-
城市污泥是指城市污水厂处理废水过程中产生的固体废弃物。随着我国城市化不断推进,污泥的产生量迅猛增加。据统计,我国每年产生3×107~4×107 t的污泥(以含水率80%计),2020年的污泥产量可能达到6×107~9×107 t [1]。城市污泥因其富含有机质和有效营养成分[2],已日渐成为农业应用的重要资源[3],譬如应用于水稻-小麦系统[4]、玉米[5]等;亦应用于贫瘠或退化土壤的修复或改良,譬如退化农田[6]、沙质土壤[7]、石漠化土壤[8]的改良。总体而言,污泥作为有机肥料的应用,普遍促进植物生长,有益于土壤改良。
目前,城市污泥逐渐向“减量化、资源化和无害化”的方向发展。其中,污泥资源化将成为污泥处置的主流[9],而污泥的土地利用将成为最有效的资源化途径之一。但是,污泥的土地利用,在我国尚未大范围推广应用。究其原因,一方面,缺乏完整的应用技术规范、技术指南以及环境生态风险评价体系等[10]。另一方面,污泥的营养成分和重金属在土壤中积累,可能会造成环境污染风险,譬如对地表水环境氮、磷的富营养化[11-14];亦可能导致食物链风险,譬如增加玉米组织有毒金属的质量分数[15],增加水稻和小麦籽粒中重金属质量分数[4]。因此,城市污泥含有的重金属是影响污泥农用处置的主要限制因素[16-17]。
为了避免在农作物施用污泥所导致的食物链风险,城市污泥也普遍应用于林地。杨树作为主要速生丰产树种之一,由于其能有效吸收重金属(Cu、Zn、Cd、Pb等),且能促进金属迁移,可降低重金属潜在的生态风险,因此,污泥在杨树上的应用日渐备受关注[18-19]。但是,由于城市污泥类型的多样性和复杂性,极其有必要加强污泥施用于杨树的土壤营养有效性和潜在污染风险评价研究。鉴于此,本研究通过2年的田间实验,探讨堆肥污泥施用于杨树的土壤理化性质和营养元素的变化,并分析重金属元素质量分数变化及其环境污染状况,以期为城市污泥合理、有效的处置提供理论依据。
堆肥污泥施用于杨树后土壤理化性质及土壤污染风险
Physico-chemical properties and environmental pollutions in soil amended with composted sewage sludge to poplar
-
摘要: 污泥可作为一种土壤改良剂应用于树木,特别是杨树。采用田间实验,探讨堆肥污泥施用于杨树后的土壤理化性质和土壤污染风险,以期为污泥的合理利用提供科学依据。通过2年的田间实验研究了不同堆肥污泥用量对土壤营养成分和重金属污染的影响,实验设置4个处理:对照、低量、中量和高量。结果表明,随着污泥用量的增加,土壤营养成分和重金属的质量分数均有所提高,而且堆肥污泥可显著降低土壤pH,高量污泥可使土壤碱性降为中性。污泥累计施用后,除了低量对K、Na、Cd 和Pb质量分数影响不显著外,污泥处理均对土壤营养成分和重金属的质量分数影响显著;中量和高量污泥处理使土壤有机质增加1.2和1.6倍,有效氮增加1.2和1.9倍,N、P及K质量分数分别增加2.7和2.9倍、2.8和4.3倍及0.6和0.7倍。土壤中Cu、Zn、Ni、Cr、Hg和Pb质量分数均没有超出我国农用地土壤污染风险筛选值和管制值范围(GB 15618-2018);Cd质量分数超过了土壤污染风险筛选值,但也远低于土壤污染风险管制值。本研究可为将堆肥污泥作为土壤改良剂应用于杨树提供参考。Abstract: Interest in the application of sewage sludge as soil amendments to trees has continued to increase, especially for fast-growing poplars. In this study, a field trial was conducted to determine the physico-chemical properties and environmental pollutions in soil amended with composted sewage sludge (CSS) to poplar, in order to provide the scientific basis for the circulation of CSS. Two-year field trial was conducted to determine the effects of different amounts of CSS on the soil nutrients and the pollutions of heavy metals. Soil was amended with one of four CSS treatments in both study years: control, LS, MS, and HS. The results showed that the mass fractions of soil nutrients and heavy metals were increased with the increase of CSS, and the CSS treatments significantly decreased the pH values in soils and HS made the soil alkaline to neutral. After accumulated CSS application, the CSS treatments significantly influenced the mass fractions of soil nutrients and heavy metals except that LS had no significant effect on the mass fractions of K, Na, Cd and Pb, in particular, the MS and HS treatments increased soil organic matter by 1.2 and 1.6 times, available nitrogen by 1.2 and 1.9 times, the mass fractions of N, P and K by 2.7 and 2.9 times, 2.8 and 4.3 times and 0.6 and 0.7 times, respectively. The mass fractions of Cu, Zn, Ni, Cr, Hg and Pb in the soil did not exceed the range of the screening value and control value of soil pollution risk of agricultural land in China (GB 15618-2018). The mass fraction of Cd exceeded the screening value of soil pollution risk, but it was also far lower than the control value of soil pollution risk. This study can provide a reference for the application of composted sewage sludge as a soil amendment to poplar.
-
表 1 供试土壤及堆肥污泥的理化特性及金属质量分数
Table 1. Physico-chemical properties and metal concentrations of soil and composted sewage sludge
检测项目 SOM/
(g·kg−1)pH AN/
(mg·kg−1)N/
(g·kg−1)P/
(g·kg−1)K/
(g·kg−1)Ca/
(g·kg−1)Fe/
(g·kg−1)Mg/
(g·kg−1)Na/
(mg·kg−1)供试土壤 22.5(0.7) 7.8(0) 166.5(5.7) 1.6(0.1) 0.9(0) 1.2(0) 7.0(0.3) 19.1(0.2) 5.9(0.2) 261.6(11.5) 堆肥污泥-2012 294.3(0.4) 7.4(0) 2 674.6 (13.7) 13.6(0.1) 17.9(0) 2.3(0.1) 37.8(0.1) 25.1(0.3) 15.6(0.1) 1 042.2
(29.4)堆肥污泥-2013 302.7(0.4) 6.8(0) 3 356.6(27.3) 18.7(0.1) 22.7(0.2) 3.0(0) 115.4(0.2) 22.4(0) 15.1(0) 1 270.1(1.2) 检测项目 Cu/
(mg·kg−1)Mn/
(mg·kg−1)Cr/
(mg·kg−1)Zn/
(mg·kg−1)Cd/
(mg·kg−1)Hg/
(mg·kg−1)Pb/
(mg·kg−1)Ni/
(mg·kg−1)S/
(mg·kg−1)供试土壤 13.2(0.5) 276.5(3.0) 43.6(0.3) 60.5(2.4) 1.7(0) 0.5(0) 18.7(0.4) 21.0(0.4) 261.9(17.9) 堆肥污泥-2012 135.2(4.4) 1 521.3(13.5) 130.1(5.5) 755.0(9.3) 2.6(0.1) 7.1(0.1) 70.5(0.3) 372.8(6.8) 4 561.7
(51.6)堆肥污泥-2013 241.9(0.8) 941.8(2.0) 150.0(0.6) 865.4(1.6) 3.0(0) 18.4(0) 67.9(0.1) 120.0(0.6) 5 323.3
(33.0)注:测定结果为3个重复测定值的平均值(标准误),以干基表示;SOM为土壤有机质、AN为有效氮。 表 2 土壤酸碱度、有机质、有效氮和大量营养元素
Table 2. The pH, organic matter, available nitrogen and macronutrients in soil
年份 处理 pH 有机质/(g·kg−1) 有效氮/(mg·kg−1) N/(g·kg−1) P/(g·kg−1) K/(g·kg−1) 2012 CK 7.66(0.04)a 20.0(0.5)c 102.0(5.8)c 1.20(0.12)b 0.80 (0.01)d 0.87 (0.02)c LS 7.54(0.03)b 23.0(0.7)bc 226.4(12.3)b 1.28(0.10)b 1.01 (0.02)c 0.92 (0.01)bc MS 7.54(0.01)b 25.2(0.7)b 234.7(5.9)b 1.92(0.09)a 1.10 (0.01)b 0.95 (0.02)b HS 7.46(0.04)b 35.2(2.2)a 273.5(13.5)a 2.15(0.15)a 1.56 (0.04)a 1.02 (0.02)a 2013 CK 7.90 (0.04)a 21.1 (0.1)d 69.2 (4.3)d 1.07 (0.04)c 0.86 (0)d 1.21 (0.03)b LS 7.72 (0.02)b 30.5 (1.1)c 97.0 (3.8)c 2.17 (0.07)b 2.02 (0.11)c 1.26 (0.01)b MS 7.56 (0.05)c 45.9 (1.3)b 154.3 (5.6)b 3.94 (0.10)a 3.30 (0.23)b 1.98 (0.05)a HS 7.39 (0.02)d 54.4 (1.3)a 199.3 (6.7)a 4.18 (0.15)a 4.58 (0.17)a 2.07 (0.05)a 注:结果为3个重复测定值的平均值(标准误),以干基表示;不同小写字母表示处理间差异显著(P<0.05)。 表 3 土壤中量和微量营养元素质量分数
Table 3. The secondary nutrients and micronutrients in soil
年份 处理 Ca/(g·kg−1) Mg/(g·kg−1) S/(mg·kg−1) Fe/(g·kg−1) Mn/(mg·kg−1) Na/(mg·kg−1) 2012 CK 6.32 (0.13)b 5.63 (0.06)b 193 (7)c 17.6 (0.1)c 269 (5)b 171 (5)b LS 6.69 (0.09)b 5.73 (0.04)b 230 (4)b 17.8 (0.1)bc 280 (4)b 176 (6)b MS 6.79 (0.16)b 5.82 (0.06)b 246 (11)b 18.0 (0.1)b 286 (5)b 189 (3)b HS 8.14 (0.25)a 6.29 (0.07)a 365 (13)a 18.4 (0.1)a 329 (12)a 331 (12)a 2013 CK 18.1 (0.1)d 5.84 (0.04)d 324 (3)d 16.3 (0.1)c 265 (5)d 361 (15)c LS 25.0 (0.6)c 6.29 (0.01)c 566 (9)c 16.7 (0.1)b 311 (1)c 386 (13)c MS 30.8 (1.2)b 6.89 (0.08)b 720 (15)b 16.8 (0.1)ab 344 (8)b 506 (7)b HS 34.3 (0.5)a 7.53 (0.09)a 881 (10)a 17.1 (0.1)a 402 (7)a 630 (9)a 注:结果为3个重复测定值的平均值(标准误),以干基表示;不同小写字母表示处理间差异显著(P<0.05)。 表 4 土壤的重金属质量分数
Table 4. Concentrations of heavy metals in soil
mg·kg−1 年份 处理 Cu Zn Ni Hg Cd Cr Pb 2012 CK 10.8 (0.7)c 22.5 (0.5)c 17.6 (0.3)b 0.20 (0.02)b 1.50 (0.04)b 40.2 (0.3)b 16.7 (0.1)c LS 11.9 (0.2)bc 27.3 (0.9)bc 19.0 (0.5)b 0.25 (0.01)b 1.58 (0.03)ab 40.5 (0.5)b 17.7 (0.6)bc MS 12.8 (0.5)b 30.3 (1.2)b 19.6 (0.7)b 0.36 (0.03)a 1.61 (0.02)ab 41.5 (0.4)b 18.4 (0.5)ab HS 17.8 (0.3)a 47.5 (2.8)a 22.5 (1.2)a 0.45 (0.05)a 1.68 (0.05)a 46.1 (0.6)a 19.5 (0.2)a 2013 CK 20.8 (0.2)c 62.6 (1.5)c 19.2 (0.4)c 0.80 (0.09)c 1.28 (0.02)c 19.3 (0.1)d 19.5 (0.3)c LS 26.6 (0.5)b 135.2 (3.9)b 26.5 (0.7)b 2.16 (0.11)b 1.41 (0.05)bc 25.2 (0.8)c 22.7 (0.2)c MS 43.0 (1.4)a 219.1 (4.8)a 51.3 (0.6)a 2.87 (0.13)a 1.54 (0.05)b 34.2 (1.4)b 27.3 (1.3)b HS 46.2 (2.4)a 240.2 (14.0)a 52.1 (0.9)a 3.11 (0.22)a 1.76 (0.05)a 39.2 (1.3)a 31.8 (1.7)a 注:结果为3个重复测定值的平均值(标准误),以干基表示;不同小写字母表示处理间差异显著(P<0.05)。 表 5 不同国家污泥施用的土壤重金属污染限值
Table 5. Maximum metal concentration allowed in soils treated with sewage sludge in different countries
(mg·kg−1) -
[1] 张向营. 市政污水厂污泥处置技术探讨[J]. 广东化工, 2018, 45(1): 146-147. doi: 10.3969/j.issn.1007-1865.2018.01.070 [2] 马学文, 翁焕新, 章金骏. 中国城市污泥重金属和养分的区域特性及变化[J]. 中国环境科学, 2011, 31(8): 1306-1313. [3] SHARMA B, SARKAR A, SINGH P, et al. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown[J]. Waste Management, 2017, 64: 117-132. doi: 10.1016/j.wasman.2017.03.002 [4] LATARE A M, KUMAR O, SINGH S K, et al. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system[J]. Ecological Engineering, 2014, 69: 17-24. doi: 10.1016/j.ecoleng.2014.03.066 [5] 占婷婷, 李渊, 石辉, 等. 市政污泥直接施用对玉米生长和品质的影响[J]. 水土保持通报, 2019, 39(5): 172-178. [6] ARIF M S, RIAZ M, SHAHZAD S M, et al. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land[J]. Science of the Total Environment, 2018, 619-620: 517-527. doi: 10.1016/j.scitotenv.2017.11.143 [7] 杨桐桐, 封莉, 张立秋. 城市污泥堆肥产品施用对沙荒地土壤理化性质及高羊茅生长的影响[J]. 环境工程学报, 2017, 11(4): 2462-2468. doi: 10.12030/j.cjee.201601074 [8] 杨丹, 李冕, 冯梦芹. 喀斯特石漠化土壤中施用城市污泥的环境影响分析[J]. 环境污染与防治, 2020, 42(1): 74-78. [9] 柯杰, 胡惠秩, 卢进登, 等. 污泥处理新技术研究现状及其发展趋势[J]. 环境科学与管理, 2019, 44(4): 92-96. doi: 10.3969/j.issn.1673-1212.2019.04.020 [10] 黄岚, 封莉, 杜子文, 等. 我国城市污泥土地利用瓶颈问题分析与对策研究[J]. 中国给水排水, 2019, 35(20): 31-36. [11] 高定, 郑国砥, 陈同斌, 等. 城市污泥土地利用的重金属污染风险[J]. 中国给水排水, 2012, 28(15): 102-105. doi: 10.3969/j.issn.1000-4602.2012.15.028 [12] YUAN X Z, HUANG H J, ZENG G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102: 4104-4110. doi: 10.1016/j.biortech.2010.12.055 [13] BOGUSZ A, OLESZCZUK P. Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil[J]. Science of the Total Environment, 2018, 636: 927-935. doi: 10.1016/j.scitotenv.2018.04.072 [14] 甄晨光, 冷平生, 刘丽娟, 等. 城市污泥应用于边坡植被恢复对地表水环境的影响[J]. 应用生态学报, 2018, 29(4): 1321-1327. [15] MAHDY A M, ELKHATIB E A, FATHI N O, et al. Use of drinking water treatment residuals in reducing bioavailability of metals in biosolid-amended alkaline soils[J]. Communications in Soil Science and Plant Analysis, 2012, 43(8): 1216-1236. doi: 10.1080/00103624.2012.662819 [16] 刘梦娇, 夏少攀, 王峻, 等. 城市污泥农用对植物-土壤系统的影响[J]. 应用生态学报, 2017, 28(12): 4134-4142. [17] EID E M, SHALTOUT K H. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site[J]. International Journal of Phytoremediation, 2016, 18: 1075-1085. doi: 10.1080/15226514.2016.1183578 [18] KUBÁTOVÁ P, HEJCMAN M, SZÁKOVÁ J, et al. Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in shoots of Salix and Populus clones: improvement of phytoremediation efficiency in contaminated soils[J]. Bioenergy Research, 2016, 9(3): 809-819. doi: 10.1007/s12155-016-9727-1 [19] XU G Q, CAO X Q, BAI L P, et al. Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: a field trial[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109360-109369. doi: 10.1016/j.ecoenv.2019.06.043 [20] 鲍士旦. 土壤农化分析(第三版)[J]. 北京:中国农业出版社, 2000: 30-110. [21] 王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930. [22] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms implication and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010, 20(1): 5-15. doi: 10.1890/08-0127.1 [23] LEDERER J, RECHBERGER H. Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options[J]. Waste Management, 2010, 30: 1043-1056. doi: 10.1016/j.wasman.2010.02.025 [24] XIE C S, ZHAO J, TANG J, et al. The phosphorus fractions and alkaline phosphatase activities in sludge[J]. Bioresource Technology, 2011, 102: 2455-2461. doi: 10.1016/j.biortech.2010.11.011 [25] BAI Y C, ZANG C Y, GU M J, et al. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils[J]. Science of the Total Environment, 2017, 578: 47-55. doi: 10.1016/j.scitotenv.2016.06.083 [26] BELHAJ D, ELLOUMI N, JERBI B, et al. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus)[J]. Environmental Science & Pollution Research, 2016, 23(20): 1-10. [27] MOHAMED B, MOUNIA K, AZIZ A, et al. Sewage sludge used as organic manure in Moroccan sunflower culture: effects on certain soil properties, growth and yield components[J]. Science of the Total Environment, 2018, 627: 681-688. doi: 10.1016/j.scitotenv.2018.01.258 [28] LOMBARD K, O’NEILL M, HEYDUCK R, et al. Composted biosolids as a source of iron for hybrid poplars (Populus sp. ) grown in northwest New Mexico[J]. Agroforestry Systems, 2011, 81: 45-56. doi: 10.1007/s10457-010-9334-7 [29] 徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价[J]. 应用生态学报, 2016, 27(2): 567-576. [30] KIDD P S, DOMÍNGUEZ-RODRÍGUEZ M J, DÍEZ J, et al. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge[J]. Chemosphere, 2007, 66: 1458-1467. doi: 10.1016/j.chemosphere.2006.09.007 [31] OLIVER I W, MCLAUGHLIN M J, MERRINGTON G. Temporal trends of total and potentially available element concentrations in sewage biosolids: a comparison of biosolid surveys conducted 18 years apart[J]. Science of the Total Environment, 2005, 337: 139-145. doi: 10.1016/j.scitotenv.2004.07.003 [32] PAZ-FERREIRO J, NIETO A, MÉNDEZ A, et al. Biochar from biosolids pyrolysis: A review[J]. International Journal of Environmental Research and Public Health, 2018, 15: 956-971. doi: 10.3390/ijerph15050956 [33] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境出版集团, 2018.