[1] UNNITHAN A, BEKELE D N, CHADALAVADA S, et al. Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario[J]. Science of the Total Environment, 2021, 796: 148885. doi: 10.1016/j.scitotenv.2021.148885
[2] FENG S J, ZHU Z W, CHEN H X, et al. Two-dimensional analytical solution for subsurface volatile organic compounds vapor diffusion from a point source in layered unsaturated zone[J]. Journal of Contaminant Hydrology, 2021, 243: 103916. doi: 10.1016/j.jconhyd.2021.103916
[3] 孙琳, 张敏, 郭彩娟, 等. 非水相液体污染场地源区自然消除研究进展[J]. 岩矿测试, 2022, 41(5): 704-716. doi: 10.15898/j.cnki.11-2131/td.202110110145
[4] MA J, MCHUGH T, BECKLEY L, et al. Vapor Intrusion Investigations and Decision-Making: A Critical Review[J]. Environmental Science & Technology, 2020, 54(12): 7050-69.
[5] YAO Y, MAO F, XIAO Y, et al. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination[J]. Water Research, 2019, 150: 111-119. doi: 10.1016/j.watres.2018.11.038
[6] 龚亚炬, 宋云, 李培中, 等. 粉砂介质包气带中甲苯蒸气挥发的迁移转化[J]. 环境工程学报, 2018, 12(1): 206-212. doi: 10.12030/j.cjee.201703080
[7] 王梦杰, 范婷婷, 王祥, 等. 典型农药污染场地地下水中氯代脂肪烃自然衰减研究[J]. 环境科学学报, 2022, 42(6): 155-166. doi: 10.13671/j.hjkxxb.2021.0505
[8] SOOKHAK LARI K, DAVIS G B, RAYNER J L, et al. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches[J]. Water Research, 2019, 157: 630-646. doi: 10.1016/j.watres.2019.04.001
[9] RIVETT M O, WEALTHALL G P, DEARDEN R A, et al. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones[J]. Journal of Contaminant Hydrology, 2011, 123(3/4): 130-156. doi: 10.1016/j.jconhyd.2010.12.013
[10] LAHVIS M A, BAEHR A L, BAKER R J. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions[J]. Water Resources Research, 1999, 35(3): 753-765. doi: 10.1029/1998WR900087
[11] HöHENER P, DAKHEL N, CHRISTOPHERSEN M, et al. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Værløse, Denmark[J]. Journal of Contaminant Hydrology, 2006, 88(3/4): 337-358. doi: 10.1016/j.jconhyd.2006.07.007
[12] GARG S, NEWELL C J, KULKARNI P R, et al. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 62-81.
[13] YAO Y, WANG Y, ZHONG Z, et al. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources[J]. Journal Of Environmental Quality, 2017, 46(4): 776-784. doi: 10.2134/jeq2017.01.0011
[14] BEKELE D N, NAIDU R, CHADALAVADA S. Influence of soil properties on vapor-phase sorption of trichloroethylene[J]. Journal of Hazardous Materials, 2016, 306: 34-40. doi: 10.1016/j.jhazmat.2015.12.002
[15] BUSHNAF K M, PURICELLI S, SAPONARO S, et al. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil[J]. Journal of Contaminant Hydrology, 2011, 126(3/4): 208-215. doi: 10.1016/j.jconhyd.2011.08.008
[16] HöHENER P, DUWIG C, PASTERIS G, et al. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand[J]. Journal of Contaminant Hydrology, 2003, 66(1/2): 93-115. doi: 10.1016/S0169-7722(03)00005-6
[17] UGWOHA E, ANDRESEN J M. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release[J]. Journal of Environmental Sciences, 2014, 26(3): 608-616. doi: 10.1016/S1001-0742(13)60436-2
[18] ENGLISH C W, LOEHR R C. Degradation of organic vapors in unsaturated soils[J]. Journal of Hazardous Materials, 1991, 28(1): 55-64.
[19] LEE E H, KIM J, CHO K S, et al. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831[J]. Environmental Science and Pollution Research, 2010, 17(1): 64-77. doi: 10.1007/s11356-009-0238-x
[20] SINGH S N, KUMARI B, MISHRA S. Microbial Degradation of Alkanes[M]. Microbial Degradation of Xenobiotics. 2012: 439-469.
[21] PASTERIS G, WERNER D, KAUFMANN K, et al. Vapor phase transport and biodegradation of volatile fuel compounds in the unsaturated zone: A large scale lysimeter experiment[J]. Environmental Science & Technology, 2002, 36(1): 30-39.
[22] MENG Q, WANG X, WANG X, et al. Biodegradation of light hydrocarbon(C5-C8) in shale gases from the Triassic Yanchang Formation, Ordos basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 183-194. doi: 10.1016/j.jngse.2018.01.002
[23] CHIKERE C B, OKPOKWASILI G C, CHIKERE B O. Monitoring of microbial hydrocarbon remediation in the soil[J]. 3 Biotech, 2011, 1(3): 117-138. doi: 10.1007/s13205-011-0014-8
[24] VARJANI S J. Microbial degradation of petroleum hydrocarbons [J]. Bioresource Technology, 2017, 223: 277-286.
[25] EL-NAAS M H, ACIO J A, EL TELIB A E. Aerobic biodegradation of BTEX: Progresses and Prospects[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1104-1122. doi: 10.1016/j.jece.2014.04.009
[26] ALVAREZ P J, VOGEL T M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries[J]. Applied and environmental microbiology, 1991, 57(10): 2981-2985. doi: 10.1128/aem.57.10.2981-2985.1991
[27] DEEB R A, ALVAREZ-COHEN L. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous[J]. Biotechnology and Bioengineering, 1999, 62(5): 526-536. doi: 10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8