Processing math: 100%

表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解

宋泽贤, 吴宜霖, 张腾飞, 孙仲平, 张业文, 陶燕, 杨苏才. 表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解[J]. 环境工程学报, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
引用本文: 宋泽贤, 吴宜霖, 张腾飞, 孙仲平, 张业文, 陶燕, 杨苏才. 表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解[J]. 环境工程学报, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
SONG Zexian, WU Yilin, ZHANG Tengfei, SUN Zhongping, ZHANG Yewen, TAO Yan, YANG Sucai. Surfactants SDBS and Tween 80 enhance anoxic biodegradation of petroleum hydrocarbons (PHC) in soil pretreated with persulfate[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
Citation: SONG Zexian, WU Yilin, ZHANG Tengfei, SUN Zhongping, ZHANG Yewen, TAO Yan, YANG Sucai. Surfactants SDBS and Tween 80 enhance anoxic biodegradation of petroleum hydrocarbons (PHC) in soil pretreated with persulfate[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104

表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解

    作者简介: 宋泽贤 (1998—) ,男,硕士研究生,16696997750@163.com
    通讯作者: 杨苏才(1981—),男,博士,研究员,yang211566@163.com
  • 基金项目:
    国家重点研发计划资助项目 (2019YFC1805703) ;北京市科学技术研究院创新工程资助项目 (2022A-0001)
  • 中图分类号: X53

Surfactants SDBS and Tween 80 enhance anoxic biodegradation of petroleum hydrocarbons (PHC) in soil pretreated with persulfate

    Corresponding author: YANG Sucai, yang211566@163.com
  • 摘要: 化学氧化和微生物联合修复是去除土壤中石油烃 (PHC) 的有效技术,但氧化后土壤中残留PHC的生物有效性较低,难以进一步生物降解。向过硫酸盐 (PS) 氧化后的土壤中加入不同质量浓度和质量比的表面活性剂十二烷基苯磺酸钠 (SDBS) 和聚氧乙烯山梨醇酐单油酸酯 (Tween 80) ,探究其对PS氧化后土壤中PHC解吸、土著微生物群落结构和丰度、PHC缺氧降解的影响。结果表明,缺氧条件下PS氧化和微生物联合降解去除了土壤中30.84%的ΣPHC (C10~C30) 。向PS氧化后土壤中加入SDBS和Tween 80能够有效促进PHC解吸,解吸效果随表面活性剂质量浓度和混合体系中Tween 80比例的增加而增加。加入3 000 mg·L−1表面活性剂继续缺氧培养120 d后,氧化后土壤中Firmicutes和Proteobacteria的总数量较对照组减少了2.13~2.58个数量级,抑制了土壤中PHC的缺氧降解。加入800 mg·L−1表面活性剂后,土壤中Firmicutes和Proteobacteria的总数量较对照组增加了0.17~0.81个数量级,促进了PHC的缺氧降解,在SDBS∶Tween 80=1∶3时ΣPHC残留率最低 (较对照组降低了15.80%) 。本研究结果可为深层石油污染土壤的微生物修复提供参考。
  • 世界卫生组织(world health organization, WHO)称,癌症是全球第二大死亡原因。2020年全球有1 930×104新癌症病例、1 000×104癌症死亡,预计到2032年,每年新增癌症病例将上升到2 200×104,这意味着抗癌类抗生素的消费量将急剧增加[1]。但抗生素使用后不会被生物体完全吸收,其以原药或代谢物的形式通过粪便或者尿液排出体外[2],导致环境中存在大量残留抗生素及其衍生物,并迁移至地表水、地下水并进入饮用水处理及输送系统中[3-4]。在市政污水、污水处理厂、地表水和地下水中,经常可以检测到μg·L−1级的环丙沙星、磺胺类药物、罗红霉素、脱水红霉素等药物[5-7]。抗生素类药物一般都是非特异性的、缺乏选择性,一方面在任何真核生物体中都会引起细胞毒性、基因毒性、诱变、致畸和内分泌干扰作[8-13],改变水环境中的微生物群落,并且导致耐药基因的产生[14-16];另一方面抗生素通过食物链在人体内富集,对人体的肠道疾病产生过敏影响,甚至有些还会产生“三致效应”[17],长期富集抗生素会损害人体的免疫系统,甚至严重的影响各项生理功能[18]

    蒽环类抗生素是一种新型污染物,其代表物柔红霉素、多柔比星、表柔比星等在水环境中的半衰期时间较长,属于难以降解的有机物。目前利用生物降解[19]、吸附[20-21]、光催化氧化[22]、电化学氧化[23-24]等高级氧化技术对该类抗生素进行氧化降解的相关研究较多。FRANQUET等[19]利用序批式反应器(sequencing batch reactor, SBR)对废水中的柔红霉素、多柔比星进行降解实验发现,柔红霉素的降解速率要比多柔比星快很多,反应15 min内,柔红霉素被降解致检测下限,多柔比星仅降解了60%。但生物降解技术在利用微生物处理高浓度抗生素废水的过程时,会对微生物产生毒性作用并且诱导一些致病菌产生耐药性的风险。GHODRATI等[20]使用氧化石墨烯、活性炭和多壁碳纳米管作为吸附材料对柔红霉素进行吸附动力学的比较研究,发现石墨烯具有较短的吸附平衡时间及较高的吸附率,其吸附平衡时间为30 min,能够吸附88%的柔红霉素,而活性炭和多壁碳纳米管材料的吸附平衡时间长达300 min和1 400 min,吸附率仅达到51%和68%。但吸附过程只是将污染物富集,并没有实质性的将污染物进行降解矿化,因此,会存在二次污染的风险。DUMITRU等[22]通过热解草酸铋铁配合物制得BiFeO3,探究其在光催化与单纯的紫外照射对多柔比星的降解差异。结果表明,BiFeO3的光催化在150 min后可去除79%的多柔比星,而单纯紫外照射仅可去除33%。但由于光催化技术对于透光度要求较高,如果水体中的悬浮物较多、色度较高就会影响光催化效果,进而会影响处理效果。

    二氧化氯(ClO2)是一种环境友好型的强氧化剂和消毒剂,在水处理工艺中作为氯消毒的替代产品可以有效降解水中有机污染物,去除还原态铁、锰及硫化物等无机污染物,同时不会产生具有三致作用的有机卤代物[25];也可在防疫灭疫、水产畜牧养殖和造纸制浆漂泊等领域中广泛应用。ClO2通过单电子转移的形式与有机物发生氧化还原反应,能够有效降解吡唑酮[26]、氟喹诺酮[27]、磺胺类[28]等药物,因此具有降解抗生素的潜在能力。侯智昊等[29]利用ClO2降解磺胺甲基噁唑和磺胺脒,初始浓度为0.5~2.5 μmol·L−1的磺胺甲基噁唑与初始浓度大于20 μmol·L−1的ClO2反应30 s后,去除率可达到83%以上;而磺胺脒在ClO2初始浓度大于50 μmol·L−1时,反应120 s去除率达到95%;并且酸性条件下会抑制ClO2对磺胺类抗生素的降解,而在碱性条件下反应120 s后几乎都能够完全被降解。

    为了充分利用优良消毒剂ClO2的氧化效果,减轻抗生素对环境污染,本研究通过考察ClO2对盐酸多柔比星(DOX)的去除效果、影响因素、反应动力学以及降解机理,可供同类有机污染物的反应参考,也可为进一步确定工程应用参数提供科学依据。对控制环境中的新型抗生素的污染、生物毒性等潜在的环境威胁具有重要的理论意义和应用价值。

    采用GB26366-2021《二氧化氯消毒剂卫生要求》A1.4.2的方法制备高纯二氧化氯。二氧化氯母液质量浓度为500 mg·L−1,使用前进行标定。DOX购买于上海阿拉丁生化科技有限公司,色谱纯,纯度为98%。制备DOX标准溶液时,称取0.05 g DOX,用少量超纯水溶解后转至50 mL的容量瓶中,将制得质量浓度为1.0 g·L−1的标准溶液放在4 ℃的冰箱中避光存储。

    1) ClO2初始浓度对降解效果的影响实验。反应容器采用体积为100 mL的聚四氟乙烯玻璃瓶,用锡纸包裹住避光。量取60 mL质量浓度5 mg·L−1的DOX于聚四氟乙烯玻璃瓶中,调节pH为7.5±0.1,放在恒温水浴磁力搅拌器中,设定温度为(25±1) ℃。加入质量浓度为0.2、0.4、0.6、0.8、1.0 mg·L−1的ClO2对DOX进行降解。开启磁力搅拌器,控制转速为200 r·min−1,用移液枪分别在0、5、10、20、30 min吸取5 mL的反应溶液于已经盛有20 μL的0.05 mol·L−1的硫代硫酸钠溶液的棕色小瓶中终止反应。

    2)温度对降解效果的影响实验。ClO2质量浓度为0.6 mg·L−1,溶液pH控制在7.5±0.1。对于实验过程中低温条件,利用恒温磁力搅拌器进行加热控制;对于高温条件,利用冰块水浴降温。

    3) pH对降解效果的影响实验。实验过程基本与上述方法基本相同,ClO2质量浓度为0.6 mg·L−1,用HCl和NaOH对DOX溶液进行调节所需pH条件,同时控制溶液温度为(25±1) ℃。

    4)抗生素浓度对降解效果的影响实验。ClO2质量浓度为0.6 mg·L−1,量取60 mL质量浓度为2、5、10、15、20 mg·L−1的DOX于聚四氟乙烯玻璃瓶中,控制pH为7.5±0.1、温度为(25±1) ℃,放在恒温水浴磁力搅拌器中,使用移液枪分别在0、5、10、20、30 min吸取5 mL的反应溶液,用硫代硫酸钠进行淬灭。

    1) ClO2降解DOX反应速率常数及反应级数实验。取60 mL质量浓度为5 mg·L−1的DOX浓度于100 mL聚四氟乙烯玻璃瓶中,再加入高浓度的ClO2溶液,使其混合后溶液中ClO2质量浓度大于50 mg·L−1,即超过DOX初始浓度的10倍以上,在水浴中保持反应温度为(25±1) ℃,开启磁力搅拌器,控制转速为200 r·min−1。使用移液枪分别在0、20、40、60、120 s时吸取5 mL反应DOX后的溶液,用硫代硫酸钠进行淬灭。

    2) pH对DOX的反应速率常数影响实验。DOX质量浓度为5 mg·L−1,ClO2质量浓度为6.5 mg·L−1,控制反应温度为(25±1) ℃,溶液pH分别为5.2、7.5、8.2、9.0。

    3)温度对DOX的反应速率常数影响实验。DOX初始质量浓度为5 mg·L−1,ClO2质量浓度为6.5 mg·L−1条件下,溶液pH为7.5±0.1,控制反应温度为7、14、20、30 ℃。

    本文中各参数采用孤立变量法确定,使ClO2浓度大于DOX的10倍以上,可视为ClO2在反应的整个过程中浓度几乎不变,因此ClO2降解DOX的反应动力学方程根据式(1)和式(2)计算。

    ν=dcDOXdt=kobs[DOX]n2 (1)
    kobs=kapp[ClO2] (2)

    式中: dcDOXdt为DOX浓度随时间的变化速率;kobs为准一级反应速率常数;kapp为表观二级反应速率常数;[ClO2]和[DOX]分别为ClO2和DOX的浓度。

    本研究利用高效液相色谱(HPLC,LC-10AT)对DOX的标准样品和降解后样品的残留含量进行检测,根据峰面积的进行定量分析,所用色谱柱型号为ZORBAX SB-C18。每次做3组平行实验,取平均值。

    检测DOX的色谱条件如下。流动相为甲醇∶ 0.01 mol·L−1磷酸二氢铵(NH4H2PO3)∶乙酸=30∶20∶0.1。色谱条件:检测波长为254 nm,进样量为20 μL,柱温为25 ℃,流速为1.0 mL·min−1,DOX的保留时间为4.5 min。

    DOX降解产物采用高效液相色谱-质谱联用仪,仪器型号为赛默飞世尔公司静电场轨道阱质谱联用仪(HPLC—MS),色谱柱为Themo Scientific TM Hypersil GOLD C18 Column(50×2.1 mm,1.9 μm)。DOX采用梯度洗脱,流动相A为水,B为乙腈,0~1 min 5% B,1~8 min 5%~70% B,8~9 min 70%~100% B,9~14 min 100% B,14~14.1 min 100%~50% B,14.1~17 min 5% B,流速为0.3 mL·min−1,进样量10 μL,柱温为30 ℃。质谱方法为ESI+正离子模式;气帘气,35 Pa;Gas 1,45 psi;Gas 2,45 psi;温度为500 ℃;离子化压力为5 000 V,去簇电压为70 V;全扫描范围,m/z 150~1800;裂解电压为5 V;CE Spread, 0 V。

    本研究利用Gaussian 16软件的B3LYP/6-31G(d,p)方法对DOX分子进行结构优化,再利用更精密的基组6-311++G(2d,p)进一步分析,选用高级别基组的目的是在研究化学反应的机理,特别是过渡态和反应路径时,高级别的基组可以提供更可靠的能量梯度和几何结构;使用DFT方法,经B3LYP密度泛函的6-311++G(2d,p)基组进行结构优化;再利用Gaussian View以三维形式查看分子轨道,找到分子中能量最高的占据轨道(HOMO)和能量最低的未占据轨道(LUMO)。选用极化连续介质模型,所选溶剂为水进行相关的化学计算。本文所用到的量子化学计算描述符有最高占据分子轨道(HOMO)、最低未占据分子轨道(LUMO)、前线轨道能隙(ΔE)(式(3))、化学势(μ)(式(4))、硬度(η)(式(5))、亲电指数(ω)(式(6)),利用这些参数分析DOX的相关反应特性。

    ΔE=|EHOMOELUMO| (3)
    μ=I+A2 (4)
    η=IA2 (5)
    ω=μ22η (6)

    式中:ΔE为前线轨道能隙,eV;EHOMO为最高占据分子轨道的能量,eV;ELUMO为最低未占据分子轨道的能量,eV;μ为化学势,eV;η为硬度,eV;ω为亲电指数,eV;I为电离势,eV;A为电子亲和能,eV。

    为了探究不同分子中不同位点的反应活性,FUKUI等 [30]引入了福井函数(Fukui)这一理论。分子中每个原子的亲电攻击、亲核攻击、自由基攻击的Fukui函数分别根据式(7)、式(8)和式(9)计算。

    f(r)=qi(N)qi(N1) (7)
    f+(r)=qi(N+1)qi(N) (8)
    f0(r)=f(r)+f+(r)2 (9)

    式中:qi(N)qi(N1)qi(N+1)表示中性分子、失去1个电子、得到1个电子的带电分布状态;f+(r)表示原子的亲核反应活性的大小、f(r)表示原子的亲电反应活性的大小、f0(r)表示自由基攻击的活性大小。

    本文通过计算每种降解产物的分配系数(logP)来判断产物的脂溶性,进而推断ClO2对DOX降解后的产物潜在的健康风险。logP数值越大,说明该物质具有亲脂性越强,数值越小说明亲水性越强。一般情况下,当logP≤5时,对生物的致死性和慢性毒性随着数值的增大而增大[31]。本文采用中国科学院上海有机化学研究所开发的XLOGP3工具[32],对优化后蒽环类抗生素分子本身、以及被ClO2降解后产物的logP进行计算,通过分析降解前后毒性变化来评估潜在的风险。

    1) ClO2初始浓度对降解效果的影响。当温度为(25±1) ℃、pH为7.5±0.1、DOX初始质量浓度为5 mg·L−1时,ClO2初始浓度对降解效果的影响情况如图1(a)所示。由图1(a)可以看出,随着ClO2的浓度增加,DOX的去除率均有上升,当ClO2质量浓度高于0.6 mg·L−1后,DOX去除率上升趋势减缓。这是由于ClO2的氧化能力随其浓度的增加而显著提升,从而有效地攻击和破坏DOX分子中的化学键,但当ClO2质量浓度超过0.6 mg·L−1后,几乎所有的DOX分子均已与ClO2充分反应,导致反应体系趋近于饱和状态,因此,进一步增加ClO2浓度并不会显著提高去除率。此外反应时间在5 min内去除效果显著,5 min后反应几乎达到平衡状态。DOX在接触0.2、0.4、0.6、0.8、1.0 mg·L−1的ClO2 30 min后,降解率分别为35.31%、40.95%、66.97%、93.09%、94.07%,增加ClO2浓度能够有效地去除DOX。

    图 1  ClO2初始浓度、温度、pH和DOX初始浓度对DOX降解效果的影响
    Figure 1.  Effects of initial concentration of ClO2, temperature, pH, and initial concentration of DOX on DOX degradation

    2)温度对降解效果的影响。当pH为7.5±0.1、DOX初始质量浓度为5 mg·L−1、ClO2初始质量浓度为0.6 mg·L−1时,温度对降解效果的影响结果如图1(b)所示。由图1(b)可看出,随着温度的升高,ClO2对DOX的去除率没有显著变化,30 min后去除率分别达到48.32%、50.65%、63.22%、60.45%、60.33%,这表明ClO2去除DOX的能力受温度影响很小。

    3) pH对降解效果的影响。当温度为(25±1) ℃,DOX初始质量浓度为5 mg·L−1,ClO2初始质量浓度为0.6 mg·L−1时,pH对降解效果的影响结果如图1(c)所示。由图1(c)可以看出,随着溶液pH的增加ClO2对DOX的降解效果显著增加。DOX溶液在pH为4.8、5.2、7.5、8.5、9.5接触30 min后去除率分别达到54.02%、62.25%、66.18%、64.22%、67.80%。酸性条件下对DOX的降解率要弱于碱性,这是因为ClO2的氧化还原电位与pH呈线性关系,当pH每增加1,其氧化还原电位增加0.062 V[33],因此ClO2氧化能力也随之增加。

    4) DOX浓度对降解效果的影响。当温度为(25±1) ℃、pH为7.5±0.1、ClO2初始质量浓度为0.6 mg·L−1时,DOX浓度对降解效果的影响结果如图1(d)所示。由图1(d)可以看出,DOX的去除率随着其初始浓度的增加而明显降低,DOX初始质量浓度为2、5、10、15、20 mg·L−1时,与ClO2反应30 min后去除率分别达到93.41%、78.28%、49.5%、40.16%、28.43%。因为ClO2初始质量浓度较低仅为0.6 mg·L−1,去除率过低有可能是由于ClO2添加量过低,大量DOX未能与ClO2反应而残留导致降解效率低。

    1) ClO2降解DOX反应速率常数及反应级数。不同ClO2浓度下ln(c0/ct)对反应时间t作图,结果如图2(a)所示。由图2(a)可以看出,ln(c0/ct)与时间呈良好的线性关系(R2>0.98),该反应同样符合拟一级动力学模型,因此DOX的反应级数为1。将图2(a)中的每条拟合直线斜率(即kobs)与ClO2浓度进行拟合得到一条直线,如图2(b)所示。可以看出kobs与ClO2浓度呈良好的线性关系(R2=0.992),反应速率随着ClO2浓度的增加而加快,所以ClO2反应级数为1,因此该回归直线的斜率为反应的二级反应速率常数,kapp=2.41×102 M−1·s−1,因此ClO2降解DOX符合二级反应动力学模型。不同ClO2浓度与DOX反应动力学参数如表1所示。

    图 2  不同ClO2浓度降解DOX的动力学拟合曲线;kobs与ClO2初始浓度的拟合曲线
    Figure 2.  Kinetic fitting curves of DOX degradation by ClO2 at different concentrations; (b) Fitting curves of kobs and ClO2 initial concentrations
    表 1  不同ClO2浓度下降解DOX动力学参数
    Table 1.  Kinetic parameters of DOX degradation by ClO2 at different concentrations
    [ClO2]0/(mg·L−1)kobs/s−1T1/2/sR2
    6.50.024 9827.450.998
    7.00.026 2226.440.994
    8.00.028 3424.460.987
    9.00.031 5921.940.988
     | Show Table
    DownLoad: CSV

    2) pH对DOX的反应速率常数影响。在不同pH下将ln(c0/ct)对反应时间t作图(图3(a));pH与kobs关系如图3(b)所示。由图3(a)和图3(b)可看出,当pH=5.2~9.0时,ClO2对DOX降解速率逐渐升高,反应速率常数由2.00×10−3 s−1上升到4.03×10−2 s−1。表明酸性条件下抑制ClO2对DOX的降解,而碱性条件下能够促进降解。

    图 3  不同pH下降解DOX的动力学拟合曲线;不同pH下DOX的反应速率常数
    Figure 3.  Kinetic fitting curves of DOX degradation at different pH levels; The reaction rate constant of DOX at different pH

    3)温度对DOX的反应速率常数影响。不同温度下ln(c0/ct)与反应时间t关系如图4(a)所示,Ea可以通过kapp与温度拟合得到,拟合结果见图4(b),不同温度下各反应的动力学参数见表2。由图4(a)~(b)可看出:kapp与温度之间有良好的线性关系(R2=0.995);根据拟合曲线斜率可以计算出ClO2与DOX反应活化能为25.46 kJ·mol−1。由表2可以得到,温度每升高10 ℃,kapp会增加1.41倍。因此,当温度升高,DOX的反应速率上升。这是因为温度升高,反应体系中分子平均动能增大,活化分子增多,反应体系中各分子有效碰撞次数增加,使反应速率加快。

    图 4  不同温度下ClO2降解DOX的拟合曲线;kapp与温度的拟合曲线
    Figure 4.  Fitting curves of ClO2 degradation DOX at different temperatures; Fitting curve of kapp and temperature
    表 2  不同温度下ClO2降解DOX的反应动力学参数
    Table 2.  Kinetic parameters of DOX degradation by ClO2 at different temperatures
    温度/℃kobs/s−1kapp/(mmol·(L·s)−1)R2
    70.012 82133.040.982
    140.019 99207.450.989
    200.030 13312.680.988
    300.042 53441.370.994
     | Show Table
    DownLoad: CSV

    1) DOX分子结构与反应活性位点分析。分子的结构能够反映出分子的反应活性,对DOX进行结构优化后的图形见图5,分子主要键长的信息见表3。从表3可以看出,从整体上看DOX分子上的C—C、C=C、C—O、C=O、C—H、O—H、C—N、N—H的键长平均值分别为1.516 2、1.401 1、1.408 4、1.226 4、1.089 1、0.975 8、1.464 8、1.017 0 Å。与苯环上的C—C单键的键长相比,支链上的C5—C7单键以及含氧六元环上的C—C单键的键长较大。键长顺序为C—C>C—N>C—O>C=O>C—H>N—H>O—H。从上述结果可以看出,DOX分子中支链上和含氧六元环上的C—C单键在降解过程中很容易受到亲核攻击[34],且O—H键相较于其他类型的化学键的键长均小,说明该化学键容易受到亲电攻击。

    图 5  DOX优化后分子结构图
    Figure 5.  Molecular structure of DOX
    表 3  DOX的键长
    Table 3.  Bond length of DOX
    化学键 键长 /Å 化学键 键长 /Å 化学键 键长 /Å
    C1—C2 1.384 4 C7—C8 1.530 3 C15—H52 1.093 16
    C2—C3 1.513 2 C5—O11 1.427 68 C16—H53 1.092 45
    C3—C4 1.526 73 C8—O9 1.438 1 C18—H55 1.093 86
    C4—C5 1.541 98 C25—O26 1.357 34 C20—H56 1.090 61
    C5—C6 1.551 78 C22—O39 1.342 57 C20—H57 1.090 88
    C1—C25 1.406 806 C32—O36 1.344 38 C20—H58 1.091 67
    C22—C23 1.410 19 C37—O36 1.431 35 C35—H64 1.080 07
    C23—C24 1.417 93 C3—O12 1.441 54 C24—H63 1.082 75
    C24—C25 1.402 01 O12—C13 1.412 31 C33—H62 1.078 81
    C23—C30 1.471 68 C13—O19 1.420 48 C37—H66 1.091 54
    C29—C30 1.469 62 C18—O19 1.444 57 C37—H67 1.091 51
    C28—C29 1.408 09 C16—O17 1.432 25 C37—H65 1.086 36
    C27—C28 1.493 56 C30—O31 1.245 67 C15—N21 1.464 81
    C24—C27 1.475 73 C27—O38 1.223 91 N21—H59 1.016 56
    C29—C32 1.421 08 C7—O10 1.209 52 N21—H60 1.017 5
    C32—C33 1.399 35 C3—H40 1.088 06 O9—H41 0.966 93
    C33—C34 1.385 47 C4—H41 1.089 86 O11—H48 0.966 04
    C34—C35 1.386 5 C4—H42 1.089 7 O17—H54 0.966 76
    C28—C35 1.388 76 C6—H44 1.091 73 O39—H68 1.000 57
    C13—C14 1.521 01 C6—H43 1.085 42 O26—H61 0.978 63
    C14—C15 1.529 72 C8—H45 1.084 75 C1—C6 1.503 36
    C15—C16 1.540 17 C8—H46 1.091 07
    C16—C18 1.528 21 C13—H49 1.092 06
    C18—C20 1.514 04 C14—H51 1.093 32
    C5—C7 1.535 75 C14—H50 1.090 1
     | Show Table
    DownLoad: CSV

    DOX的静电势和前线分子轨道能量等信息预示着其具有不同的反应特性,但具体的反应活性位点仍不明确。而亲电自由基的反应活性对于有机分子反应途径的研究及为重要。利用福井函数对DOX的亲核反应位点、亲电反应位点及自由基反应位点进行分析。表4列出DOX的亲核攻击(f +)和亲电攻击(f )。一般情况下,福井函数值越大,说明该原子为主要攻击位点。由表4可以看出,DOX的f 最大值在蒽醌环上的O26、O39原子上,说明O26和O39容易受到亲电攻击。

    表 4  DOX中每个原子福井函数值
    Table 4.  Fukui function values per atom for DOX
    原子 f f + 原子 f f + 原子 f f +
    1C 0.024 6 0.043 6 24C 0.034 5 0.018 5 47H 0.003 8 0.002 2
    2C 0.024 7 0.041 5 25C 0.048 7 0.025 2 48H 0.005 2 0.007 5
    3C 0.002 9 0.005 8 26O 0.066 8 0.022 4 49H 0.002 1 0.005 6
    4C 0.004 0.004 1 27C 0.008 7 0.052 4 50H 0.004 3 0.001 1
    5C 0.002 6 0.003 28C 0.001 3 0.024 9 51H 0.006 9 0.004 5
    6C 0.004 5 0.006 8 29C 0.004 7 0.017 2 52H 0.008 1 0
    7C 0.000 2 0.000 3 30C 0.008 4 0.063 6 53H 0.011 7 0.006 7
    8C 0.005 1 0.004 5 31O 0.023 5 0.079 5 54H 0.005 9 0.000 1
    9O 0.001 5 0.000 2 32C 0.018 0.023 2 55H 0.003 4 0.000 3
    10O 0.010 6 0.007 4 33C 0.024 3 0.040 6 56H 0.006 0.003 6
    11O 0.014 7 0.014 7 34C 0.025 7 0.049 1 57H 0.005 1 0.000 7
    12O 0.006 2 0.007 3 35C 0.025 6 0.025 2 58H 0.009 2 0.007
    13C 0.000 3 0.000 9 36O 0.019 1 0.010 8 59H 0.022 5 0.006 4
    14C 0.003 3 0.000 3 37C 0.008 8 0.011 2 60H 0.019 9 0.003 9
    15C 0.009 4 0.000 8 38O 0.033 3 0.083 5 61H 0.017 5 0.011 6
    16C 0.010 4 0.001 6 39O 0.072 4 0.035 3 62H 0.014 8 0.023 2
    17O 0.019 5 0.006 8 40H 0.005 8 0.007 8 63H 0.017 1 0.028
    18C 0.004 6 0.000 8 41H 0.011 6 0.014 4 64H 0.013 1 0.018 3
    19O 0.004 1 0.001 5 42H 0.005 4 0.004 2 65H 0.009 7 0.014
    20C 0.005 8 0.002 1 43H 0.007 5 0.008 9 66H 0.009 7 0.011 5
    21N 0.033 6 0.003 9 44H 0.009 3 0.013 2 67H 0.010 1 0.011 8
    22C 0.042 5 0.022 45H 0.011 8 0.011 1 68H 0.015 3 0.012
    23C 0.038 2 0.013 46H 0.005 0.005 2
     | Show Table
    DownLoad: CSV

    2) NPA(natural population analysis)电荷分布分析。ClO2降解DOX的过程会发生电子的得失,而分子的电荷分布影响其反应特性。DOX分子的静电荷分布,其中C1、C2、C4、C6、C8、C14、C15、C20、C23、C24、C28、C29、C34、C35、C37所带电荷为−0.035、−0.123、−0.404、−0.437、−0.110、−0.426、−0.045、−0.584、−0.213、−0.139、−0.074、−0.172、−0.158、−0.180、−0.199 a.u.,其余的碳原子均带正电,所有的氧原子均带负电,其中O26和O39所带电荷为-0.698和-0.720 a.u.,所有氢原子均带正电,反应过程中C20、O39、O26容易受到亲电攻击。DOX在发生降解的过程中蒽醌环上的羟基取代基中的氧原子以及个别碳原子容易发生亲电攻击。图6为DOX的静电势图,其中蓝色到红色区域表示电子云由稀疏到密集部分。可以看到DOX的电子云密度较大的区域主要集中在氧原子周围,电子云密度较小的区域主要集中在碳原子与氢原子周围。

    图 6  DOX的静电势图
    Figure 6.  Electrostatic potential map of DOX

    3)前线分子轨道分析。HOMO和LUMO轨道图形能够直观地看到分子容易得失电子的区域。若分子中的某部分被HOMO轨道所覆盖区域较大,说明该区域容易发生失去电子的情况;若分子中的某部分被LUMO轨道所覆盖区域大,说明该区域容易发生得电子的情况。图7显示了DOX前线分子轨道图,其中绿色区域代表正相位、红色区域代表负相位。从图7中可以看到,对于DOX的HOMO轨道主要聚集在二羟基取代苯环上的氧原子与碳原子周围,说明该区域容易受到亲电试剂攻击,其LUMO轨道分布主要集中在蒽醌环上的碳原子周围和苯环上的含氧双键周围,则该区域容易发生亲核试剂攻击。DOX的最高占据分子轨道能量为−5.95 eV,最低未占据分子轨道能量为−2.88 eV,前线轨道能隙为3.069 eV,化学势为4.42 eV,硬度为1.54 eV,亲电指数为6.34 eV,电离势为5.95 eV,电子亲合能为2.88 eV。

    图 7  DOX的HOMO和LUMO轨道
    Figure 7.  HOMO and LUMO orbitals of DOX

    综上所述,通过分子结构与反应活性位点分析可知DOX分子中支链上和含氧六元环上的C-C单键相对较长,这使它们在降解过程中更容易受到亲核攻击。O—H键的键长数值较小,表明这个化学键容易受到亲电攻击。福井函数的f +f 指数表明,DOX的f 最大值在蒽醌环上的O26、O39原子上,这表明这些原子容易受到亲电攻击。在ClO2降解DOX的过程中,分子中电子密度较高的区域,特别是蒽醌环上的羟基和个别碳原子,更容易受到亲电攻击。静电势图进一步确认了氧原子周围的电子云密度较大,表明这些区域在化学反应中可能更活跃。在DOX分子中,HOMO轨道的高电子密度区域,特别是二羟基取代苯环上的氧原子和碳原子,倾向于吸引亲电试剂的攻击。相反,LUMO轨道覆盖的区域,即蒽醌环上的碳原子和苯环上的含氧双键附近,更可能遭遇亲核试剂的攻击。

    1) ClO2降解DOX的产物分析。不同pH下降解前后的6组样品所含主要物质的质核比列于表5。根据目标化合物的结构和反应原理,共推测出5种降解产物,HPLC-MS扫描后的质荷比分别为:560、576、387、303、148,所对应氧化产物表示为M+16、M+32、M-157、M-241、M-396(M表示DOX母体质荷比,+或-分别表示产物相较于DOX相对分子质量的损失或者增加,数字表示损失或增加的量)。从表5可以看出,ClO2不能将DOX完全矿化,并且该化合物被ClO2完全降解后中间产物仍然存在,需要对降解的中间产物进一步进行分析。此外,各pH范围下的空白和降解后的样品同样都检测到了m/z=158.15的物质,这是由于在降解后加入硫代硫酸钠进行了猝灭,确定该物质是硫代硫酸钠。m/z 544.17在3组不同pH的降解实验中均被检测到,因此推测可能是该反应物自身。ClO2在降解酸性、碱性、中性条件的DOX下,其产物中都出现了M+16、M+32、M-157、M-241四种产物,产物M-396的质谱峰虽然存在,但非常小,该产物可能立刻被矿化成其他小分子产物。且该产物在ZHAO等[35]研究中也同样出现,因此将该种产物考虑进产物分析中。

    表 5  ClO2降解DOX前后m/z的质谱扫描结果
    Table 5.  The mass spectrometry scan results of m/z before and after DOX degradation by ClO2
    反应条件降解前降解后
    未调节pH544.17、149.02、344.22、470.36、388.25、475.32、518.88、158.15、158.15474.78、406.79、544.17、303.12、576.16、459.27、503.31、576.17、387.18、158.15、149.02
    酸性条件544.17、425.21、453.34、396.80、405.81、149.02、154.99、149.02、432.28、388.25、432.28、476.31、566.43、588.41、158.15562.66、412.77、544.17、149.02、388.25、520.33、503.31、547.33、407.79、303.12、509.88、560.17、158.15、576.17、387.18、158.15
    碱性条件544.17、344.23、415.25、476.31、453.34、520.33、564.35、340.25、158.15560.17、149.02、544.17、303.12、458.80、562.66、548.70、592.15、594.16、476.30、158.15、576.17、560.18、387.18、158.15
     | Show Table
    DownLoad: CSV

    2) ClO2降解DOX的反应途径。HPLC-MS扫描出可能产物结果如图8所示。共推测出8种结构式不同的降解产物,其对应的质荷比分别为560(a)、560(b)、560(c)、576(a)、576(b)、387、303、148,所对应的氧化产物表示为M+16(a)、M+16(b)、M+16(b)、M+32(a)、M+32(b)、M-157、M-241、M-396,其中a、b表示相同的m/z下结构不同的产物。

    图 8  ClO2降解DOX的反应路径图
    Figure 8.  Reaction path diagram of DOX degradation by ClO2

    根据福井函数以及电荷分布计算结果可知DOX分子上的C20、O26、O29容易受到亲电反应攻击。推测的反应路径如图8所示。

    反应路径包括以下3个方面:1)反应路径1,含羟基的39号氧原子被ClO2氧化过程产生的自由基攻击后,首先发生自由基的抽氢反应,使氧原子和碳原子处于缺电子状态,氧原子处进一步发生加成反应,得到中间产物Ⅱ;2)反应路径2,含羟基的26号氧原子在ClO2氧化过程产生的自由基攻击后,发生一系列的抽氢和·OH加成反应,得到中间产物Ⅲ,反应中间产物Ⅱ和Ⅲ进一步在ClO2的氧化下生成中间产物Ⅴ,随后12号氧原子与支链上的含氧六元环的13号碳原子发生断裂,与此同时5号碳原子与7号碳原子相连处发生断裂,最终生成产物Ⅵ和Ⅶ;3)反应路径3,C20被ClO2氧化过程产生的自由基攻击后,同样发生自由基的抽氢反应和加成反应得到产物Ⅰ,进一步含羟基的26或39号氧原子与·OH自由基发生反应最终生成产物Ⅳ。产物Ⅶ和Ⅳ通过发生一系列的开环反应生成最终产物Ⅷ。

    DOX中间产物Ⅰ的logP值为0.77,产物Ⅱ的logP值为0.8,产物Ⅲ的logP值为0.8,产物Ⅳ的logP值为0.3,产物Ⅴ的logP值为−0.16,产物Ⅵ的logP值为−1.37,产物Ⅶ的logP值为0.85,产物Ⅷ的logP值为2.28,DOX的产物的名称与产物分析结果保持一致。从上文可以看出,DOX的logP值均小于5。对于DOX而言,其本身分配系数为1.27,而中间产物Ⅷ的分配系数为2.28,该产物比DOX本身的毒性要大。表明ClO2在DOX的过程中,有毒性更强的产物出现,但部分的中间产物可以继续被降解成毒性较弱的终产物。

    1) ClO2浓度、DOX的浓度、溶液的pH对去除DOX效果有很大的影响,低浓度ClO2对于在不同温度下DOX降解效果的差异不显著;碱性条件下DOX相较于酸性条件下的去除率及反应速率都快,说明碱性条件下能够加速反应的进行。

    2) ClO2对于DOX的降解符合二级反应,反应速率常数为 2.41×10−2 mmol·L−1·s−1;温度越高,DOX的反应速率常数也随之增加。DOX的反应活化能为25.46 kJ·mol−1

    3)根据NPA电荷分布及福井函数综合分析,DOX的主要亲电反应位点分别为O26、O39、C20;通过HPLC-MS检测出的产物结果与量子化学计算所确定的反应位点,推测DOX在被降解过程中经历了抽氢反应、自由基的加成反应。

    4)通过计算DOX降解前后的logP值,发现DOX降解过程中产物Ⅷ的logP值大于DOX说明中间产物毒性较强,但部分中间产物可以进一步被ClO2降解为毒性更小的产物。

  • 图 1  缺氧条件下PS氧化和微生物降解对PHC去除的影响

    Figure 1.  Effect of PS oxidation and biodegradation on removal of PHC under anoxic condition

    图 2  表面活性剂对PS氧化后土壤中PHC解吸效果的影响

    Figure 2.  Effect of surfactants on desorption of PHC in soil pretreated with PS

    图 3  表面活性剂对PS氧化后土壤中细菌丰度的影响

    Figure 3.  Effect of surfactants on bacterial abundance in soil pretreated with PS

    图 4  表面活性剂对PS氧化后土壤中细菌群落组成的影响 (门水平)

    Figure 4.  Effect of surfactants on bacterial community composition in soil pretreated with PS (phylum levels)

    图 5  表面活性剂对PS氧化后土壤中石油烃缺氧生物降解的影响

    Figure 5.  Effect of surfactants on anoxic biodegradation of PHC in soil pretreated with PS

    表 1  土壤中PHC质量分数

    Table 1.  Mass fraction of PHC in soil

    PHC组分组名原土PHC质量分数/mg·kg−1原土灭菌后PHC质量分数/mg·kg−1原土经PS氧化30 d后PHC质量分数/mg·kg−1灭菌土经PS氧化30 d后PHC质量分数/mg·kg−1
    C10~C16F1251.64±3.9449.14±7.72149.90±22.4532.03±1.17
    C17~C23F2524.74±34.97326.13±33.77371.47±41.07258.65±3.89
    C24~C30F367.37±0.2166.12±0.7462.14±3.9558.65±0.28
    C31~C4022.41±6.4720.66±5.38
    ΣPHC(C10~C30)843.75±30.82441.39±26.79583.51±59.89349.33±5.34
    PHC组分组名原土PHC质量分数/mg·kg−1原土灭菌后PHC质量分数/mg·kg−1原土经PS氧化30 d后PHC质量分数/mg·kg−1灭菌土经PS氧化30 d后PHC质量分数/mg·kg−1
    C10~C16F1251.64±3.9449.14±7.72149.90±22.4532.03±1.17
    C17~C23F2524.74±34.97326.13±33.77371.47±41.07258.65±3.89
    C24~C30F367.37±0.2166.12±0.7462.14±3.9558.65±0.28
    C31~C4022.41±6.4720.66±5.38
    ΣPHC(C10~C30)843.75±30.82441.39±26.79583.51±59.89349.33±5.34
    下载: 导出CSV
  • [1] 刘自力, 王红旗, 孔德康, 等. 不同植物-微生物联合修复体系下石油烃的降解[J]. 环境工程学报, 2018, 12(1): 190-197. doi: 10.12030/j.cjee.201704016
    [2] 周启星, 展海银. 石油及石化污染场地生物修复技术进展与展望[J]. 应用技术学报, 2021, 21(4): 285-292.
    [3] 李晓晶, 赵倩, 张月勇, 等. 微生物燃料电池修复石油污染盐碱土壤[J]. 环境工程学报, 2017, 11(2): 1185-1191. doi: 10.12030/j.cjee.201509031
    [4] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303
    [5] GOU Y L, ZHAO Q Y, YANG S C, et al. Enhanced degradation of polycyclic aromatic hydrocarbons in aged subsurface soil using integrated persulfate oxidation and anoxic biodegradation[J]. Chemical Engineering Journal, 2020, 394: 125040. doi: 10.1016/j.cej.2020.125040
    [6] HATZINGER P B, ALEXANDER M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environmental Science & Technology, 1995, 29(2): 537-545.
    [7] CASSIDY D, NORTHUP A, HAMPTON D. The effect of three chemical oxidants on subsequent biodegradation of 2, 4-dinitrotoluene (DNT) in batch slurry reactors[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(6): 820-826. doi: 10.1002/jctb.2140
    [8] CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(6): 1877-1888. doi: 10.1002/jctb.4781
    [9] SAHL J, MUNAKATA-MARR J. The effects of in situ chemical oxidation on microbiological processes: A review[J]. Remediation Journal:The Journal of Environmental Cleanup Costs, Technologies & Techniques, 2006, 16(3): 57-70.
    [10] LI Y T, LI D, LAI L J, et al. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe[J]. Chemosphere, 2020, 238: 124657. doi: 10.1016/j.chemosphere.2019.124657
    [11] LOMINCHAR M A, SANTOS A, MIGUEL E, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate[J]. Science of the Total Environment, 2018, 622-623: 41-48. doi: 10.1016/j.scitotenv.2017.11.263
    [12] ZHANG B W, GUO Y, HUO J Y, et al. Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate[J]. Chemical Engineering Journal, 2020, 382: 123055. doi: 10.1016/j.cej.2019.123055
    [13] GHATTAS A K, FISCHER F, WICK A, et al. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment[J]. Water Research, 2017, 116: 268-295. doi: 10.1016/j.watres.2017.02.001
    [14] LU X Y, LI B, ZHANG T, et al. Enhanced anoxic bioremediation of PAHs-contaminated sediment[J]. Bioresource Technology, 2012, 104: 51-58. doi: 10.1016/j.biortech.2011.10.011
    [15] MEDINA R, GARA P M D, FERNÁNDEZ-GONZÁLEZ A J, et al. Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation[J]. Science of the Total Environment, 2018, 618: 518-530. doi: 10.1016/j.scitotenv.2017.10.326
    [16] YANG S C, GOU Y L, SONG Y, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil using nitrate and soil microbes[J]. Environmental Earth Sciences, 2018, 77: 432. doi: 10.1007/s12665-018-7629-6
    [17] FIERER N, SCHIMEL J P, HOLDEN P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1): 167-176. doi: 10.1016/S0038-0717(02)00251-1
    [18] 马浩, 刘元元, 肖文燕, 等. 表面活性剂CMC对石油烃污染土壤的增溶[J]. 环境工程学报, 2016, 10(12): 7333-7338. doi: 10.12030/j.cjee.201507133
    [19] SEMPLE K T, MORRISS A W J, PATON G I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis[J]. European Journal of Soil Science, 2003, 54(4): 809-818. doi: 10.1046/j.1351-0754.2003.0564.x
    [20] 陈巧超, 王一宁, 董旭斌. 阴-非混合表面活性剂增效修复有机污染土壤的影响因素研究[J]. 科学技术创新, 2021(20): 52-53. doi: 10.3969/j.issn.1673-1328.2021.20.022
    [21] 赵倩云, 苟雅玲, 杨苏才, 等. 硫酸盐对老化土壤中多环芳烃厌氧降解的影响[J]. 环境科学与技术, 2018, 41(12): 200-205. doi: 10.19672/j.cnki.1003-6504.2018.12.029
    [22] 刘志号. 缺氧条件下温度和表面活性剂对土壤中多环芳烃微生物降解的影响[D]. 北京: 轻工业环境保护研究所, 2021.
    [23] 李佳斌. 土壤中石油烃的芬顿氧化实验研究[D]. 北京: 轻工业环境保护研究所, 2016.
    [24] GOU Y L, YANG S C, CHENG Y J, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide[J]. Chemical Engineering Journal, 2019, 356: 524-533. doi: 10.1016/j.cej.2018.09.059
    [25] FREY B, RIME T, PHILLIPS M, et al. Microbial diversity in European alpine permafrost and active layers[J]. FEMS Microbiology Ecology, 2016, 92(3): fiw018. doi: 10.1093/femsec/fiw018
    [26] LEI Y J, ZHANG J, TIAN Y, et al. Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate[J]. Science of the Total Environment, 2020, 748: 141414. doi: 10.1016/j.scitotenv.2020.141414
    [27] BARTLETT C K, SLAWSON R M, THOMSON N R. Response of sulfate-reducing bacteria and supporting microbial community to persulfate exposure in a continuous flow system[J]. Environmental Science:Processes & Impacts, 2019, 21(7): 1193-1203.
    [28] TIAN W, YAO J, LIU R P, et al. Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains[J]. Ecotoxicology and Environmental Safety, 2016, 129: 171-179. doi: 10.1016/j.ecoenv.2016.03.027
    [29] WU M L, WU J L, ZHANG X H, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. doi: 10.1016/j.chemosphere.2019.124456
    [30] GRAY N D, SHERRY A, HUBERT C, et al. Chapter 5- Methanogenic degradation of petroleum hydrocarbons in subsurface environments: remediation, heavy oil formation, and energy recovery[J]. Advances in Applied Microbiology, 2010, 72: 137-161.
    [31] 张秀霞, 熊鑫, 郭鹏, 等. SDBS残留对微生物修复石油污染土壤的影响[J]. 石油学报(石油加工), 2021, 37(5): 1167-1173.
    [32] KOSTKA J E, PRAKASH O, OVERHOLT W A, et al. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill[J]. Applied and Environmental Microbiology, 2011, 77(22): 7962-7974. doi: 10.1128/AEM.05402-11
    [33] CHEN F, LI X X, ZHU Q L, et al. Bioremediation of petroleum-contaminated soil enhanced by aged refuse[J]. Chemosphere, 2019, 222: 98-105. doi: 10.1016/j.chemosphere.2019.01.122
  • 加载中
图( 5) 表( 1)
计量
  • 文章访问数:  4316
  • HTML全文浏览数:  4316
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-21
  • 录用日期:  2023-01-29
  • 刊出日期:  2023-03-10
宋泽贤, 吴宜霖, 张腾飞, 孙仲平, 张业文, 陶燕, 杨苏才. 表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解[J]. 环境工程学报, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
引用本文: 宋泽贤, 吴宜霖, 张腾飞, 孙仲平, 张业文, 陶燕, 杨苏才. 表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解[J]. 环境工程学报, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
SONG Zexian, WU Yilin, ZHANG Tengfei, SUN Zhongping, ZHANG Yewen, TAO Yan, YANG Sucai. Surfactants SDBS and Tween 80 enhance anoxic biodegradation of petroleum hydrocarbons (PHC) in soil pretreated with persulfate[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104
Citation: SONG Zexian, WU Yilin, ZHANG Tengfei, SUN Zhongping, ZHANG Yewen, TAO Yan, YANG Sucai. Surfactants SDBS and Tween 80 enhance anoxic biodegradation of petroleum hydrocarbons (PHC) in soil pretreated with persulfate[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 900-908. doi: 10.12030/j.cjee.202210104

表面活性剂SDBS和Tween 80强化过硫酸盐氧化后土壤中石油烃的缺氧生物降解

    通讯作者: 杨苏才(1981—),男,博士,研究员,yang211566@163.com
    作者简介: 宋泽贤 (1998—) ,男,硕士研究生,16696997750@163.com
  • 1. 兰州大学资源环境学院,兰州 730000
  • 2. 北京市科学技术研究院资源环境研究所,北京 100089
  • 3. 广西大学农学院,南宁 530004
基金项目:
国家重点研发计划资助项目 (2019YFC1805703) ;北京市科学技术研究院创新工程资助项目 (2022A-0001)

摘要: 化学氧化和微生物联合修复是去除土壤中石油烃 (PHC) 的有效技术,但氧化后土壤中残留PHC的生物有效性较低,难以进一步生物降解。向过硫酸盐 (PS) 氧化后的土壤中加入不同质量浓度和质量比的表面活性剂十二烷基苯磺酸钠 (SDBS) 和聚氧乙烯山梨醇酐单油酸酯 (Tween 80) ,探究其对PS氧化后土壤中PHC解吸、土著微生物群落结构和丰度、PHC缺氧降解的影响。结果表明,缺氧条件下PS氧化和微生物联合降解去除了土壤中30.84%的ΣPHC (C10~C30) 。向PS氧化后土壤中加入SDBS和Tween 80能够有效促进PHC解吸,解吸效果随表面活性剂质量浓度和混合体系中Tween 80比例的增加而增加。加入3 000 mg·L−1表面活性剂继续缺氧培养120 d后,氧化后土壤中Firmicutes和Proteobacteria的总数量较对照组减少了2.13~2.58个数量级,抑制了土壤中PHC的缺氧降解。加入800 mg·L−1表面活性剂后,土壤中Firmicutes和Proteobacteria的总数量较对照组增加了0.17~0.81个数量级,促进了PHC的缺氧降解,在SDBS∶Tween 80=1∶3时ΣPHC残留率最低 (较对照组降低了15.80%) 。本研究结果可为深层石油污染土壤的微生物修复提供参考。

English Abstract

  • 石油烃 (PHC) 是目前环境中广泛存在的有机污染物,是多种烃类 (正烷烃、支链烷烃、环烷烃、芳烃) 和少量其他有机物的混合物[1]。PHC进入土壤后,不仅会破坏土壤结构,与无机氮、磷结合并限制硝化作用和脱磷酸作用,减少土壤中有效氮、磷等养分的含量,还会通过挥发或食物链富集等途径对人群健康构成潜在风险[2]。因此,PHC污染土壤的修复治理迫在眉睫[3]。化学氧化剂过硫酸盐 (PS) 因其在环境中存在时间长、适用pH范围广、氧化性强等优势被广泛应用于有机污染土壤修复领域。PS可以在水中分解产生强氧化剂S2O82−,经活化后会产生氧化性更强的SO4·,能够在广泛的环境条件下转化各种环境污染物[4]

    有机污染物进入土壤后往往以“快”“慢”“极慢”等解吸组分形式存在[5],由于“快”解吸组分易被氧化,氧化后污染物往往以“慢”“极慢”等解吸组分形式存在[6],难以进一步去除,化学氧化末期往往会出现拖尾现象[7-8]。虽然投加过量药剂可以提高PHC降解效率,但也会增加修复成本。因此,化学氧化和其他修复技术的联合应用备受关注[9],如已有研究表明化学氧化与微生物联合处理能够更高效地去除土壤中的PHC[10-12]。由于缺氧条件下微生物对有机污染物的降解效率较低,目前与微生物联合降解有机污染物的研究多在好氧条件下进行[13],然而,通过降解参数优化 (如营养物质、电子受体等) ,微生物的缺氧降解效率会明显提升[14-16]。此外,深层有机污染土壤往往处于缺氧环境[17],因此探究缺氧条件下化学氧化与微生物联合修复PHC污染土壤具有重要意义。

    由于PS氧化后土壤中残留的PHC以“慢”“极慢”等解吸组分形式存在,生物有效性更低,限制了其进一步生物降解[11]。加入表面活性剂可以增强土壤中PHC的解吸能力,提高其生物有效性[18-19]。常见的表面活性剂增效修复技术使用单一阴离子或非离子表面活性剂,单一阴离子表面活性剂会发生沉淀作用,非离子表面活性剂则易被土壤吸附,而混合表面活性剂体系既能减少表面活性剂在土壤表面的吸附,提高解吸效率,又能使得洗脱液中污染物浓度和表面活性剂浓度对微生物降解产生正效应,是一种更有效的修复方式[20]。但表面活性剂对PS氧化后土壤中微生物以及PHC缺氧生物降解的影响尚不清楚。因此,本研究将通过加入不同质量浓度和质量比的SDBS和Tween 80,探究其对PS氧化后土壤中PHC解吸、土著微生物群落结构和丰度、PHC缺氧降解的影响,为深层石油污染土壤的微生物修复提供参考。

    • 实验所用土壤采自华北地区某加油站地下2~5 m处,在采样现场过2 mm筛,运回实验室用四分法混匀。部分土壤−20 ℃保存用于测定PHC质量分数和微生物指标,其余土壤4 ℃保存用于分析理化性质和后续实验处理。土壤样品理化性质:pH为7.12;含水率为8.13%;TOC为1.52%;总铁为2.17%;SO42−和NO3质量分数分别为122.29和60.83 mg·kg−1;粒径分布为黏土15.70%,粉土84.13%,砂土0.17%。

      实验所用阴离子表面活性剂SDBS为化学纯;非离子表面活性剂Tween 80、过硫酸钠 (Na2S2O8) 均为分析纯;正己烷 (C6H14) 、二氯甲烷 (CH2Cl2) 均为色谱纯;高纯氮气 (N2,99.999%) ;石油烃 (C10~C40) 标准溶液 (1 mg·L−1,美国AccuStandard公司) 。

    • 称取15 g新鲜土壤样品置于50 mL血清瓶中,在水土比0.4∶1的条件下[5]加入6 mL PS溶液作为氧化处理组PS1 (使土壤中PS质量分数约为1%) ,将未经处理的土壤样品记为原土US,同时设置加入等量去离子水的空白对照组CK1,每个处理设置3组重复。将处理完成的样品在手套箱中完成缺氧处理后用带橡胶垫的铝盖密封[21],转移至恒温培养箱,在30 ℃下缺氧培养30 d (此时土样中的PS基本消耗殆尽[5]) 。同时设置灭菌对照组 (灭菌后原土组记为SS,氧化处理组记为PS2,空白对照组记为CK2) ,灭菌处理参考文献方法[5],使用高压蒸汽灭菌锅,灭菌温度为121 ℃,时间为30 min,灭菌重复3次。

      使用经PS氧化的土样进行解吸实验,将样品转移至50 mL离心管,在水土比为1∶1的条件下分别加入不同质量浓度和质量比的SDBS和Tween 80溶液,同时设置空白对照组CK3,放入25 ℃恒温振荡器内150 r·min−1振荡36 h。根据不同质量浓度及类型的表面活性剂对多环芳烃的解吸效果研究可知[22],当部分表面活性剂的质量浓度达到800 mg·L−1时,便开始有解吸效果;质量浓度为3 000 mg·L−1时,解吸效果开始变得更加明显,但已经对土著微生物丰度产生不利影响。而阴-非离子混合表面活性剂对有机污染物的解吸效果强于单一表面活性剂[20],但混合体系质量比对PHC解吸效果的影响尚不清楚,因此解吸实验选用表面活性剂的质量浓度为800和3 000 mg·L−1,质量比为SDBS∶Tween 80=0∶1、1∶3、1∶2、1∶1、2∶1、3∶1和1∶0。另取一部分PS氧化后的土样,在水土比为1∶1的条件下向血清瓶中加入与上述质量浓度和质量比相同的表面活性剂溶液进行缺氧微生物降解实验,同时设置空白对照CK4,在手套箱中完成缺氧处理后密封血清瓶,转移至30 ℃恒温培养箱继续培养120 d。

    • 土壤中PHC的提取采用超声萃取法[16],上清液中PHC的提取采用液液萃取法[23]。PHC检测仪器为气相色谱仪 (7890B,美国Agilent公司) ,色谱柱为HP-5MS (30 m×0.25 mm×0.25 μm) ,测定条件:进样口温度300 ℃,不分流进样,进样量1.0 μL;柱箱初始温度为50 ℃,保持2 min,以40 ℃·min−1升至230 ℃,再以20 ℃·min−1升至320 ℃,保持20 min;气体流量:氮气1.5 mL·min−1,氢气30 mL·min−1,空气300 mL·min−1

    • 土壤DNA采用MOBIO Power Soil DNA Isolation Kit试剂盒提取,细菌丰度的测定采用实时定量PCR扩增技术[24]。以16S rDNA作为靶基因对细菌丰度进行检测。细菌引物为338F (5'-ACTCCTACGGGAGGCAGCAG-3') 和806R (5'-GGACTACHVGGGTWTCTAAT-3') ,片段大小为460。反应条件为:95 ℃预变性3 min,95 ℃变性30 s,58 ℃退火30 s,72 ℃延伸1 min,35个循环。完成上述操作后,将待测样品放在荧光定量PCR仪中进行反应,实时定量PCR扩增效率为97.44%。

      微生物群落结构分析测试参照FREY等的方法[25],使用Fastp软件对原始测序序列进行质控,使用Flash软件进行拼接 (最小重叠长度为10 bp,重叠区允许的最大错配比为0.2) 。使用UPARSE软件在97%的相似度对序列进行OTU聚类分析。使用RDP classifier分类器对每条序列进行物种分类注释,比对Silva 16S rRNA数据库进行物种注释分析 (比对阈值为80%) ,统计各样品的细菌群落组成。

    • 本研究土样中PHC质量分数见表1。由于原土中C31~C40组分质量分数较低 (仅占C10~C40的2.59%) ,对此组分不做进一步讨论。本研究主要探讨碳链长度为C10~C16 (F1) 、C17~C23 (F2) 、C24~C30 (F3) 的组分,其在原土 (C10~C30)中的占比分别为29.83%、62.19%、7.98%,即本研究原土中石油烃污染物以F2组分为主,其次为F1组分。与原土相比,灭菌后的原土中F1组分的损失率最大 (80.47%) ,其次是F2组分 (37.85%) ,F3组分损失率最小 (1.85%) 。

    • 图1 (a) 可以看出,灭菌空白对照组 (CK2) 与灭菌后的原土 (SS) 中ΣPHC无明显差异 (p>0.05) ,但原土空白对照组 (CK1) 中ΣPHC相对于原土 (US) 有明显减少 (p<0.05) ,表明30 d缺氧培养期间原土中PHC发生了缺氧微生物降解,去除了15.06%的ΣPHC。与SS相比,灭菌土壤的氧化处理组 (PS2) 中ΣPHC明显减少 (p<0.05) ,在仅PS氧化降解作用下去除了20.86%的ΣPHC。与US相比,原土的氧化处理组 (PS1) 中ΣPHC明显减少 (p<0.05) ,在此过程中同时发生了PS氧化和缺氧微生物降解,二者联合作用去除了30.84%的ΣPHC。这表明缺氧条件下PS氧化和缺氧微生物降解均能去除土壤中的PHC,但2者联合作用的效果更加显著。ZHANG等[12]利用PS和微生物联合在好氧条件下去除土壤中PHC,其结果也表明联合修复效果优于单一处理效果。此外,从碳链长度角度来看,缺氧微生物降解对F1、F2、F3组分的去除率分别为30.24%、9.21%、3.88%,PS氧化对F1、F2、F3组分的去除率分别为34.83%、20.69%、11.30%,联合作用对F1、F2、F3组分的去除率分别为40.43%、29.21%、7.78% (图1 (b)~图1 (d) ) ,表明土壤中PHC的去除率与其碳链长度成反比,这在其他研究中也得到了相似的结果[10,26]

    • 表面活性剂对PHC解吸的影响实验以原土经PS氧化30 d后PHC质量分数为初始值。如图2 (a) 所示,空白对照组 (CK3) 上清液中ΣPHC质量浓度为5.47 mg·L−1。与CK3相比,800 mg·L−1表面活性剂处理组上清液中ΣPHC增加了25.11%~65.50%,3 000 mg·L−1表面活性剂处理组上清液中ΣPHC增加了45.04%~251.51%,高浓度表面活性剂解吸效果更强,2种处理均在SDBS∶Tween 80=1∶3时解吸效果最好 (分别为65.50%和251.51%) ,但在高浓度处理组中SDBS∶Tween 80=1∶3时解吸效果更显著 (p<0.05) 。表面活性剂对F1、F2、F3组分的解吸效果如图2 (b)~图2 (d) 所示,当表面活性剂质量比相同时,高浓度表面活性剂对各组分的解吸效果更强;而浓度相同时,混合体系对各组分解吸效果强于单一表面活性剂,且随着体系中Tween 80的比例增加而增加。陈巧超等[20]利用SDBS-Tween 80混合表面活性剂对土壤中的芘解吸时发现,Tween 80占比提高时,混合体系解吸能力相应提高,且质量比相同时高浓度混合表面活性剂解吸效果更好。

    • 各处理土壤中的细菌丰度如图3所示。US中总细菌基因拷贝数对数值为7.16,PS1中对数值为5.66,细菌数量较US下降了1.50个数量级;空白对照组 (CK4) 中对数值为7.36,较US上升了0.20个数量级。这表明缺氧条件下加入PS对土壤中细菌造成了负面影响,但经过一段时间的培养后细菌数量得以恢复,在其他研究中也观察到了这种现象[27]。在本研究中,氧化后加入表面活性剂继续缺氧培养120 d的土壤与CK4相比,800 mg·L−1处理组土壤中除SDBS∶Tween 80=3∶1和1∶0之外 (较CK4分别增加了0.19和0.49个数量级) ,细菌数量明显增加 (p<0.05) ,增加了0.61~0.81个数量级;3 000 mg·L−1处理组土壤中细菌数量与CK4相比出现显著下降 (p<0.05) ,下降了1.98~2.46个数量级。这表明缺氧条件下低浓度表面活性剂对PS氧化后土壤中细菌生长起到了促进作用,而高浓度则表现出抑制作用。TIAN等[28]在好氧条件下使用表面活性剂对原油处理后发现,表面活性剂对微生物的毒性会随着其剂量的增加而增加,在高浓度下抑制微生物增殖,而在低浓度时有促进增殖的作用。

      图4所示,US中优势菌种主要为放线菌门 (Actinobacteria) 、变形菌门 (Proteobacteria) 和厚壁菌门 (Firmicutes) 。PS1中3种细菌的相对丰度与US相比均有所下降。已有研究表明,PHC降解菌主要属于Proteobacteria和Firmicutes等[29]。GRAY等[30]探究了厌氧条件下PHC的降解机制,调查表明96%的可用细菌序列与15个不同的门有关,且以Firmicutes和所有类别的Proteobacteria为主。US中Firmicutes和Proteobacteria的基因拷贝数对数值为6.87,在CK4中,Firmicutes和Proteobacteria的对数值为7.27,与US相比增加了0.40个数量级。氧化后土壤中加入表面活性剂继续培养120 d,800 mg·L−1处理组土壤中除SDBS∶Tween 80=3∶1和1∶0之外 (较CK4分别增加了0.17和0.49个数量级) ,Firmicutes和Proteobacteria的总数量较CK4增加了0.61~0.81个数量级,土壤中PHC降解菌数量明显增加 (p<0.05) 。而3 000 mg·L−1时土壤中Firmicutes和Proteobacteria的总数量较CK4下降了2.13~2.58个数量级,土壤中PHC降解菌的数量显著减少 (p<0.05) 。

    • 表面活性剂对PS氧化后土壤中PHC缺氧微生物降解的影响实验以原土经PS氧化30 d后PHC质量分数为初始值。向氧化后土壤中加入表面活性剂继续缺氧培养120 d后,如图5 (a) 所示,CK4中ΣPHC残留率为69.71%。3 000 mg·L−1表面活性剂处理组土壤中,除SDBS∶Tween 80=0∶1和1∶3外,其余组别ΣPHC的残留率均高于CK4 (增加了1.82%~11.08%) 。虽然高浓度表面活性剂对土壤中PHC解吸能力更强 (图2) ,但显著降低了土壤中细菌的丰度,抑制了PHC降解菌的数量 (较CK4下降了2.13~2.58个数量级,图3) ,因此加入3 000 mg·L−1表面活性剂抑制了PS氧化后土壤中PHC的缺氧微生物降解。

      张秀霞等[31]考察了好氧条件下SDBS添加量对微生物修复石油污染土壤效果的影响,结果表明土壤中PHC的降解率会随着表面活性剂质量浓度的增加而降低,修复体系中残留高浓度的SDBS对微生物修复石油污染土壤具有抑制作用,而低浓度的SDBS有促进作用。在本研究中,缺氧条件下800 mg·L−1表面活性剂处理组土壤中ΣPHC的残留率与CK4相比出现明显降低 (p<0.05) ,下降了5.93%~15.80%,在SDBS∶Tween 80=1∶3时残留率最低 (53.91%) 。低浓度表面活性剂促进了PS氧化后土壤中ΣPHC的进一步降解,可能是因为其不仅促进了土壤中ΣPHC的解吸 (如图2,在SDBS∶Tween 80=1∶3时解吸效果最好) ,同时还提高了土壤中的细菌丰度,尤其是对PHC降解起重要作用的Firmicutes和Proteobacteria的数量 (较CK4增加了0.17~0.81个数量级,图3) 。

      短链石油烃的分子量小、疏水性弱,容易被生物降解,而长链石油烃因为疏水性强,生物有效性较低[32-33],在土壤中的残留率更高。如图5 (b)~图5 (d) 所示,向PS氧化后的土壤中加入800 mg·L−1表面活性剂继续培养120 d后,F1、F2、F3组分的残留率均低于对照组CK4,对氧化后土壤中残留的中短碳链PHC的强化降解效果更强,这与表面活性剂对土壤中PHC的解吸效果相符。

    • 1) 缺氧条件下PS氧化和缺氧微生物降解联合作用对土壤中的PHC有较好的处理效果,去除了30.84%的ΣPHC (C10~C30) 。

      2) 表面活性剂SDBS和Tween 80混合体系对土壤中PHC的解吸效果强于单一表面活性剂,解吸效果随着表面活性剂浓度和混合体系中Tween 80比例的增加而增加。

      3) 缺氧条件下向PS氧化后土壤中加入低浓度表面活性剂不仅促进了土壤中PHC的解吸,对微生物生长也起到了促进作用,除SDBS∶Tween 80=3∶1和1∶0之外 (较对照组分别增加了0.17和0.49个数量级) ,使土壤中Firmicutes和Proteobacteria的总数量较对照组明显增加了0.61~0.81个数量级,进而降低了土壤中PHC的残留率。降解效果的提升和碳链长度成反比,且随着混合体系中Tween 80的比例增加而增加,在SDBS∶Tween 80=1∶3时残留率最低 (53.91%) 。

      4) 尽管高浓度表面活性剂对土壤中PHC的解吸效果更强,但处理后土壤中PHC降解菌总数量较对照组下降了2.13~2.58个数量级,抑制了PHC的缺氧微生物降解。

    参考文献 (33)

返回顶部

目录

/

返回文章
返回