正戊烷,m2·d−1) 密度/ (g·cm−1) 有机质质量分数/% 土壤质地 机械组成/% 砂粒 粉粒 黏粒 黄土 7.8 0.5 0.02 0.28 1.3 0.66 壤土 49.6 39.6 10.7 黑土 6.1 0.8 0.09 0.80 0.6 36.70 壤质砂土 74.6 19.6 5.8 红土 5.7 0.6 0.02 0.36 1.0 0.33 粘土 11.2 5.4 83.4 石英砂 7.6 0.4 0.01 0.19 1.5 0.32 砂土 97.4 1.8 0.9 表 2 石油烃在不同土壤中自然衰减去除率
Table 2. The remove rates of petroleum hydrocarbons in different soils
% 化合物 黄土 黑土 红土 石英砂 灭菌组 非灭菌组 生物降解的贡献* 灭菌组 非灭菌组 生物降解的贡献* 灭菌组 非灭菌组 生物降解的贡献* 灭菌组 非灭菌组 生物降解的贡献* 正戊烷 24.61 27.82 3.21 42.91 68.18 25.27 21.33 23.06 1.73 3.56 5.08 1.52 正己烷 35.35 45.64 10.29 64.67 87.24 22.57 32.89 36.05 3.16 2.18 3.03 0.86 正庚烷 51.17 74.77 23.61 74.62 93.20 18.58 40.25 45.29 5.04 0.61 1.39 0.78 正辛烷 63.14 78.43 15.28 78.12 96.55 18.44 49.37 46.77 2.60 5.63 7.87 2.24 环戊烷 13.30 33.68 20.38 20.90 43.04 22.14 5.29 6.29 1.00 5.58 9.62 4.05 环己烷 12.96 28.24 15.28 46.68 70.96 24.28 1.75 7.09 5.34 4.29 9.91 5.62 环庚烷 8.23 45.91 37.68 61.22 84.85 23.63 9.88 12.89 3.01 12.67 14.29 1.62 环辛烷 57.60 66.28 8.67 71.90 85.35 13.45 9.14 17.37 8.23 12.56 21.14 8.58 苯 69.62 81.55 11.93 77.66 92.32 14.66 64.88 75.69 10.81 27.15 27.51 0.36 甲苯 72.54 80.57 8.03 82.64 91.98 9.34 67.44 75.63 8.19 26.43 27.00 0.57 乙苯 72.31 79.12 6.81 80.98 85.64 4.66 53.64 56.86 3.23 19.38 19.88 0.50 对二甲苯 75.80 82.81 7.01 77.57 83.36 5.80 51.45 55.65 4.20 19.46 20.00 0.54 注:“*”表示生物降解贡献的去除率为非灭菌组与灭菌组去除率之差。 表 3 石油烃在不同土壤中的一级衰减速率常数
Table 3. The first order attenuation rate constants of petroleum hydrocarbons in different soils
d−1 化合物 黄土 黑土 红土 石英砂 灭菌组 非灭菌组 生物降解 灭菌组 非灭菌组 生物降解 灭菌组 非灭菌组 生物降解 灭菌组 非灭菌组 生物降解 正戊烷 0.03 0.04 0.01 0.03 0.06 0.03 0.02 0.02 — — — — 正己烷 0.03 0.06 0.03 0.05 0.18 0.13 0.016 0.02 0.004 — — — 正庚烷 0.05 0.18 0.13 0.26 0.54 0.28 0.02 0.05 0.03 — — — 正辛烷 0.06 0.15 0.09 0.02 0.12 0.10 0.03 0.05 0.02 — — — 环戊烷 0.01 0.02 0.01 0.04 0.07 0.03 0.01 0.01 — — — — 环己烷 0.01 0.03 0.02 0.20 0.26 0.06 0.01 0.01 — — — — 环庚烷 0.02 0.05 0.03 0.28 0.32 0.04 0.01 0.01 — — — — 环辛烷 0.07 0.09 0.02 0.33 0.39 0.06 0.01 0.01 — — — — 苯 25.68 27.84 2.16 28.24 235.48 7.24 24.24 25.78 1.54 — — — 甲苯 30.72 38.96 8.24 29.36 39.12 9.76 25.68 28.44 2.76 — — — 乙苯 15.6 17.08 1.48 324.98 30.82 5.84 11.76 12.72 0.96 — — — 对二甲苯 14.4 15.58 1.18 23.76 27.66 3.90 11.04 11.94 0.90 — — — -
[1] UNNITHAN A, BEKELE D N, CHADALAVADA S, et al. Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario[J]. Science of the Total Environment, 2021, 796: 148885. doi: 10.1016/j.scitotenv.2021.148885 [2] FENG S J, ZHU Z W, CHEN H X, et al. Two-dimensional analytical solution for subsurface volatile organic compounds vapor diffusion from a point source in layered unsaturated zone[J]. Journal of Contaminant Hydrology, 2021, 243: 103916. doi: 10.1016/j.jconhyd.2021.103916 [3] 孙琳, 张敏, 郭彩娟, 等. 非水相液体污染场地源区自然消除研究进展[J]. 岩矿测试, 2022, 41(5): 704-716. doi: 10.15898/j.cnki.11-2131/td.202110110145 [4] MA J, MCHUGH T, BECKLEY L, et al. Vapor Intrusion Investigations and Decision-Making: A Critical Review[J]. Environmental Science & Technology, 2020, 54(12): 7050-69. [5] YAO Y, MAO F, XIAO Y, et al. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination[J]. Water Research, 2019, 150: 111-119. doi: 10.1016/j.watres.2018.11.038 [6] 龚亚炬, 宋云, 李培中, 等. 粉砂介质包气带中甲苯蒸气挥发的迁移转化[J]. 环境工程学报, 2018, 12(1): 206-212. doi: 10.12030/j.cjee.201703080 [7] 王梦杰, 范婷婷, 王祥, 等. 典型农药污染场地地下水中氯代脂肪烃自然衰减研究[J]. 环境科学学报, 2022, 42(6): 155-166. doi: 10.13671/j.hjkxxb.2021.0505 [8] SOOKHAK LARI K, DAVIS G B, RAYNER J L, et al. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches[J]. Water Research, 2019, 157: 630-646. doi: 10.1016/j.watres.2019.04.001 [9] RIVETT M O, WEALTHALL G P, DEARDEN R A, et al. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones[J]. Journal of Contaminant Hydrology, 2011, 123(3/4): 130-156. doi: 10.1016/j.jconhyd.2010.12.013 [10] LAHVIS M A, BAEHR A L, BAKER R J. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions[J]. Water Resources Research, 1999, 35(3): 753-765. doi: 10.1029/1998WR900087 [11] HöHENER P, DAKHEL N, CHRISTOPHERSEN M, et al. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Værløse, Denmark[J]. Journal of Contaminant Hydrology, 2006, 88(3/4): 337-358. doi: 10.1016/j.jconhyd.2006.07.007 [12] GARG S, NEWELL C J, KULKARNI P R, et al. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 62-81. [13] YAO Y, WANG Y, ZHONG Z, et al. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources[J]. Journal Of Environmental Quality, 2017, 46(4): 776-784. doi: 10.2134/jeq2017.01.0011 [14] BEKELE D N, NAIDU R, CHADALAVADA S. Influence of soil properties on vapor-phase sorption of trichloroethylene[J]. Journal of Hazardous Materials, 2016, 306: 34-40. doi: 10.1016/j.jhazmat.2015.12.002 [15] BUSHNAF K M, PURICELLI S, SAPONARO S, et al. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil[J]. Journal of Contaminant Hydrology, 2011, 126(3/4): 208-215. doi: 10.1016/j.jconhyd.2011.08.008 [16] HöHENER P, DUWIG C, PASTERIS G, et al. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand[J]. Journal of Contaminant Hydrology, 2003, 66(1/2): 93-115. doi: 10.1016/S0169-7722(03)00005-6 [17] UGWOHA E, ANDRESEN J M. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release[J]. Journal of Environmental Sciences, 2014, 26(3): 608-616. doi: 10.1016/S1001-0742(13)60436-2 [18] ENGLISH C W, LOEHR R C. Degradation of organic vapors in unsaturated soils[J]. Journal of Hazardous Materials, 1991, 28(1): 55-64. [19] LEE E H, KIM J, CHO K S, et al. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831[J]. Environmental Science and Pollution Research, 2010, 17(1): 64-77. doi: 10.1007/s11356-009-0238-x [20] SINGH S N, KUMARI B, MISHRA S. Microbial Degradation of Alkanes[M]. Microbial Degradation of Xenobiotics. 2012: 439-469. [21] PASTERIS G, WERNER D, KAUFMANN K, et al. Vapor phase transport and biodegradation of volatile fuel compounds in the unsaturated zone: A large scale lysimeter experiment[J]. Environmental Science & Technology, 2002, 36(1): 30-39. [22] MENG Q, WANG X, WANG X, et al. Biodegradation of light hydrocarbon(C5-C8) in shale gases from the Triassic Yanchang Formation, Ordos basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 183-194. doi: 10.1016/j.jngse.2018.01.002 [23] CHIKERE C B, OKPOKWASILI G C, CHIKERE B O. Monitoring of microbial hydrocarbon remediation in the soil[J]. 3 Biotech, 2011, 1(3): 117-138. doi: 10.1007/s13205-011-0014-8 [24] VARJANI S J. Microbial degradation of petroleum hydrocarbons [J]. Bioresource Technology, 2017, 223: 277-286. [25] EL-NAAS M H, ACIO J A, EL TELIB A E. Aerobic biodegradation of BTEX: Progresses and Prospects[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1104-1122. doi: 10.1016/j.jece.2014.04.009 [26] ALVAREZ P J, VOGEL T M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries[J]. Applied and environmental microbiology, 1991, 57(10): 2981-2985. doi: 10.1128/aem.57.10.2981-2985.1991 [27] DEEB R A, ALVAREZ-COHEN L. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous[J]. Biotechnology and Bioengineering, 1999, 62(5): 526-536. doi: 10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8 期刊类型引用(6)
1. 张文博,余香英,薛弘涛,刘晋涛,蒋婧媛,熊津晶. 基于APCS-MLR模型的九洲江广东段不同水期水质变化特征及污染来源解析. 农业环境科学学报. 2024(02): 401-410 . 百度学术
2. 毛禹,夏军强,周美蓉,邓珊珊. 近20年长江中游监利—汉口河段氮、磷负荷时空变化特征分析. 环境科学. 2024(09): 5204-5213 . 百度学术
3. 卜思凡,余香英,张文博,熊津晶,吴华财,潘文兴. 基于PMF模型的粤西典型流域氨氮污染特征分析. 环境保护科学. 2024(06): 104-109 . 百度学术
4. 黄燏,阙思思,罗晗郁,蒋晖. 长江流域重点断面水质时空变异特征及污染源解析. 环境工程学报. 2023(08): 2468-2483 . 本站查看
5. 薛弘涛,余香英,陈晓丹,许泽婷. 深圳河口溶解氧变化规律及其影响因素研究. 环境生态学. 2023(11): 88-94 . 百度学术
6. 张悦. 近海流域溶解氧的影响因素分析. 中国资源综合利用. 2023(11): 111-113 . 百度学术
其他类型引用(5)
-