[1] |
郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12 − 15. doi: 10.3969/j.issn.1002-8471.2018.06.003
|
[2] |
王先宝, 亓雪菲, 费骄, 等. 剩余污泥机械破碎碳源快速释放与回收技术[J]. 中国给水排水, 2018, 34(19): 12 − 16. doi: 10.19853/j.zgjsps.1000-4602.2018.19.003
|
[3] |
WEN L, HUAN Y, YE J J, et al. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review[J]. Bioresource Technology, 2020, 311: 123446. doi: 10.1016/j.biortech.2020.123446
|
[4] |
SERENA S, AGUS S, CLAUDIA F M, etal. Product concentration, yield and productivity inanaerobic digestion to produce short chain organicacids: acritical analysis of literature data[J]. Processes, 2020, 8: 1538. doi: 10.3390/pr8121538
|
[5] |
李健弟, 张伟, 张小玲, 等. 超声预处理污泥发酵液作为反硝化聚磷补充碳源研究[J]. 中国给水排水, 2019, 35(9): 9 − 15. doi: 10.19853/j.zgjsps.1000-4602.2019.09.002
|
[6] |
刘智晓, 季民, 郝赟, 等. 利用活性污泥水解发酵补充碳源优化脱氮除磷[J]. 中国给水排水, 2013, 29(4): 12 − 16. doi: 10.3969/j.issn.1000-4602.2013.04.004
|
[7] |
VIDAL A C, PEREZ E N, ASTALS S, et al. Assessing the potential of waste activated sludge and food wasteco-fermentation for carboxylic acids production[J]. Science of the Total Environment, 2021, 757: 143763. doi: 10.1016/j.scitotenv.2020.143763
|
[8] |
QI S S, YUAN S J, WANG W, et al. Effect of solid-liquid separation on food waste fermentation productsas external carbon source for denitrification[J]. Journal of Cleaner Production, 2021, 284: 124687. doi: 10.1016/j.jclepro.2020.124687
|
[9] |
吴亚南, 王晓昌, 唐嘉陵, 等. 以厨余发酵液为A/O-DMBR碳源处理生活污水[J]. 中国给水排水, 2017, 33(19): 68 − 72. doi: 10.19853/j.zgjsps.1000-4602.2017.19.015
|
[10] |
申世峰, 熊会斌, 郭兴芳, 等. 果汁废液作为碳源强化生物脱氮效果的研究[J]. 工业水处理, 2020, 40(5): 81 − 83. doi: 10.11894/iwt.2019-0417
|
[11] |
张乐乐, 刘兵, 杨号, 等. 副产甲醇作为外加碳源时脱氮效果的应用研究[J]. 中国资源综合利用, 2018, 36(11): 33 − 35. doi: 10.3969/j.issn.1008-9500.2018.11.011
|
[12] |
张民权, 刘永, 范杰, 等. 新型高效复合碳源的制备及其在反硝化脱氮中的应用[J]. 给水排水, 2019, 55(S1): 153 − 155. doi: 10.13789/j.cnki.wwe1964.2019.S1.40
|
[13] |
邓林, 王庆, 潘倩, 等. 新型复合碳源去除工业综合园区废水中硝酸盐试验研究[J]. 天津科技, 2020, 47(4): 43 − 46. doi: 10.3969/j.issn.1006-8945.2020.04.014
|
[14] |
GUOQ M, YANG Z H, ZHAO Q, et al. A pilot-scale study of a novel two-stage denitrification filter[J]. Journal of Water Process Engineering, 2021, 39: 101873. doi: 10.1016/j.jwpe.2020.101873
|
[15] |
张仲玲. 反硝化脱氮外加碳源的选择[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
[16] |
HAGMAN M, NIELSEN J L, NIELSEN P H et al. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies[J]. Water Research, 2008, 42: 1539 − 1546. doi: 10.1016/j.watres.2007.10.034
|
[17] |
宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057 − 5065. doi: 10.13227/j.hjkx.201905223
|
[18] |
赵远哲, 杨永哲, 王海燕, 等. 新型填料 A/O 生物滤池处理低碳氮比农村污水脱氮[J]. 环境科学, 2020, 41(5): 2329 − 2338.
|
[19] |
刘文蓉. SBR与生物接触氧化法对对硝基苯酚的降解研究[D]. 泰安: 山东农业大学, 2020.
|
[20] |
WU W Z, YANG L H, WANG J L. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environmental Science and Pollution Research, 2013, 20(1): 333 − 339. doi: 10.1007/s11356-012-0926-9
|
[21] |
SUN H H, WU Q, YU P, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics[J]. Bioresource Technology, 2017, 238: 624 − 632. doi: 10.1016/j.biortech.2017.04.105
|