-
传统工业企业由于环境管理粗放,可能存在跑冒滴漏,导致土壤和地下水受到污染[1],进而对人群健康和周边环境造成影响。根据《污染地块土壤环境管理办法》[2]规定,经风险评估确认风险超过可接受水平的污染地块,需开展治理与修复,并在工程完工后进行效果评估。修复目标值作为污染修复终点,是确定修复范围和工程量的主要依据,也是修复效果的评估标准值,更是污染地块环境管理的重要决策依据[3-4]。因此,科学制定合理的修复目标值是污染地块实现可持续修复的前提。
纵观美国、英国、加拿大和澳大利亚等国家的污染地块环境管理体系,均综合考虑土壤污染对人体健康和环境产生不利影响的总体控制要求[5-7],根据具体地块情况和各利益方诉求分层次进行风险评估制定修复目标值[8-9],修复目标值随概念模型研究的逐渐深化不断做动态适用性调整,且实行全过程风险管理机制[10],保证修复目标值在地块全生命周期内的可行性。我国现已建立污染场地健康风险评估技术标准体系[3-4,11],修复目标值亦是依据健康风险评估方法,采用确定性模型,基于污染物总量来确定[1,12],且实行的是把修复目标值作为固定评价限值的管理机制[12],未考虑污染物在环境中赋存形态对暴露途径和毒性效应的影响,低估或高估了健康风险[1,13],影响了修复目标值制定的合理性[13],且难以应对复杂污染地块管理中不确定性挑战[12,14]。
通过对比分析国内外修复目标值的内在含义、制定的技术方法和决策机制,研究我国污染地块环境管理的管理需求,并提出统筹考虑人体健康风险和环境风险,结合层次化与精细化风险评估、动态优化和基于全过程风险管理的修复目标值制定方法体系,以期为我国污染场地土壤修复目标值的科学合理制定提供借鉴。
场地土壤修复目标值制定方法与政策
A study on methodology and policies for developing soil remediation target value of contaminated sites
-
摘要: 土壤污染物修复目标值的制定是污染场地环境管理的重要环节,制定科学合理的修复目标值是能否实现绿色可持续修复的关键。通过对比分析美国、英国、加拿大、澳大利亚等国家修复目标值的内涵、制定技术方法和决策管理机制,发现国内外关于土壤污染物修复的总体目标基本一致,即以保护人体健康和生态环境质量作为总体控制要求;但对于具体场地的定量修复目标值,国内外在制定依据、制定方法、决策管理机制等方面存在差异。我国主要在健康风险评估阶段,采用第一和第二层次风险评估方法确定修复目标值,而欧美国家主要基于全过程风险管理的决策管理机制,结合土壤中污染物的形态归趋和迁移转化规律,采用不同层次的风险评估,制定地块特征的修复目标值,保证健康风险和环境风险均达到可接受水平。借鉴国外经验,结合我国污染地块环境管理实践,提出土壤污染物修复目标值制定方法优化的建议:1) 统筹考虑人体健康风险和环境风险;2) 建立基于层次化、精细化的风险评估与修复目标值确定方法体系;3) 构建修复目标值动态适应性调整机制;4) 形成污染地块全过程风险管理机制。Abstract: Development of soil remediation target values (SRTVs) is an important aspect of contaminated sites management, and reasonable remediation target values are the basis for supporting sustainable site remediation decisions. In this study, the definitions, methodologies and decision mechanisms for developing SRTVs in some developed countries such as the United States, United Kingdom, Canada and Australia were scrutinized and addressed. It was found that the definitions of remediation goals were generally identical between countries as well as domestic and abroad. Protection of human health and environmental quality was usually the remediation objectives. However, there were dissimilarities in developing quantitative target values for specific sites in terms of scientific and management basis, development methods, and determination mechanisms. In China, SRTVs were developed in tier 1 and tier 2 phases of risk assessment for human health. However, the development of SRTVs in developed countries involved a whole process of risk management. The fate and transport of soil contaminants and their speciations would be considered and multi-tiers of risk assessment were performed to develop SRTVs in specific sites. Both human health and environmental risks should be warranted and acceptable risk obtained. Referring to the experiences of developed countries and considering to the practical aspects of China in contaminated sites management, some suggestions for developing and improving SRTVs in specific sites were proposed, including: (1) A full consideration of both health risk and environmental risk in the development of SRTVs, (2) tiered and refined risk assessment approaches should be used, (3) the adoptive adjustment strategy should be established in developing and refining SRTVs, and (4) a risk management concept should be included and applied throughout the entire remediation process.
-
表 1 国外土壤污染修复目标值制定技术路径
Table 1. Technical route of setting remediation target value for soil in contaminated sites
表 2 国外污染地块土壤污染精细化风险评估典型案例
Table 2. International case study of refined risk assessment for contaminated sites
精细化评估方法 评估地块 关注污染物 方法与参数 第三层次与第二层次
修复目标值的比值基于土壤气VOCs实测浓度/挥发通量 美国新泽西州皮卡汀尼兵工厂[18] 三氯乙烯 基于土壤气VOCs实测浓度 1~3个数量级 美国加州汽油泄漏场地[19] 苯 基于土壤气VOCs实测浓度和挥发通量,考虑生物降解作用 3~5个数量级 美国劳伦斯·利弗莫尔国家实验室场地[19] 三氯乙烯 基于土壤气VOCs实测浓度和挥发通量 2个数量级 基于人体 (生物) 可给性 美国俄勒冈州某铅锌冶炼厂[27] 铅 PBET(physiologically based extraction test) 3.8 美国犹他州某铅锌冶炼厂[27] 铅 PBET 4.5 英国11个煤制气厂[37] 多环芳烃 RIVM(rijksinstituut voor volksgezondheid en milieu), SHIME(simulated human intestinal microbial ecosystem) 1.7~10.0 概率风险评估 意大利波维萨煤制气厂[38] 苯系物 采用蒙特卡罗方法评估暴露参数的不确定性 1.1 (苯)
1.6 (甲苯)基于不同环境介质等效摄入量 英国土壤砷指导值[36] 砷 基于饮用水中砷等效摄入量 47.0 (住宅用地)
213.3 (商业用地)表 3 国内污染地块土壤污染精细化风险评估典型案例
Table 3. Domestic case study of refined risk assessment for contaminated sites
精细化评估方法 评估地块 关注污染物 方法与参数 第三层次与第二层次
修复目标值的比值基于土壤气VOCs实测
浓度/挥发通量江苏某化工厂[48] 氯代烃 J&E-DED模型 (基于土壤浓度) 1~3个数量级 基于土壤气挥发通量 2.1 北京某焦化厂[46] 苯 J&E模型 (基于土壤气实测浓度) 10.0 基于人体 (生物)
可给性黑龙江某氯碱企业[44] 汞 PBET 7.5 北京某焦化厂等4个地块[51] 多环芳烃 DIN(deutsches institut für normung) 23.9~83.5 (地块BJ)
14.5~18.2 (地块SD)
7.3~8.9 (地块BG)
2.0 (地块DL)湖南某冶炼厂[52] 砷、镉、铜、铅、锌 PBET
IVG(in vitro gastrointesinal method)1.2~1.8 (砷)
1.4~1.7 (镉)
1.3~1.7 (铜)
1.0~1.1 (铅)
1.2~1.4 (锌)天津某制药厂[56] 镍 UBM(the unified bioaccessibility method), IBM(inhalation bioaccessibility method) 3.0 概率风险评估 北京某焦化厂[54] 苯系物、
多环芳烃蒙特卡罗方法评估暴露参数与理化性质参数的不确定性 1.9 (萘)
2.4 (苯并[a]芘) -
[1] 周友亚, 姜林, 张超艳, 等. 我国污染场地风险评估发展历程概述[J]. 环境保护, 2019, 47(8): 34-38. doi: 10.14026/j.cnki.0253-9705.2019.08.009 [2] 中华人民共和国生态环境部. 污染地块土壤环境管理办法(试行)[EB/OL]. [2016-12-31]. https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm [3] 中华人民共和国生态环境部. 建设用地土壤修复技术导则: HJ 25.4—2019[S]. 北京: 中国环境科学出版社, 2019. [4] 中华人民共和国生态环境部. 污染地块风险管控与土壤修复效果评估技术导则: HJ 25.5—2018[S]. 北京: 中国环境出版社, 2018. [5] US Environmental Protection Agency. Risk-assessment guidance for Superfund. Volume 1. Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). Interim report[R]. Washington DC: Office of Emergency and Remedial Response, 1991. [6] Canadian Council of Ministers of the Environment. Guidance manual for developing site-specific soil quality remediation objectives for contaminated sites in Canada[R]. Winnipeg: Canadian Council of Ministers of the Environment, 1996. [7] Cooperative Research Centre for Contamination Assessment and Remediation of the Environment. National remediation framework: guideline on establishing remediation objectives[R]. Adelaide: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, 2019. [8] American Society for Testing and Materials. ASTM E2081-00(2015), Standard guide for risk-based corrective action[S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 2015. [9] Department for Environment Food and Rural Affairs. Model procedures for the management of land contamination[R]. Bristol: UK Environment Agency, 2004. [10] Interstate Technology & Regulatory Council. Remediation management of complex sites: RMCS-1[R]. Washington DC: Interstate Technology & Regulatory Council, 2017. [11] 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境科学出版社, 2019. [12] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. doi: 10.13198/j.issn.1001-6929.2020.07.14 [13] 姜林, 樊艳玲, 钟茂生, 等. 我国污染场地管理技术标准体系探讨[J]. 环境保护, 2017, 45(9): 38-43. doi: 10.14026/j.cnki.0253-9705.2017.09.008 [14] LEE M H, TRUEX M, FRESHLEY M, et al. Idaho national laboratory test area north: application of endpoints to guide adaptive remediation at a complex site[J]. Remediation Journal, 2016, 26(4): 11-25. doi: 10.1002/rem.21483 [15] RODRIGUES S M, PEREIRA M E, da SILVA E F, et al. A review of regulatory decisions for environmental protection: part I—challenges in the implementation of national soil policies[J]. Environment International, 2009, 35(1): 202-213. doi: 10.1016/j.envint.2008.08.007 [16] CAREY M A, MARSLAND P A, SMITH J W N. Remedial targets methodology: hydrogeological risk assessment for land contamination[R]. Bristol: UK Environmental Agency, 2006. [17] VOLCHKO Y, BERGGREN KLEJA D, BACK P E, et al. Assessing costs and benefits of improved soil quality management in remediation projects: a study of an urban site contaminated with PAH and metals[J]. Science of the Total Environment, 2020, 707: 135582. doi: 10.1016/j.scitotenv.2019.135582 [18] SMITH J A, CHIOU C T, KAMMER J A, et al. Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at Picatinny Arsenal, New Jersey[J]. Environmental Science & Technology, 1990, 24(5): 676-683. [19] MCNEEL P J, DIBLEY V. Case study comparisons of vapor inhalation risk estimates: ASTM RBCA model predictions vs site specific soil vapor data[R]. Washington DC: Lawrencen Livermore National Laboratory, 1997. [20] ABREU L D V, JOHNSON P C. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model[J]. Environmental Science & Technology, 2005, 39(12): 4550-4561. [21] US Environmental Protection Agency. OSWER Technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air[R]. Washington DC: US Environmental Protection Agency, 2015. [22] Interstate Technology & Regulatory Council. Vapor intrusion pathway: A practical guideline[R]. Washington DC: Interstate Technology & Regulatory Council, 2007. [23] Construction Industry Research and Information Association. VOCs handbook: investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination[R]. London: Construction Industry Research and Information Association, 2009. [24] Canadian Council of Ministers of the Environment. PN 1555, Guidance manual for environmental site characterization in support of environmental and human health risk assessment[S]. Winnipeg: Canadian Council of Ministers of the Environment, 2016. [25] RUBY M V, SCHOOF R, BRATTIN W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21): 3697-3705. [26] WRAGG J, CAVE M. In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review[R]. Nottingham: British Geological Survey, 2002. [27] RUBY M V, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2): 422-430. [28] WRAGG J, CAVE M, BASTA N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19): 4016-4030. [29] US Environmental Protection Agency. EPA 9200.2-86, Standard operating procedure for an in vitro bioaccessibility assay for lead in soil[S]. Washington DC: US Environmental Protection Agency, 2008. [30] Deutsches Institut für Normung. DIN 19738-2017, Soil quality-bioaccessibility of organic and inorganic pollutants from contaminated soil material[S]. Berlin: Deutsches Institut für Normung, 2017. [31] US Environmental Protection Agency. Validation assessment of in vitro lead bioaccessibility assay for predicting relative bioavailability of lead in soils and soil-like materials at superfund sites[R]. Washington DC: US Environmental Protection Agency, 2017. [32] US Environmental Protection Agency. OSWER 9285.7-80, Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk Assessment[S]. Washington DC: US Environmental Protection Agency, 2007. [33] LI H B, LI M Y, ZHAO D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils: measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1303-1338. doi: 10.1080/10643389.2019.1656512 [34] VISCUSI W K, HAMILTON J T, DOCKINS P C. Conservative versus mean risk assessments: implications for superfund policies[J]. Journal of Environmental Economics and Management, 1997, 34(3): 187-206. doi: 10.1006/jeem.1997.1012 [35] US Environmental Protection Agency. Risk assessment guidance for Superfund: Volume III - Part A, Process for conducting probabilistic risk assessment[R]. Washington DC: US Environmental Protection Agency, 2001. [36] MARTIN I, BURCA R D, MORGAN H. Soil guideline values for inorganic arsenic in soil[R]. Bristol: UK Environment Agency, 2009. [37] CAVE M R, WRAGG J, HARRISON I, et al. Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples[J]. Environmental Science & Technology, 2010, 44(7): 2654-2660. [38] BONOMO L, CASERINI S, POZZI C, et al. Target cleanup levels at the site of a former manufactured gas plant in northern Italy: deterministic versus probabilistic results[J]. Environmental Science & Technology, 2000, 34(18): 3843-3848. [39] US Environmental Protection Agency. EPA/540/G-89/004, Guidance for conducting remedial investigations and feasibility studies under CERCLA[S]. Washington DC: US Environmental Protection Agency, 1988. [40] US Environmental Protection Agency. A guide to preparing Superfund proposed plans, records of decision, and other remedy selection decision documents[R]. Washington DC: UK Environment Agency, 1999. [41] BROMBAL D, WANG H Y, PIZZOL L, et al. Soil environmental management systems for contaminated sites in China and the EU. Common challenges and perspectives for lesson drawing[J]. Land Use Policy, 2015, 48: 286-298. doi: 10.1016/j.landusepol.2015.05.015 [42] 中华人民共和国生态环境部. 建设用地土壤污染风险管控和修复术语: HJ 682—2019[S]. 北京: 中国环境科学出版社, 2019. [43] 马杰. 我国挥发性有机污染地块调查评估中存在的问题及对策建议[J]. 环境工程学报, 2021, 15(1): 3-7. doi: 10.12030/j.cjee.202007080 [44] 陈卓, 张丹, 吴志远, 等. 基于形态及生物可给性的汞污染场地概率风险[J]. 环境科学研究, 2021, 34(11): 2748-2756. doi: 10.13198/j.issn.1001-6929.2021.07.11 [45] 北京市市场监督管理局. 建设用地土壤污染状况调查与风险评估技术导则: DB11/T 656—2019[S]. 北京: 北京市市场监督管理局, 2019. [46] 姜林, 钟茂生, 梁竞, 等. 层次化健康风险评估方法在苯污染场地的应用及效益评估[J]. 环境科学, 2013, 34(3): 1034-1043. doi: 10.13227/j.hjkx.2013.03.031 [47] MA J, MCHUGH T, BECKLEY L, et al. Vapor intrusion investigations and decision-making: a critical review[J]. Environmental Science & Technology, 2020, 54(12): 7050-7069. [48] 李卫东, 张超艳, 郭晓欣, 等. 基于土壤气挥发通量的污染场地三氯甲烷健康风险评估[J]. 生态毒理学报, 2021, 16(1): 87-96. [49] ZHANG R H, JIANG L, ZHONG M S, et al. A source depletion model for vapor intrusion involving the influence of building characteristics[J]. Environmental Pollution, 2019, 246: 864-872. doi: 10.1016/j.envpol.2018.12.035 [50] ZHANG R H, JIANG L, ZHONG M S, et al. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science & Technology, 2019, 53(2): 789-797. [51] 范婧婧, 周友亚, 王淑萍, 等. 基于DIN测试的场地土壤PAHs生物可给性及健康风险研究[J]. 环境科学研究, 2020, 33(11): 2629-2638. doi: 10.13198/j.issn.1001-6929.2020.05.48 [52] 冯康宏, 范缙, Lik Ung Stanley Hii, 等. 基于生物可给性的某冶炼厂土壤重金属健康风险评价[J]. 中国环境科学, 2021, 41(1): 442-450. doi: 10.3969/j.issn.1000-6923.2021.01.050 [53] ZHANG R H, HAN D, JIANG L, et al. Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method[J]. Journal of Hazardous Materials, 2020, 384: 121239. doi: 10.1016/j.jhazmat.2019.121239 [54] XIA T X, JIANG L, JIA X Y, et al. Application of probabilistic risk assessment at a coking plant site contaminated by polycyclic aromatic hydrocarbons[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 441-450. [55] GUO P, LI H M, ZHANG G M, et al. Contaminated site-induced health risk using Monte Carlo simulation: evaluation from the brownfield in Beijing, China[J]. Environmental Science and Pollution Research International, 2021, 28(20): 25166-25178. doi: 10.1007/s11356-021-12429-4 [56] ZHONG M S, JIANG L. Refining health risk assessment by incorporating site-specific background concentration and bioaccessibility data of Nickel in soil[J]. Science of the Total Environment, 2017, 581-582: 866-873. doi: 10.1016/j.scitotenv.2017.01.036 [57] JIANG L, ZHANG R H, ZHANG L N, et al. Improving the regulatory health risk assessment of mercury-contaminated sites[J]. Journal of Hazardous Materials, 2021, 402: 123493. doi: 10.1016/j.jhazmat.2020.123493 [58] ACCORNERO M, JIANG L, NAPOLI E, et al. Probability distributions of arsenic in soil from brownfield sites in Beijing (China): statistical characterization of the background populations and implications for site assessment studies[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 465-474. [59] 陈梦舫, 韩璐, 罗飞. 污染场地土壤与地下水风险评估方法学[M]. 北京: 科学出版社, 2017. [60] 刘朋超, 武文培, 冉睿予, 等. 基于保护水环境的场地地下水风险评估模拟应用研究[J]. 土壤, 2022, 54(1): 136-144. doi: 10.13758/j.cnki.tr.2022.01.018 [61] 马杰. 土壤气监测在污染地块调查评估中的优势、局限及解决思路[J]. 环境工程学报, 2021, 15(8): 2531-2535. doi: 10.12030/j.cjee.202011091