[1] |
张向营. 市政污水厂污泥处置技术探讨[J]. 广东化工, 2018, 45(1): 146-147. doi: 10.3969/j.issn.1007-1865.2018.01.070
|
[2] |
马学文, 翁焕新, 章金骏. 中国城市污泥重金属和养分的区域特性及变化[J]. 中国环境科学, 2011, 31(8): 1306-1313.
|
[3] |
SHARMA B, SARKAR A, SINGH P, et al. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown[J]. Waste Management, 2017, 64: 117-132. doi: 10.1016/j.wasman.2017.03.002
|
[4] |
LATARE A M, KUMAR O, SINGH S K, et al. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system[J]. Ecological Engineering, 2014, 69: 17-24. doi: 10.1016/j.ecoleng.2014.03.066
|
[5] |
占婷婷, 李渊, 石辉, 等. 市政污泥直接施用对玉米生长和品质的影响[J]. 水土保持通报, 2019, 39(5): 172-178.
|
[6] |
ARIF M S, RIAZ M, SHAHZAD S M, et al. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land[J]. Science of the Total Environment, 2018, 619-620: 517-527. doi: 10.1016/j.scitotenv.2017.11.143
|
[7] |
杨桐桐, 封莉, 张立秋. 城市污泥堆肥产品施用对沙荒地土壤理化性质及高羊茅生长的影响[J]. 环境工程学报, 2017, 11(4): 2462-2468. doi: 10.12030/j.cjee.201601074
|
[8] |
杨丹, 李冕, 冯梦芹. 喀斯特石漠化土壤中施用城市污泥的环境影响分析[J]. 环境污染与防治, 2020, 42(1): 74-78.
|
[9] |
柯杰, 胡惠秩, 卢进登, 等. 污泥处理新技术研究现状及其发展趋势[J]. 环境科学与管理, 2019, 44(4): 92-96. doi: 10.3969/j.issn.1673-1212.2019.04.020
|
[10] |
黄岚, 封莉, 杜子文, 等. 我国城市污泥土地利用瓶颈问题分析与对策研究[J]. 中国给水排水, 2019, 35(20): 31-36.
|
[11] |
高定, 郑国砥, 陈同斌, 等. 城市污泥土地利用的重金属污染风险[J]. 中国给水排水, 2012, 28(15): 102-105. doi: 10.3969/j.issn.1000-4602.2012.15.028
|
[12] |
YUAN X Z, HUANG H J, ZENG G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102: 4104-4110. doi: 10.1016/j.biortech.2010.12.055
|
[13] |
BOGUSZ A, OLESZCZUK P. Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil[J]. Science of the Total Environment, 2018, 636: 927-935. doi: 10.1016/j.scitotenv.2018.04.072
|
[14] |
甄晨光, 冷平生, 刘丽娟, 等. 城市污泥应用于边坡植被恢复对地表水环境的影响[J]. 应用生态学报, 2018, 29(4): 1321-1327.
|
[15] |
MAHDY A M, ELKHATIB E A, FATHI N O, et al. Use of drinking water treatment residuals in reducing bioavailability of metals in biosolid-amended alkaline soils[J]. Communications in Soil Science and Plant Analysis, 2012, 43(8): 1216-1236. doi: 10.1080/00103624.2012.662819
|
[16] |
刘梦娇, 夏少攀, 王峻, 等. 城市污泥农用对植物-土壤系统的影响[J]. 应用生态学报, 2017, 28(12): 4134-4142.
|
[17] |
EID E M, SHALTOUT K H. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site[J]. International Journal of Phytoremediation, 2016, 18: 1075-1085. doi: 10.1080/15226514.2016.1183578
|
[18] |
KUBÁTOVÁ P, HEJCMAN M, SZÁKOVÁ J, et al. Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in shoots of Salix and Populus clones: improvement of phytoremediation efficiency in contaminated soils[J]. Bioenergy Research, 2016, 9(3): 809-819. doi: 10.1007/s12155-016-9727-1
|
[19] |
XU G Q, CAO X Q, BAI L P, et al. Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: a field trial[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109360-109369. doi: 10.1016/j.ecoenv.2019.06.043
|
[20] |
鲍士旦. 土壤农化分析(第三版)[J]. 北京:中国农业出版社, 2000: 30-110.
|
[21] |
王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930.
|
[22] |
VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms implication and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010, 20(1): 5-15. doi: 10.1890/08-0127.1
|
[23] |
LEDERER J, RECHBERGER H. Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options[J]. Waste Management, 2010, 30: 1043-1056. doi: 10.1016/j.wasman.2010.02.025
|
[24] |
XIE C S, ZHAO J, TANG J, et al. The phosphorus fractions and alkaline phosphatase activities in sludge[J]. Bioresource Technology, 2011, 102: 2455-2461. doi: 10.1016/j.biortech.2010.11.011
|
[25] |
BAI Y C, ZANG C Y, GU M J, et al. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils[J]. Science of the Total Environment, 2017, 578: 47-55. doi: 10.1016/j.scitotenv.2016.06.083
|
[26] |
BELHAJ D, ELLOUMI N, JERBI B, et al. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus)[J]. Environmental Science & Pollution Research, 2016, 23(20): 1-10.
|
[27] |
MOHAMED B, MOUNIA K, AZIZ A, et al. Sewage sludge used as organic manure in Moroccan sunflower culture: effects on certain soil properties, growth and yield components[J]. Science of the Total Environment, 2018, 627: 681-688. doi: 10.1016/j.scitotenv.2018.01.258
|
[28] |
LOMBARD K, O’NEILL M, HEYDUCK R, et al. Composted biosolids as a source of iron for hybrid poplars (Populus sp. ) grown in northwest New Mexico[J]. Agroforestry Systems, 2011, 81: 45-56. doi: 10.1007/s10457-010-9334-7
|
[29] |
徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价[J]. 应用生态学报, 2016, 27(2): 567-576.
|
[30] |
KIDD P S, DOMÍNGUEZ-RODRÍGUEZ M J, DÍEZ J, et al. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge[J]. Chemosphere, 2007, 66: 1458-1467. doi: 10.1016/j.chemosphere.2006.09.007
|
[31] |
OLIVER I W, MCLAUGHLIN M J, MERRINGTON G. Temporal trends of total and potentially available element concentrations in sewage biosolids: a comparison of biosolid surveys conducted 18 years apart[J]. Science of the Total Environment, 2005, 337: 139-145. doi: 10.1016/j.scitotenv.2004.07.003
|
[32] |
PAZ-FERREIRO J, NIETO A, MÉNDEZ A, et al. Biochar from biosolids pyrolysis: A review[J]. International Journal of Environmental Research and Public Health, 2018, 15: 956-971. doi: 10.3390/ijerph15050956
|
[33] |
生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境出版集团, 2018.
|