-
重金属铬(Cr)及其化合物是我国工业用地中最常见的重金属污染物之一。土壤中铬的化合价主要有三价和六价,其他二价、四价和五价的铬化合物性质极其不稳定[1-2]。Cr(Ⅲ)和Cr(Ⅵ)具有完全不同的化学性质和生物毒性。Cr(Ⅲ)易水解形成沉淀吸附于土壤矿物和有机质中,毒性较低;而Cr(Ⅵ)具有剧毒性、强致癌和易迁移等特点[3],被列为我国当前亟需治理的重金属污染物之一[4]。
化学修复是Cr(Ⅵ)污染土最常用的修复技术之一,具有效果好、速度快、成本低和二次污染小等特点[5-6]。硫酸亚铁(FeSO4)和多硫化钙(CaSx)是修复Cr(Ⅵ)污染土常用的药剂,已在Cr(Ⅵ)污染修复方面得到大量应用[7-9]。任学昌等[7]采用FeSO4联合多种固化剂修复铬污染土壤,土壤中Cr(Ⅵ)浸出浓度可由527 mg·L−1降至1.5 mg·L−1。CHRYSOCHOOU等[9]采用CaS5修复电镀污染场地Cr(Ⅵ)污染土,实验结果表明:CaS5可显著降低污染土中的Cr(Ⅵ)质量浓度,当CaS5/Cr(Ⅵ)摩尔比为2时,60 d养护龄期的稳定土中Cr(Ⅵ)的浸出浓度低于1 mg·L−1。事实上,化学修复并不是完全去除污染物,而是将重金属污染物的价态或形态改变后稳定于土壤基质中,降低重金属向周围环境运移的能力。多孔介质溶质运移理论表明,土体的渗透系数是衡量重金属污染物运移的首要指标[10]。邵俐等[11]对复合重金属铜镉污染底泥进行固化处理,研究了不同污染物掺量对渗透系数及污染物渗出总量的影响。冯亚松[12]通过柔性壁渗透实验测试复合镍锌污染土和固化土的渗透系数,并进一步分析渗透液中重金属浓度和pH随渗透液体积的变化规律。由此可见,重金属污染土的渗透系数及渗出液中重金属浓度是评估污染土修复有效性和重金属运移特征的重要指标。
然而,前人的研究主要采用浸出实验和消解实验来评价Cr(Ⅵ)污染土的修复效果,有关Cr(Ⅵ)污染土修复后对环境的实际影响研究较少;此外,仅用散状土进行实验研究并不能很好地模拟污染场地土层的实际力学特性及重金属运移特征。本研究以某铁合金场地为研究背景,拟采用不同投加摩尔比的FeSO4和CaSx对Cr(Ⅵ)污染土壤进行修复处理,制备压实试样,通过渗透淋滤实验研究不同还原剂对Cr(Ⅵ)污染土渗透淋滤特性的影响规律,评估FeSO4和CaSx修复Cr(Ⅵ)污染土的实际效果;拟基于BCR形态提取法和X射线衍射法,从微观的角度对比分析不同还原剂掺量对土壤中物理化学反应产物的影响。本研究结果可为Cr(Ⅵ)污染土的化学稳定修复及安全再利用提供参考。
还原剂作用下Cr(Ⅵ)污染土渗透淋滤特性及成分分析
Percolation leaching characteristics and composition analysis of hexavalent chromium contaminated soil under the remediation of reductant
-
摘要: 以湖南某铬污染场地中典型污染土壤为对象,采用硫酸亚铁(FeSO4)和多硫化钙(CaSx)2种还原剂,开展土壤修复实验和渗透淋滤实验,探讨不同还原剂对铬污染土渗透淋滤特性的影响规律,利用BCR形态提取和X射线衍射分析方法,评估不同还原剂对铬污染土中Cr(VI)的还原效果。结果表明,FeSO4修复试样的渗透系数随FeSO4/Cr(Ⅵ)摩尔比的增加呈先增加后降低的趋势,CaSx修复试样的渗透系数变化呈现相反规律。相同条件下,FeSO4修复试样的渗透系数较CaSx修复试样的渗透系数更大,表明CaSx修复试样的抗渗效果更好。随着还原剂掺量增加,修复试样渗出液中Cr(Ⅵ)浓度随之降低,当FeSO4/Cr(Ⅵ)摩尔比大于3时,渗出液中Cr(Ⅵ)浓度低于Ⅲ类地下水标准Cr(Ⅵ)浓度基准值0.05mg·L−1。类似地,当CaSx/Cr(Ⅵ)摩尔比大于3时,淋滤实验后期渗出液Cr(Ⅵ)浓度也降至0.05 mg·L−1以下。修复土中铬的赋存形态随还原剂掺量的增大而发生变化,铬由弱酸提取态向可还原态和可氧化态转化,且还原剂摩尔比也会对修复土壤组成成分产生影响。本研究结果可为Cr(Ⅵ)污染场地土壤修复工程提供参考。Abstract: Taking the typical contaminated soil in a chromium contaminated site in Hunan Province as an object, the effects of different reductants on the percolation and leaching characteristics of chromium contaminated soil were studied through soil remediation tests and percolation leaching tests using ferrous sulfate (FeSO4) and calcium polysulfide (CaSx) as reductants. The effects of different reductants on the reduction and remediation of Cr(Ⅵ) in chromium contaminated soil were analyzed by BCR morphology extraction technology and X-ray diffraction analysis method. The results showed that the permeability coefficient of FeSO4 repair sample first increased and decreased with the increase of FeSO4/Cr(Ⅵ) molar ratio, which was contrary to the change rule of permeability coefficient of CaSx repair sample. Under the same conditions, the permeability coefficient of FeSO4 repair sample was higher than that of CaSx repair sample, indicating that CaSx had better impermeability. With the increase of the amount of reducing agent, the concentration of Cr(Ⅵ) in the exudate of the reducing agent repair sample decreased. When the FeSO4/Cr(Ⅵ) molar ratio was greater than 3, the concentration of Cr(Ⅵ) in the exudate was lower than the concentration limit of Cr(Ⅵ) in the Class Ⅲ groundwater standard. Similarly, when the molar ratio of CaSx/Cr(Ⅵ) was greater than 3, the concentration of Cr(Ⅵ) in leachate at the later stage of leaching test also droped below 0.05 mg·L−1. The occurrence form of chromium in stabilized soil changed with the increase of the amount of reducing agent. Chromium was transformed from the weak acid extraction state to the reducible and oxidable state, and different molar ratios of reducing agent would also affect the composition of the repaired soil. The research results can provide a theoretical reference for the application of soil remediation in Cr(Ⅵ) contaminated sites.
-
表 1 实验用土壤基本物理力学参数
Table 1. Basic physical and mechanical parameters of soil
天然
含水率/%天然干
密度/(g·cm−3)最优
含水率/%液限/% 塑限/% 比重 6.11 1.54 20.5 37.3 22.4 2.72 -
[1] 白俊宾, 江晓玲, 杨红健. 几种常用还原剂在铬污染土壤中的应用探讨[J]. 化学试剂, 2021, 43(2): 127-135. doi: 10.13822/j.cnki.hxsj.2021007819 [2] 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8. doi: 10.13205/j.hjgc.202006001 [3] CHOPPALA G, KUNHIKRISHNAN A, SESHADRI B, et al. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils[J]. Journal of Geochemical Exploration, 2018, 184: 255-260. [4] PRADO C, PONCE S C, PAGANO E, et al. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance[J]. Aquatic Toxicology (Amsterdam, Netherlands), 2016: 213-221. [5] 卢鑫, 罗启仕, 刘馥雯, 等. 硫化物对电镀厂铬污染土壤的稳定化效果及其机理研究[J]. 环境科学学报, 2017, 37(6): 2315-2321. doi: 10.13671/j.hjkxxb.2017.0028 [6] 史开宇, 王兴润, 范琴, 等. 不同还原药剂修复Cr(Ⅵ)污染土壤的稳定性评估[J]. 环境工程学报, 2020, 14(2): 473-479. [7] 任学昌, 张曦, 时秋红, 等. FeSO4联合固化剂修复铬污染土壤的稳定化研究[J]. 安全与环境学报, 2022, 22(4): 2231-2240. [8] 张亭亭, 魏明俐, 熊欢, 等. 多硫化钙对铬污染土的稳定性能及铬赋存形态试验研究[J]. 岩石力学与工程学报, 2017, 36(S2): 4282-4289. doi: 10.13722/j.cnki.jrme.2017.1166 [9] CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201: 33-42. [10] SHACKELFORD C D, GLADE M J. Analytical mass leaching model for contaminated soil and soil stabilized waste[J]. Ground Water, 1997, 35(2): 233-242. doi: 10.1111/j.1745-6584.1997.tb00080.x [11] 邵俐, 施倩芸, 蒙强. 固化重金属铜镉污染底泥渗透特性试验研究[J]. 上海理工大学学报, 2018, 40(4): 403-408. doi: 10.13255/j.cnki.jusst.2018.04.015 [12] 冯亚松. 镍锌复合重金属污染黏土固化稳定化研究[D].南京: 东南大学, 2021. [13] 国家市场监督管理总局, 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019. [14] 国家市场监督管理总局, 生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600-2018[S]. 北京: 中国环境科学出版社, 2018. [15] 王宇峰, 杨强, 刘磊, 等. 不同还原剂对某铬渣污染场地修复效果的实验研究[J]. 环境污染与防治, 2017, 39(4): 384-387+391. doi: 10.15985/j.cnki.1001-3865.2017.04.008 [16] 黄莹, 徐民民, 李书鹏, 等. 还原稳定化法修复六价铬污染土壤的中试研究[J]. 环境工程学报, 2015, 9(2): 951-958. doi: 10.12030/j.cjee.20150274 [17] 王婉玉, 刘元元, 黄思敏, 等. 利用CPS还原稳定化修复Cr(Ⅵ)污染土壤[J]. 环境工程学报, 2017, 11(6): 3853-3860. doi: 10.12030/j.cjee.201604039 [18] 龚亚龙, 范敏, 高晓梅, 等. 铬污染土壤还原固化稳定化药剂的筛选[J]. 土木与环境工程学报(中英文), 2021, 43(5): 187-195. [19] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h [20] 刘馥雯, 罗启仕, 卢鑫, 等. 多硫化钙对铬污染土壤处理效果的长期稳定性研究[J]. 环境科学学报, 2018, 38(5): 1999-2007. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国环境科学出版社, 2018. [22] YUAN W Y, XU W T, ZHANG Z W, et al. Rapid Cr(VI) reduction and immobilization in contaminated soil by mechanochemical treatment with calcium polysulfide[J]. Chemosphere, 2019, 227: 657-661. doi: 10.1016/j.chemosphere.2019.04.108 [23] ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410 [24] 贺勇, 胡广, 张召, 等. 污染场地六价铬迁移转化机制与数值模拟研究[J]. 岩土力学, 2022, 43(2): 528-538. [25] 李磊, 朱伟, 屈阳, 等. 低渗透污染土水动力弥散参数试验研究[J]. 岩土工程学报, 2011, 33(8): 1308-1312. [26] 赵虎彪. 铁系物还原稳定技术在铬污染土壤修复中的应用研究[D]. 杭州: 浙江大学, 2019. [27] 张亭亭, 李江山, 薛强, 等. FeSO4稳定铬污染土的铬赋存形态及浸出特性研究[J]. 岩土力学, 2019, 40(12): 4652-4658. [28] 赵祥, 姜春露, 陈星, 等. 多硫化钙与亚铁盐联用去除工业废水中的Cr(Ⅵ)[J]. 环境工程学报, 2021, 15(12): 3854-3864. doi: 10.12030/j.cjee.202108155