-
屋顶绿化指在各类建筑物、构筑物等的顶部以及天台、露台上进行造园,脱离自然土壤种植植物的一种形式[1-2]。屋顶绿化技术的应用对解决城市生态问题、降低“热岛效应”、改善建筑物屋顶构造性能等方面起到重要作用[3-4]。基质是屋顶绿化系统中的基础,应兼备质轻、保水、保肥等特点[5-6]。泥炭因含有大量有机质及植物生长所需的养分而常与珍珠岩混合配制基质用于屋顶绿化工程中[7-8]。但泥炭属于不可再生资源,大量开采会导致不可逆转的破坏。
近年来,寻求泥炭替代基质的研究被广泛开展,并在屋顶绿化系统中取得了一定成果。黄蓉等[9]利用田园土、蛭石和椰糠部分取代泥炭配制出适合兰州市屋顶绿化地被植物的基质。韦文杰等[10]提出体积比为40%的铝污泥配制简单式屋顶绿化基质的可行性。SOLODAR等[11]研究发现80%粉煤灰+20%堆肥能够适用于干旱地区屋顶绿化系统。NOYA等[12]研究得出适宜大面积屋顶绿化的最佳基质配比为陈化禽粪∶木屑=1∶1。
随着城市园林绿化面积的扩大,产生了大量园林废弃物。园林废弃物经堆肥处理后含有大量的矿质元素和有机质,可以作为优质的栽培基质,从而实现资源化利用[13]。但目前园林废弃物堆肥应用于屋顶绿化轻型基质的研究却相对较少。本研究以园林废弃物堆肥、泥炭和珍珠岩为原料混合配制屋顶绿化轻型基质,并以马蔺为栽培植物进行屋顶绿化模拟实验,探究园林废弃物堆肥替代泥炭用作屋顶绿化轻型基质的栽培效果。本研究可为园林废弃物应用于屋顶绿化基质提供参考。
-
供试植物为生长健壮且长势一致的马蔺幼苗,苗龄1 a,由北京市某景观公司提供。供试基质原料包括珍珠岩、园林废弃物堆肥和泥炭。珍珠岩购自于河南某材料厂,基本理化性质:pH为7.76、EC为41.33 μs·cm−1、有效磷2.49 mg·kg−1、速效钾67.79 mg·kg−1。园林废弃物堆肥购自于某堆肥厂,基本理化性质:pH为7.38、EC为2 730.00 μs·cm−1、有效磷209.24 mg·kg−1、速效钾5 564.27 mg·kg−1。泥炭购自于北京某生态公司,基本理化性质为:pH为6.92、EC为580.00 μs·cm−1、有效磷25.30 mg·kg−1、速效钾400.00 mg·kg−1。
-
基质配制与筛选实验。将园林废弃物堆肥、泥炭和珍珠岩按照一定质量比混合,搅拌均匀后制成轻型基质,配方见表1。测定所配制基质的理化性质并运用隶属度综合评价法,筛选出优质基质进行栽培实验。
植物栽培实验。将筛选出的轻型基质装入种植槽中,考虑到珍珠岩的添加会极大降低混合基质的容重而不利于固定植物根系。因此,本研究中将陶粒均匀铺于种植槽表面,从而有效防止基质扬尘并对植物根系进行了有效固持。将马蔺幼苗移栽至种植槽中,每组基质每槽种植32 株。移栽植物后将基质浇透水,随后每30 d浇水1 次,每次浇水至种植槽底部排水口出水。实验期间,每30 d除草1次,不施肥处理。在8-12月每30 d采集基质样品,测定在马蔺生长条件下基质全氮、有效磷、速效钾和有机质动态变化。栽植1 a后测定马蔺生长指标。
-
基质理化指标测定。物理指标包括干容重、饱和水容重、总孔隙度、通气孔隙度、持水孔隙度和大小孔隙比,采用环刀法测定[14]。pH和EC分别用pH计和电导率仪测定;全氮、有效磷和速效钾分别用开氏法、0.5mol·L−1的NaHCO3法和NH4OAc浸提-火焰光度法测定[15]。
植物指标测定。植物指标包括株高、叶绿素、地上生物量鲜重和干重和地下生物量干重。株高采用卷尺进行测量;叶绿素采用分光光度法测定[16-17];生物量采用称重法测定。
-
采用SPSS 22.0进行差异显著性检验。以特征值大于1为提取原则进行主成分分析。模糊隶属函数综合评价方法[18]如式(1)~式(2)所示。
式中:X表示某一指标测定值;Xmin表示该指标测定的最小值;Xmax表示该指标测定的最大值;Xf表示第f个指标的隶属函数值;P表示综合评价指数。
-
基质理化性质见表2。9组基质干容重为0.08~0.11 g·cm−3、饱和水容重为0.46~0.56 g·cm−3。添加20%泥炭的处理组(T7~T9组)总孔隙度和通气孔隙度较小,持水孔隙度较大,且显著大于添加10%泥炭的处理组(T4~T6组)。基质的固体组成在很大程度上会影响其干容重和孔隙状况[19]。珍珠岩内部呈蜂窝状结构,较大的颗粒粒径和松散的存在状态增大了基质的总孔隙度。园林废弃物在堆肥过程中形成疏松多孔的絮状结构[20],能够使基质保持良好的总孔隙度和通气孔隙度。泥炭中含有不同排列组合方式的纤维和腐殖质,碎块化的结构使泥炭的通气孔隙度较低。伴随微生物的分解作用,泥炭中残存的造炭植物残体不断分解细碎,使通气孔隙度减少,能够吸持水分的持水孔隙度占比增加[21]。
从表2可知,9组基质pH为5.65~7.76、EC为41.33~315.00 μs·cm−1,适宜大多数植物生长。泥炭添加量为0和10%的各处理组间(T1~T3组和T4~T6组)pH和EC差异显著,而添加量为20%的处理组间(T7~T9组)pH和EC没有显著差异。这说明,当基质泥炭添加量达到20%时,园林废弃物堆肥对基质pH和EC没有产生影响。堆肥化过程中,园林废弃物中尿素和蛋白质的降解产生的氨会提高堆肥产品pH,堆肥完成后产生大量小分子有机物和营养元素,因而能够改良基质酸碱性并调节基质EC。当泥炭添加量为20%时,可能是由于泥炭中的腐殖质和团粒结构对基质pH和EC的调节起到了缓冲作用,故导致园林废弃物堆肥对其影响不显著[22]。
-
9组处理的隶属度得分及综合排序结果见表3。T7、T6、T4和T3处理组得分较高,但T7组通气孔隙度只有10.22%,大小孔隙比为0.2,内部气少水多。因此,基质容易出现通气不良现象,植物无法从基质中获取足够的空气[23]。T4组大小孔隙比为0.80,基质通透性强但持水能力差,故需增加灌溉次数,在栽培养护中导致成本加大。北京市《屋顶绿化规范》(DB11/T 281—2015)[1](以下简称《规范》)中给出的基质最佳pH为6.5~8.0。从表2可知,T4组基质pH为5.65,不符合《规范》要求。因此,结合隶属度综合评价结果和《规范》,选择T3和T6处理组进行屋顶绿化模拟栽培实验。
-
马蔺生长过程中基质全氮、有效磷、速效钾和有机质质量分数变化趋势见图1。T6组全氮质量分数始终高于T3组,且后期供氮水平较为平稳。2组基质全氮质量分数均呈现出先上升后下降的趋势,9月达到峰值后逐渐降低。有研究表明,栽培植物与否对基质全氮的影响不明显,基质养分变化主要受本身的生化过程或淋洗、氨挥发、反硝化等作用的影响[24]。园林废弃物堆肥和泥炭混合添加提高了基质全氮质量分数,泥炭中富含的纤维能够将松散的轻型基质颗粒紧密粘结起来,有利于基质吸附易流失的氮素[25],故T6组氮素流失速率减缓,流失量减小,在后期保持了平稳的供氮能力。
2组基质有效磷质量分数相近且随采样时间的变化趋势一致,10月达到最大值,是初期的2倍多,波动较大。其原因可能是,基质释放磷素的初始速率较高,而植物本身对磷的吸收利用能力相对较差[26]。因此,在中期出现了基质磷素的累积上升,后期因季节原因,基质释放有效磷速率降低,从而质量分数逐渐降低。此外,刘帅成等[27]指出,基质养分的变化也受酸碱度的影响。本研究中,有效磷的波动也可能是由于pH的变化所导致。T3组速效钾质量分数在采样期间始终略高于T6组,但2者相差不大。在前4次测定中,2组基质速效钾波动平缓,而12月份速效钾质量分数出现急剧上升。这可能是因为,基质中的速效钾以水溶性离子的形式存在,除被植株吸收利用外,秋季降水丰富,气温偏高,导致一部分钾素随降水和挥发而散失;冬季植物对钾素的吸收利用速率降低,降水减少,导致速效钾产生了累积[28]。白龙强等[29]发现,添加了20%泥炭的基质有效磷略有降低,速效钾没有明显变化,这与本研究结果一致。
2组基质有机质质量分数变化趋势不同,T3组有机质随采样时间呈现缓慢上升趋势,T6组呈现出先上升后下降再上升的波动趋势,但始终高于T3组。这可能是泥炭本身富含的有机质与园林废弃物堆肥中的有机质相互叠加的结果[21]。T6组有机质在测定过程中出现较大幅度波动的原因可能是,秋季植物开始出现凋萎枯落,采样时枯落枝叶和马蔺细小根系进入基质,从而造成了有机物的外源添加。
-
栽植1 a后,2组处理马蔺均生长良好。T3组(1.475 mg·g−1)马蔺叶绿素质量分数比T6组(1.154 mg·g−1)处理提升了27.82%。T3组马蔺株高生长量为63.80 cm,T6组马蔺株高生长量为65.43 cm,没有显著性差异(P>0.05)。T3组马蔺地上鲜重(32.24 g)显著低于T6组(37.213 g)(P<0.05),T3组马蔺地上和地下干重同样均显著低于T6组(P<0.05),地上干重分别为3.87 g和8.07 g,地下干重分别为3.53 g和6.05 g。与T3组相比,T6组不利于马蔺叶绿素质量分数提高,但能够促进株高的增长、地上部生物量和地下部生物量的积累。有研究同样表明[30],园林废弃物堆肥和泥炭混合添加的轻型基质对叶绿素质量分数的提高没有促进作用。生长介质中的磷素水平与马蔺叶绿素积累具有正相关关系[31],T6组中泥炭的添加抑制了基质有效磷的释放,进而对马蔺叶绿素质量分数提升产生了负面影响[32]。园林废弃物堆肥和泥炭混合添加影响了基质的孔隙度和通气状况,在过旱和过涝条件下,T6组平衡水气的能力减弱,不能协调植物高温缺水和水分过多产生的不利条件,因此导致叶绿素的合成受到影响[33]。而T6组更有利于马蔺株高和生物量的积累。其原因可能是,基质中富含的氮素能够有利于马蔺株高增长和根系的发育,从而促进了地下部生物量的积累。张璐等[34]指出,植物地下部生物量和养分的积累有利于地上部生物量的合成。因此,T6组处理的马蔺地上部生物量高于T3组。
-
本研究以pH、EC、干容重等13个指标进行主成分分析,从而对2组基质进行综合评判。为保证主成分分析的有效性,本研究提取了特征值大于1的3个主成分。由表4可以看出,3个主成分累计方差贡献率达到了94.294%。这表明,提取的3个主成分保留了原始数据的绝大部分信息。第1主成分特征值为7.143,方差贡献率为54.950%,主要以pH、饱和水容重、总孔隙度、持水孔隙度和叶绿素质量分数为主。这说明第1主成分主要是这5个指标的综合反应。第2主成分特征值为3.167,方差贡献率为24.364%,主要以EC和干容重为主。这说明第2主成分主要是这2个指标的综合反应。第3主成分特征值为1.948,方差贡献率为14.981%,主要以株高为主。这说明第3主成分主要反映株高信息。
以标准化处理的指标变量主成分载荷除以特征值的平方根,得到3个主成分中每个指标对应的特征向量。以每个指标的特征向量为权重构建3个主成分的函数表达式并分别计算得分(F1、F2、F3),又由于3个主成分的方差贡献率各不相同。因此,以各自的方差贡献率为权重,构建的综合表达式如式(3)所示[35]。
根据式(3)得出的主成分得分为FT3(0.487)高于FT6(-0.487)。因此,最优处理组为T3,基质配方为:10%园林废弃物堆肥+90%珍珠岩(质量比)。
-
1)根据隶属函数综合评价结果和北京市《屋顶绿化规范》,T3组(10%园林废弃物堆肥+90%珍珠岩)和T6组(10%园林废弃物堆肥+10%泥炭+80%珍珠岩)各项理化指标最适宜进行屋顶绿化模拟栽培实验。
2)2组基质全氮、有效磷、速效钾质量分数变化趋势基本一致,加入10%泥炭有利于基质全氮和有机质质量分数提高,但会抑制有效磷和速效钾的释放。马蔺在2组基质中均生长良好,10%园林废弃物堆肥和10%泥炭混合添加有利于马蔺株高和整体生物量积累,但不利于马蔺叶绿素质量分数提高。
3)主成分结果表明,T3组(10%园林废弃物堆肥+90%珍珠岩)基质综合评价最佳。即10%园林废弃物堆肥与90%珍珠岩混合能够用作屋顶绿化轻型基质,且不需要添加泥炭,从而能够解决基质配制过程中泥炭资源不足的问题。
园林废弃物堆肥用于屋顶绿化轻型基质的配方筛选
Screening of light substrate formulations of garden waste compost for roof greening
-
摘要: 针对用于屋顶绿化基质的泥炭存在资源不足的问题,以园林废弃物堆肥、泥炭和珍珠岩配制9组混合基质,以马蔺为供试植物,通过基质筛选和屋顶绿化模拟栽培实验研究园林废弃物堆肥替代泥炭用于屋顶绿化轻型基质的效果。结果表明,9组基质干容重为0.08~0.11 g·cm−3、饱和水容重为0.46~0.56 g·cm−3。添加20%泥炭的处理组总孔隙度和通气孔隙度较小,持水孔隙度较大。9组基质的pH和EC适宜植物生长。结合隶属度评价结果和北京市《屋顶绿化规范》,筛选T3组(10%园林废弃物堆肥+90%珍珠岩)和T6组(10%园林废弃物堆肥+10%泥炭+80%珍珠岩)2组处理用于屋顶绿化模拟栽培实验。结果表明,2组基质全氮、有效磷、速效钾质量分数变化趋势基本一致,T6组中10%园林废弃物堆肥和10%泥炭的混合加入提升了基质全氮和有机质质量分数,但抑制了基质有效磷和速效钾的释放。2组处理中的马蔺均生长良好,T3组(1.475 mg·g−1)马蔺叶绿素质量分数比T6组(1.154 mg·g−1)处理提升了27.82%,而T6组基质促进了株高增长、地上部和地下部生物量积累。主成分综合评价得分为T3组>T6组,即10%园林废弃物堆肥与90%珍珠岩混合配制的基质得分最高,能够替代泥炭用于屋顶绿化中。本研究结果可为园林废弃物堆肥用作屋顶绿化轻型基质提供参考。Abstract: In order to solve the problem of insufficient resources of peat in light substrate of roof greening, nine groups of mixed substrates were prepared by using garden waste compost, peat and perlite, and Iris lactea Pall was selected as test plant. The effect of garden waste compost replacing peat used in the light substrate of roof greening were by carrying out the substrate screening and roof greening simulation cultivation experiment. The results showed that the dry bulk density of nine treatments was 0.08~0.11 g·cm−3, and saturated water bulk density was 0.46~0.56 g·cm−3. The treatment with 20% peat had smaller total porosity, aeration porosity, and larger water holding porosity. The pH and EC of nine treatments were all suitable for plant growth. Combined with the comprehensive evaluation results of membership function and the code for roof greening in Beijing, T3 (10% garden waste compost+90% perlite) and T6 (10% garden waste compost+10% peat+80% perlite) were screened for the simulated cultivation experiment of roof greening. The results showed that the dynamic change trends of total nitrogen, available phosphorus and available potassium in the two treatments were basically the same. The mixed addition of 10% garden waste compost and 10% peat of T6 elevated the total nitrogen and organic matter content in the substrate, but restricted the release of available phosphorus and available potassium. The leaf chlorophyll content of Iris lactea Pall in T3 (1.475 mg·g−1) was 27.82% higher than that in T6 (1.154 mg·g−1), but the growth of plant height, the biomass of both aboveground and underground in T6 were promoted. The comprehensive score evaluation showed that T3 gained higher score than T6, that is, the substrate constituted by 10% garden waste compost and 90% perlite had the highest score, which could replace peat for roof greening substrate. This study can provide a scientific reference for the application of garden waste compost as light substrate for roof greening.
-
Key words:
- garden waste compost /
- roof greening /
- light substrates /
- Iris lactea Pall
-
随着城乡水环境保护治理要求日益严格,农村水环境污染治理问题逐渐成为关注的焦点[1]。现有的城市污水处理工艺不适宜在污水总量小、分散且经济条件差、技术匮乏的农村地区采用,因此针对农村地区开发出水稳定达标、能耗低、运行管理简单的分散污水处理工艺对强化农村地区生活污水处理具有重要意义。
多级A/O工艺是一种高效的脱氮除磷污水处理工艺,在水处理中应用广泛,但由于好氧段的硝化液需要回流至缺氧段进行反硝化脱氮,能耗相对较高[2-3]。分段进水多级A/O工艺通过将污水分段加入各缺氧段实现反硝化过程中的碳源补充,可有效降低工艺运行成本,具有操作灵活简便的特点,但传统的分段进水多级A/O工艺主要基于活性污泥法开发。多级生物接触氧化工艺具有填料固定生物量大、挂膜周期短、水力停留时间短、体积小等特点,在分散生活污水处理方面表现出优异潜力[4-5]。将生物接触氧化工艺与多点进水技术相结合,实现生物接触氧化系统中碳源、溶解氧的再分配,有望进一步强化多级生物接触氧化工艺对低碳氮比生活污水的净化效能。
本研究针对传统生物接触氧化工艺的弊端,结合农村分散型生活污水的特点,设计多点进水的多级生物接触氧化工艺,将进水以不同比例投加到不同的生物接触氧化工艺段,利用原水中的有机物实现对缺氧段碳源补给和溶解氧的再分配,以实现对农村生活污水的高效低耗净化。
1. 材料与方法
1.1 实验装置
实验装置由不锈钢钢板加工制作而成,分为6个反应区,即调节池、好氧池1# (O1)、缺氧池1# (A1)、缺氧池2# (A2)、好氧池2# (O2)及沉淀池(图1),装置总尺寸为1.225 m×1.2 m×0.7 m,反应区的有效容积为770 L。内填充速分球作为填料,外为直径10 cm的PVC壳体,内为火山岩碎块,填充率采用经验值,即每立方米装填1 000个直径10 cm的速分球。空压机通过与空气管相连的微孔曝气盘向好氧池1#(O1池)和好氧池2#(O2池)充氧曝气。装置污水采用上进下出、下进上出的方式,单点进水时,由自吸泵通过进水管进入配水渠;多点进水时,自吸泵中的污水部分从进水管进入配水渠,部分进入缺氧池1#(A1池)或缺氧池2#(A2池)。
本研究设计2套总体积相同、各段体积不同的装置。装置一各段的水力停留时间比为O1∶A1∶A2∶O2=9∶1∶3∶6,即每个工艺段的体积比为9∶1∶3∶6;装置二各段水力停留时间比为O1∶A1∶A2∶O2=1∶1∶1∶1,即每个工艺段的体积相等。2套装置平面设计图如图2所示。
1.2 微生物挂膜
生物接触氧化装置采用活性污泥挂膜法,接种的活性污泥取自北京市郊区某污水处理厂好氧池,污泥浓度约5.5 g·L−1。将活性污泥闷曝48 h,静置沉淀后排出上清液,然后将接种的活性污泥与生活污水以体积比约1∶20混合后注入生物接触氧化池,好氧池溶解氧控制在4 mg·L−1左右,缺氧池不曝气。继续在池内污水闷曝24 h后,排出底部老化的活性污泥,连续通入生活污水,挂膜至24 d时,可观察到好氧池填料上有棕黄色的生物膜,缺氧池内的生物膜呈黑色(图3),此时COD和氨氮的去除率均高于75%,出水水质良好,表明挂膜成功[6-7],可以进行下一阶段实验。
1.3 实验水质
实验进水取自北京市郊区某污水处理厂进水口,污水源为周边农村居民生活污水,实验期间进水水质指标:COD、TN、NH4+-N质量浓度为101~364、22~42、4~25.8 mg·L−1,温度为18.3~31.3 ℃,pH为7.69~7.98。实验周期为5个月。
1.4 运行工况
装置运行参数为:生物接触氧化系统进水流量为120 L·h−1,不设回流。O1段溶解氧控制为(4.0±0.1) mg·L−1,O2段溶解氧控制为(3.0±0.1) mg·L−1。由于装置不设回流,多点进水时将污水以4∶1及2∶1的比例进入O1段、A1段或O1段、A2段,把系统进水分为O1∶A1=4∶1 (工况I),O1∶A1=2∶1 (工况II),O1∶A2=4∶1 (工况III),O1∶A2=2∶1 (工况IV)4个工况。
1.5 仪器与方法
温度、pH、DO采用YSI ProPlus便携式多参数水质分析仪,COD采用快速消解法,TN采用过硫酸钾氧化法,NH4+-N采用纳氏试剂法。
2. 结果与讨论
2.1 不同工况下多级生物接触氧化工艺的COD去除效果
图4所示为单点和多点进水情况下生物接触氧化工艺对生活污水中COD的去除效果变化情况。尽管进水COD波动较大,但单点和多点进水情况下出水COD值始终在30 mg·L−1左右。单点进水与多点进水下的出水COD值相差不大,甚至在多点进水情况下出现出水COD值升高的现象。多点进水时,装置一在工况I时的出水COD值最低,为20.2 mg·L1,平均去除率为92.0%。
多点进水时,对比工况I和工况II,进水位置相同、进水比例不同时出水COD值相差不大,但工况I的进水COD去除率较工况II高,很可能是因为O1段进水在装置中停留时间较长,有较好的生化效果;对比工况I和工况III,相同的进水比例在不同的进水位置也会有不同的出水COD值,进水O1段流量相同,A1段进水较A2段进水时COD的去除率高,很可能是缺氧段时间越长,反硝化作用越强;对比工况I和工况IV,尽管进水位置及比例均不同,但出水COD值均稳定在30 mg·L−1以下,且去除率处于较高的水平。
2.2 不同工况下多级生物接触氧化工艺的氨氮去除效果
图5为单点和多点进水情况下生物接触氧化工艺对生活污水中氨氮的去除效果。单点进水条件下2套装置对氨氮的去除率相近,平均去除率为95.5%。多点进水时在不同的工况下,氨氮的出水浓度有所差异,去除率变化明显。当进水位置及比例有所改变时,装置一在工况I时对氨氮的处理效果最好,出水平均浓度为0.5 mg·L−1,平均去除率为97.1%。
对比工况I和工况II,进水位置相同、进水比例不同时,O1段进水流量较高,A1段进水较低时的氨氮去除率较高;对比工况I和工况III,进水比例相同、进水位置不同时,进水A1段较A2段的氨氮去除率稍高;对比工况I和工况IV,在进水总量相同,进水位置及比例均不同时,工况I对氨氮的去除率较高,原因是好氧段水力停留时间越长,氨氮的出水效果越好[7]。
2.3 不同工况下多级生物接触氧化工艺的总氮去除效果
图6所示为单点和多点进水情况下生物接触氧化工艺对生活污水中TN的去除效果变化情况。单点进水时,进水总氮在24~28 mg·L−1,2套装置对总氮的去除效果均不佳,平均出水浓度为18.2 mg·L−1,平均去除率为31.5%,不能达到排放标准。多点进水时,2套装置在4个工况下的出水总氮浓度变化幅度较大,总体来说,装置一的总氮去除效果优于装置二,且在工况I时的装置一总氮平均出水浓度为9.0 mg·L−1,平均去除率为64.3%,可以稳定达到北京市地标农村生活污水一级A排放标准,这在不设回流、不外加碳源的情况下是较难实现的。
对比工况I和工况II,进水位置相同、进水比例不同时,O1段进水流量越大,出水总氮越低;对比工况I和工况III,进水比例相同、进水位置不同时,原水进入A1段时的总氮去除率较进入A2段时高;对比工况I和工况IV,在进水总量相同,进水位置及比例都不相同时,工况I运行时出水总氮浓度较低,脱氮效果最好。多点进水模式实现了碳源在多级A/O工艺中的再分配,A1或A2段进水弥补了厌氧段由于碳源不足导致的反硝化能力不足问题,但同时当缺氧段存在大量有机物时,容易造成缺氧段异养菌繁殖,进而与反硝化细菌产生竞争作用,限制反硝化细菌的生长,在一定程度上抑制反硝化效率[8-9]。
综上可知,多点进水时多级生物接触氧化工艺对生活污水的处理效果优于单点进水。在工况I(O1∶A1=4∶1)的进水情况下出水效果最优,且装置一的出水效果优于装置二,最优的COD、氨氮、总氮的出水平均浓度分别为20.2、0.5、9 mg·L−1,平均去除率分别为92.0%、97.1%、64.3%。
2.4 水力停留时间对多级生物接触氧化工艺去除COD效果的影响
图7所示不同水力停留时间下多级生物接触氧化工艺COD去除变化曲线。单点进水时,2套装置出水的COD值相近,COD的去除率随着水力停留时间(HRT)的减小而降低,当HRT为6.55 h时,装置一中出水COD平均值为10.8 mg·L−1,平均去除率为92.1%;当HRT为4.91 h时,装置一中出水COD平均值为28.4 mg·L−1,平均去除率为81.8%。多点进水下,当HRT从6.55 h减少到4.91 h时,装置一的出水COD平均值由20.2 mg·L−1增加至31.2 mg·L−1,平均去除率随之降低。
随着HRT的减小,反应器的水力负荷有所增加,必然会影响有机物的处理效率。缩短HRT,使得反应器内的生物膜受到气流的扰动作用和水力的剪切作用加强,接触时间变短,生物氧化作用不完全,再加上生物量流失增加,导致反应不完全,出水水质下降[8]。同时发现减少HRT时,COD去除下降效果不太显著,表明系统对COD的去除有较高的抗冲击负荷能力,增加水力负荷时,对COD仍有较高的去除率。
2.5 水力停留时间对多级生物接触氧化工艺去除氨氮效果的影响
图8所示为不同水力停留时间下多级生物接触氧化工艺氨氮去除变化曲线。单点进水时,装置一对氨氮的去除率略好于装置二。当HRT为6.55 h时,装置一中氨氮的平均出水浓度为0.66 mg·L−1,平均去除率为95.5%;当HRT为4.91 h时,装置一中氨氮的平均出水浓度为1.76 mg·L−1,平均去除率为87.7%。多点进水时,装置一对氨氮的去除率稍高于装置二,其在水力停留时间较长的6.55 h时,氨氮的出水效果最好,平均出水浓度为0.5 mg·L−1,平均去除率高达97.1%。随着水力停留时间的减少,反应器内硝化菌去除氨氮的作用减弱,当水力停留时间减少至4.91 h时,氨氮平均出水浓度为3.10 mg·L−1,平均去除率减至86.8%。
HRT是影响氨氮去除效果的重要影响因素。在一定范围内,HRT越长,氨氮的去除率越高;HRT越短,氨氮的去除率越低。HRT由6.55 h降低为4.91 h时,系统对氨氮的去除有所下降,下降幅度较小。这可能是随着进水流量的增加,O2段可供利用的有机物含量升高,加快了微生物的新陈代谢,使得生物活性得到提高,使得出水氨氮浓度下降的幅度较小。
2.6 水力停留时间对多级生物接触氧化工艺去除总氮效果的影响
图9所示为2套生物接触氧化装置的总氮去除变化情况。在单点进水条件下,当水力停留时间为6.55 h时,平均出水总氮浓度为18.2 mg·L−1,平均去除率仅为31.5%。多点进水时,随着水力停留时间逐渐减少,总氮的去除率呈现直线下降的趋势,且装置一较装置二对总氮的去除率稍高。当水力停留时间为6.55 h时,装置一中总氮的出水浓度最低,去除率最高,平均出水浓度为9.0 mg·L−1,平均去除率可达到64.3%,随着水力停留时间减少至4.91 h,总氮的平均出水浓度增加至16.6 mg·L−1,平均去除率降低为54.1%。
总氮的去除依靠同步硝化反硝化过程和缺氧段的反硝化过程。当系统的水力负荷随水体停留时间的减少而逐渐增加时,水流的水力冲刷作用增强,生物膜的附着性变差,缺氧段生物膜分泌物质的粘性作用不足以抗拒水流的冲刷,将会加快生物膜的脱落,使得反硝化菌随水流流失严重,反硝化脱氮的效果减弱,总氮的去除率降低[9-10]。另外,水力负荷的增加,使得好氧段微生物对氨氮的转化能力减弱,氨氮转化为硝态氮和亚硝态氮的效率较低,反硝化过程受到制约,从而降低总氮的去除效果。
2.7 多点进水多级生物接触氧化工艺的除氮过程分析
由多点进水条件下多级生物接触氧化工艺对COD、氨氮及总氮的去除效果的影响结果表明,进水位置及比例为O1∶A1=4∶1,水力停留时间为6.55 h的运行工况下的出水效果最好,因此,以装置一中工况I的氮浓度变化来探究总氮的去除机理。
图10所示为多级生物接触氧化工艺不同段出水中氮浓度变化曲线。进水中的总氮及氨氮浓度较高,硝态氮和亚硝态氮浓度较低,经好氧段O1后,总氮及氨氮值均有明显下降,且氨氮降幅较大,硝态氮及亚硝态氮值均有提高,说明氨氮在O1段硝化菌的作用下转化为硝态氮和亚硝态氮[10],同时总氮在在O1段有所减少表明在好氧段O1段发生了反硝化作用。值得注意的是,由于进水中有机物浓度较高,导致硝化速度不及反硝化速度,导致在O1段存在一定的亚硝酸盐累计;同时,O1段内的微生物可以获取进水中的有机物质供给自身进行增殖,随着生物膜厚度的逐渐增加,水中的溶解氧穿透生物膜表层的能力越来越弱,使得填料内部火山岩上生长的微生物处于缺氧的环境,在生物膜内外形成一定的缺氧区和好氧区,同步硝化反硝化作用得以进行[10]。
当污水经好氧段O1流入缺氧段A1的同时,部分原水进入A1段,由于原水中的氨氮及总氮浓度较高,直接进入A1段时,提高了缺氧段出水的总氮和氨氮值。然而缺氧段的反硝化菌可利用原水中的有机物将好氧段提供的硝态氮、亚硝态氮还原为氮气,从而降低了总氮及硝态氮和亚硝态氮的浓度,所以在A2段出水时很难检测到硝态氮和亚硝态氮的存在。但总氮在缺氧段呈现下降的趋势,表明缺氧段的反硝化作用强于进水和O1段出水浓度的混合提高,因此,总氮的去除效果较为明显。污水流出O2段时,氨氮在好氧的条件下得到转化,硝态氮及亚硝态氮的浓度均有所提高;总氮浓度的降低也表明了O2段内同步硝化反硝化过程依然存在,因此,系统对总氮的去除效果较好。
2.8 多点进水多级生物接触氧化工艺微生物分析
当反应器运行至稳定状况时,填料上的生物膜经长期运行后达到稳定,分析装置一中O1段、A1段、A2段、O2段中生物膜中微生物的菌群结构。图11(a)为好氧段生物膜门水平上微生物top15及相对丰度。相对丰度最高的为变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes),二者可有效去除水中的有机污染物,同时具有脱氮功能。此外,在好氧段生物膜中也存在较高的硝化螺旋菌门,是重要的亚硝酸盐氧化细菌,是污水处理中执行亚硝酸盐氧化功能的关键菌群。图11(b)所示为缺氧段生物膜门水平上微生物组成情况。与好氧段类似,相对丰度最高的为变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes),其次相对丰度较高的是厚壁菌门(Firmicutes),厚壁菌门中大都可以产生芽孢,可用以抵抗外部极端环境,是污水处理中被的重要功能菌群。
图11(c)所示为好氧段生物膜属水平上微生物top15及相对丰度。相对丰度较高的黄杆菌属(Flavobacterium)、Denitratisoma菌属、Phaeodactylibacter菌属、硝化螺旋菌属(Nitrospira)、噬氢菌属(Hydrogenophaga)等都有利于生物脱氮反应的进行,而球衣菌属(Sphaerotilus)具有降解有机污染物的功能,可促进COD去除;亚硝化单胞菌属(Nitrosomonas)可以调节酶来控制硝化过程。在反应器的好氧段生物膜中存在部分反硝化菌属,表明好氧段内存在缺氧甚至是厌氧环境,证实了好氧段同步硝化反硝化过程的存在。
图11(d)所示为缺氧段生物膜属水平上微生物群落结构。属水平上相对丰度较高的为球衣菌属(Sphaerotilus),具有降解有机污染物的功能;丝硫菌属(Thiothrix)常出现在氮源较少,碳源及能源丰富的环境中;弓形杆菌属(Arcobacter)、黄杆菌属(Flavobacterium)、Denitratisoma菌属、Phaeodactylibacter菌属、索氏菌属(Thauera)等菌属均为重要的脱氮微生物。缺氧段中存在的丰富弓形杆菌属(Arcobacter)、黄杆菌属(Flavobacterium)、Phaeodactylibacter菌属、和Denitratisoma菌属等微生物,有利于生物的反硝化过程,进而提高总氮去除率。
3. 结论
1)多点进水的多级生物接触氧化条件下,进水位置及比例对污染物去除效果具有明显影响。进水位置及比例为O1∶A1=4∶1时的出水效果最好,COD、NH4+-N及TN的平均出水浓度分别为20.2、0.5、9.0 mg·L−1,平均去除率分别为92.0%、97.1%、64.3%。
2) HRT对COD、氨氮和总氮去除效果有显著影响。随着HRT的减少,COD、氨氮和总氮的出水浓度逐渐升高,去除率逐渐降低,出水水质恶化,实验得出的最优水力停留时间为6.55 h。
3)多点进水条件下多级生物接触氧化工艺在好氧段内存在同步硝化反硝化过程,对总氮去除具有一定的提升作用,经缺氧段后总氮出水继续降低,末端好氧段后COD、氨氮及总氮均可达标出水。
-
表 1 基质配方质量分数
% Table 1. Mass fraction of substrates for formulations
% 实验组别 园林废弃物堆肥 泥炭 珍珠岩 T1 0 0 100 T2 5 0 95 T3 10 0 90 T4 0 10 90 T5 5 10 85 T6 10 10 80 T7 0 20 80 T8 5 20 75 T9 10 20 70 表 2 不同基质理化性质
Table 2. Physical and chemical properties of different substrates
实验组别 干容重/(g·cm−3) 饱和水容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/% 大小孔隙比 pH EC/(μs·cm−1) T1 0.08d 0.51bc 70.70a 28.29ab 42.70a 0.70 7.76a 41.33f T2 0.08cd 0.46d 62.79bc 23.7abc 38.10b 0.60 7.48ab 205.24d T3 0.09bc 0.52ab 70.29a 27.56ab 43.36a 0.70 7.44b 282.67ab T4 0.08bcd 0.46d 66.53ab 28.83a 37.79b 0.80 5.65e 136.00e T5 0.09bc 0.48cd 67.32ab 29.31a 39.10b 0.80 6.22d 253.75c T6 0.09bc 0.46d 60.48c 22.84bc 37.64b 0.60 6.87c 315.00a T7 0.09b 0.53ab 54.53d 10.22d 43.87a 0.20 5.86e 295.00abc T8 0.11a 0.56a 67.19ab 22.16bc 45.03a 0.50 6.31d 276.00bc T9 0.10a 0.55a 62.08bc 17.57c 44.39a 0.40 6.29d 281.00abc 注:同列数据后不同小写字母表示不同处理间差异显著(P <0.05)。 表 3 隶属度得分及综合排序
Table 3. Score and comprehensive ranking of membership function
实验组别 干容重/(g·cm−3) 饱和水容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/% 大小孔隙比 pH EC/(μs·cm−1) 综合得分 综合排名 T1 0.51 0.64 0.53 0.31 0.57 0.33 0.46 0.47 0.479 5 T2 0.30 0.29 0.44 0.61 0.30 0.55 0.49 0.56 0.443 8 T3 0.48 0.60 0.45 0.49 0.64 0.39 0.41 0.43 0.486 4 T4 0.30 0.52 0.63 0.65 0.43 0.62 0.49 0.59 0.529 3 T5 0.55 0.46 0.47 0.37 0.42 0.35 0.38 0.37 0.421 9 T6 0.76 0.48 0.54 0.64 0.38 0.66 0.68 0.34 0.559 2 T7 0.55 0.61 0.56 0.66 0.60 0.52 0.66 0.65 0.600 1 T8 0.36 0.48 0.59 0.55 0.46 0.53 0.37 0.41 0.468 7 T9 0.51 0.46 0.47 0.60 0.47 0.57 0.33 0.41 0.478 6 表 4 主成分分析结果
Table 4. Results of principal component analysis
主成分 各指标得分系数 特征值 方差贡献率% 累计方差贡献率% pH EC 干容重 饱和水容重 总孔隙度 通气孔隙度 持水孔隙度 大小孔隙比 株高 叶绿素质量分数 地上生物量鲜重 地上生物量干重 地下生物量干重 1 0.889 0.009 0.473 0.814 0.938 0.635 0.822 0.108 −0.302 0.903 −0.837 −0.965 −0.978 7.143 54.950 54.950 2 −0.270 0.797 0.801 0.579 −0.009 −0.566 0.540 −0.848 0.086 0.003 0.286 0.188 0.162 3.167 24.364 79.313 3 −0.203 0.497 −0.056 0.028 0.327 0.493 0.021 0.463 0.852 0.368 0.456 0.095 0.112 1.948 14.981 94.294 -
[1] 北京市质量技术监督局. 屋顶绿化规范: DB11/T 281-2005[S]. 北京: 北京市园林绿化局, 2005. [2] 李树华, 殷丽峰. 世界屋顶花园的历史与分类[J]. 中国园林, 2005(5): 57-61. doi: 10.3969/j.issn.1000-6664.2005.05.013 [3] 陈辉, 任珺, 杜忠. 屋顶绿化的功能及国内外发展状况[J]. 环境科学与管理, 2007, 32(2): 162-165. doi: 10.3969/j.issn.1673-1212.2007.02.047 [4] 杨渝兰, 郑星, 刘葆华, 等. 屋顶绿化的功能及应用现状[J]. 节能, 2011, 30(6): 4-6. doi: 10.3969/j.issn.1004-7948.2011.06.001 [5] 邓雄, 彭晓春, 覃超梅. 屋顶绿化的功能、特点及其在我国的现状和存在的问题[J]. 中山大学学报(自然科学版), 2010, 49(S1): 99-101. [6] 吉文丽, 李卫忠, 王诚吉, 等. 屋顶花园发展现状及北方屋顶绿化植物选择与种植设计[J]. 西北林学院学报, 2005, 20(3): 180-183,188. doi: 10.3969/j.issn.1001-7461.2005.03.048 [7] 孟宪民. 我国泥炭资源概况与园艺种苗基质解决方案[J]. 中国花卉园艺, 2004(22): 14-17. [8] 杜林峰, 孙向阳, 沈彦. 泥炭作为园艺基质的研究进展[J]. 北方园艺, 2007(10): 68-70. doi: 10.3969/j.issn.1001-0009.2007.10.026 [9] 黄蓉, 吴永华, 张建旗, 等. 兰州市屋顶绿化地被植物种植基质的筛选[J]. 草业科学, 2020, 37(6): 1088-1097. doi: 10.11829/j.issn.1001-0629.2019-0485 [10] 韦杰文, 韩柳, 赵晓红, 等. 给水厂铝污泥作为屋顶绿化基质应用的关键问题分析[J]. 环境工程, 2019, 37(12): 34-40. [11] SOLODAR A, BAWAB O, LEVY S, et al. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs[J]. Science of the Total Environment, 2018, 633: 1272-1279. doi: 10.1016/j.scitotenv.2018.03.291 [12] NOYA M G, CUQUEL F L, SCHAFER G, et al. Substrates for cultivating herbaceous perennial plants in extensive green roofs[J]. Ecological Engineering, 2017, 102: 662-669. doi: 10.1016/j.ecoleng.2017.02.042 [13] 陈彤, 邱军付, 齐兴育, 等. 园林废弃物基栽培基质的配方筛选及综合评价[J]. 环境工程学报, 2021, 15(4): 1444-1450. doi: 10.12030/j.cjee.202008169 [14] TIAN Y, SUN X, LI S, et al. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv fasciata[J]. Scientia Horticulturae, 2012, 143: 15-18. doi: 10.1016/j.scienta.2012.05.018 [15] 鲍士旦. 土壤农化分析第3版[M]. 北京: 中国农业出版社. 2000. [16] 刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社. 2010. [17] 蔡永萍. 植物生理学[M]. 北京: 中国农业大学出版社. 2008. [18] 肖超群, 郭小平, 刘玲, 等. 绿化废弃物堆肥配制屋顶绿化新型基质的研究[J]. 浙江农林大学学报, 2019, 36(3): 598-604. doi: 10.11833/j.issn.2095-0756.2019.03.022 [19] 王朴, 金晶, 康凯丽, 等. 园林有机废弃物在花卉栽培中的应用效果[J]. 安徽农业科学, 2021, 49(5): 155-157+161. doi: 10.3969/j.issn.0517-6611.2021.05.043 [20] 田赟. 园林废弃物堆肥化处理及其产品的应用研究[D]. 北京林业大学, 2012. [21] 刘永和, 孟宪民, 王忠强. 泥炭资源的基本属性、理化性质和开发利用方向[J]. 干旱区资源与环境, 2003(2): 18-22. doi: 10.3969/j.issn.1003-7578.2003.02.004 [22] 龚小强, 孙向阳, 李燕, 等. 组配改良剂对园林废弃物堆肥基质理化性质及鸟巢蕨生长影响[J]. 西北林学院学报, 2015, 30(5): 126-132. doi: 10.3969/j.issn.1001-7461.2015.05.20 [23] 李斗争. 组成成分及颗粒粒径对基质孔隙特性的影响研究[D]. 山东农业大学, 2006. [24] 李光义, 余小兰, 徐林, 等. 木薯茎秆栽培基质氮变化规律研究[J]. 安徽农业科学, 2018, 46(17): 68-71+75. doi: 10.3969/j.issn.0517-6611.2018.17.021 [25] 杨梦珂, 郑思俊, 张青萍, 等. 应用于垂直绿化栽培的基质保肥性研究[J]. 河南农业科学, 2017, 46(11): 120-126. [26] 吴小盈. 基质配比对3种珍贵树种容器苗生长及养分积累的影响[D]. 浙江农林大学, 2021. [27] 刘帅成, 何洪城, 曾琴. 国内外育苗基质研究进展[J]. 北方园艺, 2014(15): 205-208. [28] 柴喜荣, 程智慧, 孟焕文, 等. 有机基质栽培番茄氮磷钾养分吸收与基质养分释放规律的研究[J]. 北方园艺, 2011(16): 4-7. [29] 白龙强, 李衍素, 贺超兴, 等. 添加草炭对基质栽培番茄生理特性、产量与品质的影响[J]. 中国蔬菜, 2012(16): 57-62. [30] 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境, 2019, 33(4): 103-108. [31] 殷庆霏, 郭建斌, 倪肖卫, 等. 不同堆肥对南方屋顶绿化植物生长特性的影响[J]. 环境工程学报, 2017, 11(11): 6205-6213. doi: 10.12030/j.cjee.201704020 [32] 赵倩雯, 孟军, 陈温福. 生物炭对大白菜幼苗生长的影响[J]. 农业环境科学学报, 2015, 34(12): 2394-2401. doi: 10.11654/jaes.2015.12.020 [33] 张国斌. 低温弱光对辣椒幼苗生长与光合生理特性的影响[D]. 甘肃农业大学, 2005. [34] 张璐, 孙向阳, 田赟. 园林废弃物堆肥用于青苹果竹芋栽培研究[J]. 北京林业大学学报, 2011, 33(5): 109-114. [35] 周佩华, 高峰, 杨涵童, 等. 以菌渣为主料的人参栽培基质筛选研究[J]. 扬州大学学报(农业与生命科学版), 2022, 43(1): 118-127. -