[1] 周友亚, 姜林, 张超艳, 等. 我国污染场地风险评估发展历程概述[J]. 环境保护, 2019, 47(8): 34-38. doi: 10.14026/j.cnki.0253-9705.2019.08.009
[2] 中华人民共和国生态环境部. 污染地块土壤环境管理办法(试行)[EB/OL]. [2016-12-31]. https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm
[3] 中华人民共和国生态环境部. 建设用地土壤修复技术导则: HJ 25.4—2019[S]. 北京: 中国环境科学出版社, 2019.
[4] 中华人民共和国生态环境部. 污染地块风险管控与土壤修复效果评估技术导则: HJ 25.5—2018[S]. 北京: 中国环境出版社, 2018.
[5] US Environmental Protection Agency. Risk-assessment guidance for Superfund. Volume 1. Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). Interim report[R]. Washington DC: Office of Emergency and Remedial Response, 1991.
[6] Canadian Council of Ministers of the Environment. Guidance manual for developing site-specific soil quality remediation objectives for contaminated sites in Canada[R]. Winnipeg: Canadian Council of Ministers of the Environment, 1996.
[7] Cooperative Research Centre for Contamination Assessment and Remediation of the Environment. National remediation framework: guideline on establishing remediation objectives[R]. Adelaide: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, 2019.
[8] American Society for Testing and Materials. ASTM E2081-00(2015), Standard guide for risk-based corrective action[S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 2015.
[9] Department for Environment Food and Rural Affairs. Model procedures for the management of land contamination[R]. Bristol: UK Environment Agency, 2004.
[10] Interstate Technology & Regulatory Council. Remediation management of complex sites: RMCS-1[R]. Washington DC: Interstate Technology & Regulatory Council, 2017.
[11] 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境科学出版社, 2019.
[12] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. doi: 10.13198/j.issn.1001-6929.2020.07.14
[13] 姜林, 樊艳玲, 钟茂生, 等. 我国污染场地管理技术标准体系探讨[J]. 环境保护, 2017, 45(9): 38-43. doi: 10.14026/j.cnki.0253-9705.2017.09.008
[14] LEE M H, TRUEX M, FRESHLEY M, et al. Idaho national laboratory test area north: application of endpoints to guide adaptive remediation at a complex site[J]. Remediation Journal, 2016, 26(4): 11-25. doi: 10.1002/rem.21483
[15] RODRIGUES S M, PEREIRA M E, da SILVA E F, et al. A review of regulatory decisions for environmental protection: part I—challenges in the implementation of national soil policies[J]. Environment International, 2009, 35(1): 202-213. doi: 10.1016/j.envint.2008.08.007
[16] CAREY M A, MARSLAND P A, SMITH J W N. Remedial targets methodology: hydrogeological risk assessment for land contamination[R]. Bristol: UK Environmental Agency, 2006.
[17] VOLCHKO Y, BERGGREN KLEJA D, BACK P E, et al. Assessing costs and benefits of improved soil quality management in remediation projects: a study of an urban site contaminated with PAH and metals[J]. Science of the Total Environment, 2020, 707: 135582. doi: 10.1016/j.scitotenv.2019.135582
[18] SMITH J A, CHIOU C T, KAMMER J A, et al. Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at Picatinny Arsenal, New Jersey[J]. Environmental Science & Technology, 1990, 24(5): 676-683.
[19] MCNEEL P J, DIBLEY V. Case study comparisons of vapor inhalation risk estimates: ASTM RBCA model predictions vs site specific soil vapor data[R]. Washington DC: Lawrencen Livermore National Laboratory, 1997.
[20] ABREU L D V, JOHNSON P C. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model[J]. Environmental Science & Technology, 2005, 39(12): 4550-4561.
[21] US Environmental Protection Agency. OSWER Technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air[R]. Washington DC: US Environmental Protection Agency, 2015.
[22] Interstate Technology & Regulatory Council. Vapor intrusion pathway: A practical guideline[R]. Washington DC: Interstate Technology & Regulatory Council, 2007.
[23] Construction Industry Research and Information Association. VOCs handbook: investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination[R]. London: Construction Industry Research and Information Association, 2009.
[24] Canadian Council of Ministers of the Environment. PN 1555, Guidance manual for environmental site characterization in support of environmental and human health risk assessment[S]. Winnipeg: Canadian Council of Ministers of the Environment, 2016.
[25] RUBY M V, SCHOOF R, BRATTIN W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21): 3697-3705.
[26] WRAGG J, CAVE M. In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review[R]. Nottingham: British Geological Survey, 2002.
[27] RUBY M V, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30(2): 422-430.
[28] WRAGG J, CAVE M, BASTA N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19): 4016-4030.
[29] US Environmental Protection Agency. EPA 9200.2-86, Standard operating procedure for an in vitro bioaccessibility assay for lead in soil[S]. Washington DC: US Environmental Protection Agency, 2008.
[30] Deutsches Institut für Normung. DIN 19738-2017, Soil quality-bioaccessibility of organic and inorganic pollutants from contaminated soil material[S]. Berlin: Deutsches Institut für Normung, 2017.
[31] US Environmental Protection Agency. Validation assessment of in vitro lead bioaccessibility assay for predicting relative bioavailability of lead in soils and soil-like materials at superfund sites[R]. Washington DC: US Environmental Protection Agency, 2017.
[32] US Environmental Protection Agency. OSWER 9285.7-80, Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk Assessment[S]. Washington DC: US Environmental Protection Agency, 2007.
[33] LI H B, LI M Y, ZHAO D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils: measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1303-1338. doi: 10.1080/10643389.2019.1656512
[34] VISCUSI W K, HAMILTON J T, DOCKINS P C. Conservative versus mean risk assessments: implications for superfund policies[J]. Journal of Environmental Economics and Management, 1997, 34(3): 187-206. doi: 10.1006/jeem.1997.1012
[35] US Environmental Protection Agency. Risk assessment guidance for Superfund: Volume III - Part A, Process for conducting probabilistic risk assessment[R]. Washington DC: US Environmental Protection Agency, 2001.
[36] MARTIN I, BURCA R D, MORGAN H. Soil guideline values for inorganic arsenic in soil[R]. Bristol: UK Environment Agency, 2009.
[37] CAVE M R, WRAGG J, HARRISON I, et al. Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples[J]. Environmental Science & Technology, 2010, 44(7): 2654-2660.
[38] BONOMO L, CASERINI S, POZZI C, et al. Target cleanup levels at the site of a former manufactured gas plant in northern Italy:   deterministic versus probabilistic results[J]. Environmental Science & Technology, 2000, 34(18): 3843-3848.
[39] US Environmental Protection Agency. EPA/540/G-89/004, Guidance for conducting remedial investigations and feasibility studies under CERCLA[S]. Washington DC: US Environmental Protection Agency, 1988.
[40] US Environmental Protection Agency. A guide to preparing Superfund proposed plans, records of decision, and other remedy selection decision documents[R]. Washington DC: UK Environment Agency, 1999.
[41] BROMBAL D, WANG H Y, PIZZOL L, et al. Soil environmental management systems for contaminated sites in China and the EU. Common challenges and perspectives for lesson drawing[J]. Land Use Policy, 2015, 48: 286-298. doi: 10.1016/j.landusepol.2015.05.015
[42] 中华人民共和国生态环境部. 建设用地土壤污染风险管控和修复术语: HJ 682—2019[S]. 北京: 中国环境科学出版社, 2019.
[43] 马杰. 我国挥发性有机污染地块调查评估中存在的问题及对策建议[J]. 环境工程学报, 2021, 15(1): 3-7. doi: 10.12030/j.cjee.202007080
[44] 陈卓, 张丹, 吴志远, 等. 基于形态及生物可给性的汞污染场地概率风险[J]. 环境科学研究, 2021, 34(11): 2748-2756. doi: 10.13198/j.issn.1001-6929.2021.07.11
[45] 北京市市场监督管理局. 建设用地土壤污染状况调查与风险评估技术导则: DB11/T 656—2019[S]. 北京: 北京市市场监督管理局, 2019.
[46] 姜林, 钟茂生, 梁竞, 等. 层次化健康风险评估方法在苯污染场地的应用及效益评估[J]. 环境科学, 2013, 34(3): 1034-1043. doi: 10.13227/j.hjkx.2013.03.031
[47] MA J, MCHUGH T, BECKLEY L, et al. Vapor intrusion investigations and decision-making: a critical review[J]. Environmental Science & Technology, 2020, 54(12): 7050-7069.
[48] 李卫东, 张超艳, 郭晓欣, 等. 基于土壤气挥发通量的污染场地三氯甲烷健康风险评估[J]. 生态毒理学报, 2021, 16(1): 87-96.
[49] ZHANG R H, JIANG L, ZHONG M S, et al. A source depletion model for vapor intrusion involving the influence of building characteristics[J]. Environmental Pollution, 2019, 246: 864-872. doi: 10.1016/j.envpol.2018.12.035
[50] ZHANG R H, JIANG L, ZHONG M S, et al. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science & Technology, 2019, 53(2): 789-797.
[51] 范婧婧, 周友亚, 王淑萍, 等. 基于DIN测试的场地土壤PAHs生物可给性及健康风险研究[J]. 环境科学研究, 2020, 33(11): 2629-2638. doi: 10.13198/j.issn.1001-6929.2020.05.48
[52] 冯康宏, 范缙, Lik Ung Stanley Hii, 等. 基于生物可给性的某冶炼厂土壤重金属健康风险评价[J]. 中国环境科学, 2021, 41(1): 442-450. doi: 10.3969/j.issn.1000-6923.2021.01.050
[53] ZHANG R H, HAN D, JIANG L, et al. Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method[J]. Journal of Hazardous Materials, 2020, 384: 121239. doi: 10.1016/j.jhazmat.2019.121239
[54] XIA T X, JIANG L, JIA X Y, et al. Application of probabilistic risk assessment at a coking plant site contaminated by polycyclic aromatic hydrocarbons[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 441-450.
[55] GUO P, LI H M, ZHANG G M, et al. Contaminated site-induced health risk using Monte Carlo simulation: evaluation from the brownfield in Beijing, China[J]. Environmental Science and Pollution Research International, 2021, 28(20): 25166-25178. doi: 10.1007/s11356-021-12429-4
[56] ZHONG M S, JIANG L. Refining health risk assessment by incorporating site-specific background concentration and bioaccessibility data of Nickel in soil[J]. Science of the Total Environment, 2017, 581-582: 866-873. doi: 10.1016/j.scitotenv.2017.01.036
[57] JIANG L, ZHANG R H, ZHANG L N, et al. Improving the regulatory health risk assessment of mercury-contaminated sites[J]. Journal of Hazardous Materials, 2021, 402: 123493. doi: 10.1016/j.jhazmat.2020.123493
[58] ACCORNERO M, JIANG L, NAPOLI E, et al. Probability distributions of arsenic in soil from brownfield sites in Beijing (China): statistical characterization of the background populations and implications for site assessment studies[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 465-474.
[59] 陈梦舫, 韩璐, 罗飞. 污染场地土壤与地下水风险评估方法学[M]. 北京: 科学出版社, 2017.
[60] 刘朋超, 武文培, 冉睿予, 等. 基于保护水环境的场地地下水风险评估模拟应用研究[J]. 土壤, 2022, 54(1): 136-144. doi: 10.13758/j.cnki.tr.2022.01.018
[61] 马杰. 土壤气监测在污染地块调查评估中的优势、局限及解决思路[J]. 环境工程学报, 2021, 15(8): 2531-2535. doi: 10.12030/j.cjee.202011091