-
我国城市污水进水碳氮比(C/N)低的现象较为普遍,80%的污水处理厂BOD5/TN<3.6,仅有10%污水厂>4[1]。随着国家对污水出水总氮要求的日益提高,为达到稳定的脱氮效果,须通过外加碳源来弥补生物反硝化脱氮碳源的不足,因此增加了较多运营成本。葡萄糖、乙酸钠和甲醇作为主要碳源产品被投加于污水处理中,但也存在各自缺点:葡萄糖分子量大,冬季溶液黏度高,流动性差,污泥量较大;乙酸钠易结晶;甲醇属于易燃易爆品,对管理水平要求较高。
为降低外加碳源使用费用,研究和工程应用领域均开展了一些有益的尝试。通过对初沉和剩余污泥[2-6]、餐厨垃圾[7-9]等有机质进行机械破碎、厌氧发酵等方式处理后,对释放碳源进行回收再利用。但目前仍存在发酵液浓度低、溶解性COD与N、P元素分离、发酵液纯化与浓缩等问题,绝大多数工作仍止步于中试。在实际工作中,运营单位通过引入小股生化性优的果汁、甲醇等高浓度有机废水[10-11]用于补充主流废水处理中的碳源不足,获得了较好收益,但往往可遇不可求。此外,复合碳源[12-13]的开发亦为一个方向,张民权等[12]通过调整多种碳源配比,克服单一碳源劣势,同时在反硝化速率上可与乙酸钠相当。近2年,多种新型碳源的出现为水务行业提供了更多选择,其来源多为纯化后的工业副产品或复配品,主要成分为短链醇和糖类,目前来看,这类产品仍缺乏统一的行业规范,产品质量参差不齐,因此,在使用前对其进行小试评估非常关键。
本研究内容主要分为2部分:选取了3种新型碳源,BC5、BC6和BC8,以葡萄糖和乙酸钠为对比碳源,通过小试进行脱氮性能和经济性评估,优选出厂试碳源BC8;通过厂试评估BC8性能,以期达到污水运营“提质增效”之需求。
新型碳源用于脱氮的经济性对比及生物群落分析
Economic comparison and microbial community analysis of nitrogen removal with new carbon sources
-
摘要: 以淄博某污水厂生化出水为原水,通过活性污泥法反硝化小试试验,重点考察了3种新型碳源(农产品副产物BC5、制糖副产物二次加工品BC6和乙酸盐复配产品BC8)和2种常规碳源(C6H12O6、NaAc)的反硝化脱氮效果,以确定较优厂试新型碳源。小试结果表明,BC8在较优投加C/N为4.5时,可在160 min内将进水总氮由32.4降至<7 mg/L,最大反硝化速率达21.6 mg
${\rm{NO}}_3^ - $ -N/(L·h)。在88 d厂试期内,在TN约5 mg/L同等出水水质条件下,BC8日均用量和使用成本仅为葡萄糖的38.2%和92%,经济性良好。对厂试活性污泥微生物群落多样性分析表明,碳源类型对微生物优势菌门类影响不大,但有助于提高Pseudomonas、Comamonas等反硝化菌群丰度。Abstract: A laboratory denitrification test was performed for the biological treatment of the secondary biochemical effluent of a wastewater treatment plant in Zibo. Five external carbon sources, including conventional carbon sources (glucose, sodium acetate) and new carbon sources (BC5, BC6 and BC8), were investigated through batch denitrification experiments by the activated sludge process. The results of the laboratory test showed that BC8 performed best synthetically. When the carbon source changed from glucose to BC8, the influent TN could be reduced from 32.4 mg/L to <7 mg/L within 160 minutes when the C/N ratio was 4.5 and the maximum value of denitrification rate was 21.6 mg NO3--N/(L·h). Furthermore, during 88 days’ plant test, the average daily dose and cost of BC8 were only 38.2 % and 92 % of glucose. Analysis of microbial community diversity in activated sludge showed that carbon source type had little effect on the dominant microbial bacteria. However, it was helpful to increase the abundance of denitrifying bacteria such as Pseudomonas and Comamonas.-
Key words:
- new carbon source /
- activated sludge process /
- denitrification /
- plant test /
- microbial community
-
表 1 试验碳源性能表
碳源种类 主要成分 比重 pH 粘度/cP( 20 ℃) 凝固点 COD/×104 mg·L−1 葡萄糖 C6H12O6 (50 wt%) 1.20 4~6 2 500 0 55 乙酸钠 NaAc (25 wt%) 1.06 7~9 100 - 20 BC5 C3醇类混合物 1.20 6~7 25 −35 110 BC6 糖类混合物 1.25 6~7 2 200 −18 80 BC8 NaAc复配物 1.22 5~7 70 −20 105 表 2 厂试进出水指标记录表
mg·L−1 试验日期 投加碳源 COD 氨氮 TN TP 2020-12-01~
2020-12-15进水 192±27 5.71±3.70 18.62±2.56 1.72±1.10 出水 碳源-BC8 156±17 0.87±0.38 8.33±4.53 0.70±0.32 碳源-葡萄糖 142±15 0.75±0.26 5.03±1.72 0.68±0.30 2020-12-16~
2021-2-26进水 164±17 7.64±3.20 19.72±4.09 2.78±1.49 出水 碳源-BC8 112±18 0.82±0.23 5.50±1.54 0.56±0.29 碳源-葡萄糖 110±16 0.80±0.24 5.15±1.34 0.53±0.23 -
[1] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12 − 15. doi: 10.3969/j.issn.1002-8471.2018.06.003 [2] 王先宝, 亓雪菲, 费骄, 等. 剩余污泥机械破碎碳源快速释放与回收技术[J]. 中国给水排水, 2018, 34(19): 12 − 16. doi: 10.19853/j.zgjsps.1000-4602.2018.19.003 [3] WEN L, HUAN Y, YE J J, et al. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review[J]. Bioresource Technology, 2020, 311: 123446. doi: 10.1016/j.biortech.2020.123446 [4] SERENA S, AGUS S, CLAUDIA F M, etal. Product concentration, yield and productivity inanaerobic digestion to produce short chain organicacids: acritical analysis of literature data[J]. Processes, 2020, 8: 1538. doi: 10.3390/pr8121538 [5] 李健弟, 张伟, 张小玲, 等. 超声预处理污泥发酵液作为反硝化聚磷补充碳源研究[J]. 中国给水排水, 2019, 35(9): 9 − 15. doi: 10.19853/j.zgjsps.1000-4602.2019.09.002 [6] 刘智晓, 季民, 郝赟, 等. 利用活性污泥水解发酵补充碳源优化脱氮除磷[J]. 中国给水排水, 2013, 29(4): 12 − 16. doi: 10.3969/j.issn.1000-4602.2013.04.004 [7] VIDAL A C, PEREZ E N, ASTALS S, et al. Assessing the potential of waste activated sludge and food wasteco-fermentation for carboxylic acids production[J]. Science of the Total Environment, 2021, 757: 143763. doi: 10.1016/j.scitotenv.2020.143763 [8] QI S S, YUAN S J, WANG W, et al. Effect of solid-liquid separation on food waste fermentation productsas external carbon source for denitrification[J]. Journal of Cleaner Production, 2021, 284: 124687. doi: 10.1016/j.jclepro.2020.124687 [9] 吴亚南, 王晓昌, 唐嘉陵, 等. 以厨余发酵液为A/O-DMBR碳源处理生活污水[J]. 中国给水排水, 2017, 33(19): 68 − 72. doi: 10.19853/j.zgjsps.1000-4602.2017.19.015 [10] 申世峰, 熊会斌, 郭兴芳, 等. 果汁废液作为碳源强化生物脱氮效果的研究[J]. 工业水处理, 2020, 40(5): 81 − 83. doi: 10.11894/iwt.2019-0417 [11] 张乐乐, 刘兵, 杨号, 等. 副产甲醇作为外加碳源时脱氮效果的应用研究[J]. 中国资源综合利用, 2018, 36(11): 33 − 35. doi: 10.3969/j.issn.1008-9500.2018.11.011 [12] 张民权, 刘永, 范杰, 等. 新型高效复合碳源的制备及其在反硝化脱氮中的应用[J]. 给水排水, 2019, 55(S1): 153 − 155. doi: 10.13789/j.cnki.wwe1964.2019.S1.40 [13] 邓林, 王庆, 潘倩, 等. 新型复合碳源去除工业综合园区废水中硝酸盐试验研究[J]. 天津科技, 2020, 47(4): 43 − 46. doi: 10.3969/j.issn.1006-8945.2020.04.014 [14] GUOQ M, YANG Z H, ZHAO Q, et al. A pilot-scale study of a novel two-stage denitrification filter[J]. Journal of Water Process Engineering, 2021, 39: 101873. doi: 10.1016/j.jwpe.2020.101873 [15] 张仲玲. 反硝化脱氮外加碳源的选择[D]. 哈尔滨: 哈尔滨工业大学, 2010. [16] HAGMAN M, NIELSEN J L, NIELSEN P H et al. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies[J]. Water Research, 2008, 42: 1539 − 1546. doi: 10.1016/j.watres.2007.10.034 [17] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057 − 5065. doi: 10.13227/j.hjkx.201905223 [18] 赵远哲, 杨永哲, 王海燕, 等. 新型填料 A/O 生物滤池处理低碳氮比农村污水脱氮[J]. 环境科学, 2020, 41(5): 2329 − 2338. [19] 刘文蓉. SBR与生物接触氧化法对对硝基苯酚的降解研究[D]. 泰安: 山东农业大学, 2020. [20] WU W Z, YANG L H, WANG J L. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environmental Science and Pollution Research, 2013, 20(1): 333 − 339. doi: 10.1007/s11356-012-0926-9 [21] SUN H H, WU Q, YU P, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics[J]. Bioresource Technology, 2017, 238: 624 − 632. doi: 10.1016/j.biortech.2017.04.105