-
屋顶绿化指在各类建筑物、构筑物等的顶部以及天台、露台上进行造园,脱离自然土壤种植植物的一种形式[1-2]。屋顶绿化技术的应用对解决城市生态问题、降低“热岛效应”、改善建筑物屋顶构造性能等方面起到重要作用[3-4]。基质是屋顶绿化系统中的基础,应兼备质轻、保水、保肥等特点[5-6]。泥炭因含有大量有机质及植物生长所需的养分而常与珍珠岩混合配制基质用于屋顶绿化工程中[7-8]。但泥炭属于不可再生资源,大量开采会导致不可逆转的破坏。
近年来,寻求泥炭替代基质的研究被广泛开展,并在屋顶绿化系统中取得了一定成果。黄蓉等[9]利用田园土、蛭石和椰糠部分取代泥炭配制出适合兰州市屋顶绿化地被植物的基质。韦文杰等[10]提出体积比为40%的铝污泥配制简单式屋顶绿化基质的可行性。SOLODAR等[11]研究发现80%粉煤灰+20%堆肥能够适用于干旱地区屋顶绿化系统。NOYA等[12]研究得出适宜大面积屋顶绿化的最佳基质配比为陈化禽粪∶木屑=1∶1。
随着城市园林绿化面积的扩大,产生了大量园林废弃物。园林废弃物经堆肥处理后含有大量的矿质元素和有机质,可以作为优质的栽培基质,从而实现资源化利用[13]。但目前园林废弃物堆肥应用于屋顶绿化轻型基质的研究却相对较少。本研究以园林废弃物堆肥、泥炭和珍珠岩为原料混合配制屋顶绿化轻型基质,并以马蔺为栽培植物进行屋顶绿化模拟实验,探究园林废弃物堆肥替代泥炭用作屋顶绿化轻型基质的栽培效果。本研究可为园林废弃物应用于屋顶绿化基质提供参考。
-
供试植物为生长健壮且长势一致的马蔺幼苗,苗龄1 a,由北京市某景观公司提供。供试基质原料包括珍珠岩、园林废弃物堆肥和泥炭。珍珠岩购自于河南某材料厂,基本理化性质:pH为7.76、EC为41.33 μs·cm−1、有效磷2.49 mg·kg−1、速效钾67.79 mg·kg−1。园林废弃物堆肥购自于某堆肥厂,基本理化性质:pH为7.38、EC为2 730.00 μs·cm−1、有效磷209.24 mg·kg−1、速效钾5 564.27 mg·kg−1。泥炭购自于北京某生态公司,基本理化性质为:pH为6.92、EC为580.00 μs·cm−1、有效磷25.30 mg·kg−1、速效钾400.00 mg·kg−1。
-
基质配制与筛选实验。将园林废弃物堆肥、泥炭和珍珠岩按照一定质量比混合,搅拌均匀后制成轻型基质,配方见表1。测定所配制基质的理化性质并运用隶属度综合评价法,筛选出优质基质进行栽培实验。
植物栽培实验。将筛选出的轻型基质装入种植槽中,考虑到珍珠岩的添加会极大降低混合基质的容重而不利于固定植物根系。因此,本研究中将陶粒均匀铺于种植槽表面,从而有效防止基质扬尘并对植物根系进行了有效固持。将马蔺幼苗移栽至种植槽中,每组基质每槽种植32 株。移栽植物后将基质浇透水,随后每30 d浇水1 次,每次浇水至种植槽底部排水口出水。实验期间,每30 d除草1次,不施肥处理。在8-12月每30 d采集基质样品,测定在马蔺生长条件下基质全氮、有效磷、速效钾和有机质动态变化。栽植1 a后测定马蔺生长指标。
-
基质理化指标测定。物理指标包括干容重、饱和水容重、总孔隙度、通气孔隙度、持水孔隙度和大小孔隙比,采用环刀法测定[14]。pH和EC分别用pH计和电导率仪测定;全氮、有效磷和速效钾分别用开氏法、0.5mol·L−1的NaHCO3法和NH4OAc浸提-火焰光度法测定[15]。
植物指标测定。植物指标包括株高、叶绿素、地上生物量鲜重和干重和地下生物量干重。株高采用卷尺进行测量;叶绿素采用分光光度法测定[16-17];生物量采用称重法测定。
-
采用SPSS 22.0进行差异显著性检验。以特征值大于1为提取原则进行主成分分析。模糊隶属函数综合评价方法[18]如式(1)~式(2)所示。
式中:X表示某一指标测定值;Xmin表示该指标测定的最小值;Xmax表示该指标测定的最大值;Xf表示第f个指标的隶属函数值;P表示综合评价指数。
-
基质理化性质见表2。9组基质干容重为0.08~0.11 g·cm−3、饱和水容重为0.46~0.56 g·cm−3。添加20%泥炭的处理组(T7~T9组)总孔隙度和通气孔隙度较小,持水孔隙度较大,且显著大于添加10%泥炭的处理组(T4~T6组)。基质的固体组成在很大程度上会影响其干容重和孔隙状况[19]。珍珠岩内部呈蜂窝状结构,较大的颗粒粒径和松散的存在状态增大了基质的总孔隙度。园林废弃物在堆肥过程中形成疏松多孔的絮状结构[20],能够使基质保持良好的总孔隙度和通气孔隙度。泥炭中含有不同排列组合方式的纤维和腐殖质,碎块化的结构使泥炭的通气孔隙度较低。伴随微生物的分解作用,泥炭中残存的造炭植物残体不断分解细碎,使通气孔隙度减少,能够吸持水分的持水孔隙度占比增加[21]。
从表2可知,9组基质pH为5.65~7.76、EC为41.33~315.00 μs·cm−1,适宜大多数植物生长。泥炭添加量为0和10%的各处理组间(T1~T3组和T4~T6组)pH和EC差异显著,而添加量为20%的处理组间(T7~T9组)pH和EC没有显著差异。这说明,当基质泥炭添加量达到20%时,园林废弃物堆肥对基质pH和EC没有产生影响。堆肥化过程中,园林废弃物中尿素和蛋白质的降解产生的氨会提高堆肥产品pH,堆肥完成后产生大量小分子有机物和营养元素,因而能够改良基质酸碱性并调节基质EC。当泥炭添加量为20%时,可能是由于泥炭中的腐殖质和团粒结构对基质pH和EC的调节起到了缓冲作用,故导致园林废弃物堆肥对其影响不显著[22]。
-
9组处理的隶属度得分及综合排序结果见表3。T7、T6、T4和T3处理组得分较高,但T7组通气孔隙度只有10.22%,大小孔隙比为0.2,内部气少水多。因此,基质容易出现通气不良现象,植物无法从基质中获取足够的空气[23]。T4组大小孔隙比为0.80,基质通透性强但持水能力差,故需增加灌溉次数,在栽培养护中导致成本加大。北京市《屋顶绿化规范》(DB11/T 281—2015)[1](以下简称《规范》)中给出的基质最佳pH为6.5~8.0。从表2可知,T4组基质pH为5.65,不符合《规范》要求。因此,结合隶属度综合评价结果和《规范》,选择T3和T6处理组进行屋顶绿化模拟栽培实验。
-
马蔺生长过程中基质全氮、有效磷、速效钾和有机质质量分数变化趋势见图1。T6组全氮质量分数始终高于T3组,且后期供氮水平较为平稳。2组基质全氮质量分数均呈现出先上升后下降的趋势,9月达到峰值后逐渐降低。有研究表明,栽培植物与否对基质全氮的影响不明显,基质养分变化主要受本身的生化过程或淋洗、氨挥发、反硝化等作用的影响[24]。园林废弃物堆肥和泥炭混合添加提高了基质全氮质量分数,泥炭中富含的纤维能够将松散的轻型基质颗粒紧密粘结起来,有利于基质吸附易流失的氮素[25],故T6组氮素流失速率减缓,流失量减小,在后期保持了平稳的供氮能力。
2组基质有效磷质量分数相近且随采样时间的变化趋势一致,10月达到最大值,是初期的2倍多,波动较大。其原因可能是,基质释放磷素的初始速率较高,而植物本身对磷的吸收利用能力相对较差[26]。因此,在中期出现了基质磷素的累积上升,后期因季节原因,基质释放有效磷速率降低,从而质量分数逐渐降低。此外,刘帅成等[27]指出,基质养分的变化也受酸碱度的影响。本研究中,有效磷的波动也可能是由于pH的变化所导致。T3组速效钾质量分数在采样期间始终略高于T6组,但2者相差不大。在前4次测定中,2组基质速效钾波动平缓,而12月份速效钾质量分数出现急剧上升。这可能是因为,基质中的速效钾以水溶性离子的形式存在,除被植株吸收利用外,秋季降水丰富,气温偏高,导致一部分钾素随降水和挥发而散失;冬季植物对钾素的吸收利用速率降低,降水减少,导致速效钾产生了累积[28]。白龙强等[29]发现,添加了20%泥炭的基质有效磷略有降低,速效钾没有明显变化,这与本研究结果一致。
2组基质有机质质量分数变化趋势不同,T3组有机质随采样时间呈现缓慢上升趋势,T6组呈现出先上升后下降再上升的波动趋势,但始终高于T3组。这可能是泥炭本身富含的有机质与园林废弃物堆肥中的有机质相互叠加的结果[21]。T6组有机质在测定过程中出现较大幅度波动的原因可能是,秋季植物开始出现凋萎枯落,采样时枯落枝叶和马蔺细小根系进入基质,从而造成了有机物的外源添加。
-
栽植1 a后,2组处理马蔺均生长良好。T3组(1.475 mg·g−1)马蔺叶绿素质量分数比T6组(1.154 mg·g−1)处理提升了27.82%。T3组马蔺株高生长量为63.80 cm,T6组马蔺株高生长量为65.43 cm,没有显著性差异(P>0.05)。T3组马蔺地上鲜重(32.24 g)显著低于T6组(37.213 g)(P<0.05),T3组马蔺地上和地下干重同样均显著低于T6组(P<0.05),地上干重分别为3.87 g和8.07 g,地下干重分别为3.53 g和6.05 g。与T3组相比,T6组不利于马蔺叶绿素质量分数提高,但能够促进株高的增长、地上部生物量和地下部生物量的积累。有研究同样表明[30],园林废弃物堆肥和泥炭混合添加的轻型基质对叶绿素质量分数的提高没有促进作用。生长介质中的磷素水平与马蔺叶绿素积累具有正相关关系[31],T6组中泥炭的添加抑制了基质有效磷的释放,进而对马蔺叶绿素质量分数提升产生了负面影响[32]。园林废弃物堆肥和泥炭混合添加影响了基质的孔隙度和通气状况,在过旱和过涝条件下,T6组平衡水气的能力减弱,不能协调植物高温缺水和水分过多产生的不利条件,因此导致叶绿素的合成受到影响[33]。而T6组更有利于马蔺株高和生物量的积累。其原因可能是,基质中富含的氮素能够有利于马蔺株高增长和根系的发育,从而促进了地下部生物量的积累。张璐等[34]指出,植物地下部生物量和养分的积累有利于地上部生物量的合成。因此,T6组处理的马蔺地上部生物量高于T3组。
-
本研究以pH、EC、干容重等13个指标进行主成分分析,从而对2组基质进行综合评判。为保证主成分分析的有效性,本研究提取了特征值大于1的3个主成分。由表4可以看出,3个主成分累计方差贡献率达到了94.294%。这表明,提取的3个主成分保留了原始数据的绝大部分信息。第1主成分特征值为7.143,方差贡献率为54.950%,主要以pH、饱和水容重、总孔隙度、持水孔隙度和叶绿素质量分数为主。这说明第1主成分主要是这5个指标的综合反应。第2主成分特征值为3.167,方差贡献率为24.364%,主要以EC和干容重为主。这说明第2主成分主要是这2个指标的综合反应。第3主成分特征值为1.948,方差贡献率为14.981%,主要以株高为主。这说明第3主成分主要反映株高信息。
以标准化处理的指标变量主成分载荷除以特征值的平方根,得到3个主成分中每个指标对应的特征向量。以每个指标的特征向量为权重构建3个主成分的函数表达式并分别计算得分(F1、F2、F3),又由于3个主成分的方差贡献率各不相同。因此,以各自的方差贡献率为权重,构建的综合表达式如式(3)所示[35]。
根据式(3)得出的主成分得分为FT3(0.487)高于FT6(-0.487)。因此,最优处理组为T3,基质配方为:10%园林废弃物堆肥+90%珍珠岩(质量比)。
-
1)根据隶属函数综合评价结果和北京市《屋顶绿化规范》,T3组(10%园林废弃物堆肥+90%珍珠岩)和T6组(10%园林废弃物堆肥+10%泥炭+80%珍珠岩)各项理化指标最适宜进行屋顶绿化模拟栽培实验。
2)2组基质全氮、有效磷、速效钾质量分数变化趋势基本一致,加入10%泥炭有利于基质全氮和有机质质量分数提高,但会抑制有效磷和速效钾的释放。马蔺在2组基质中均生长良好,10%园林废弃物堆肥和10%泥炭混合添加有利于马蔺株高和整体生物量积累,但不利于马蔺叶绿素质量分数提高。
3)主成分结果表明,T3组(10%园林废弃物堆肥+90%珍珠岩)基质综合评价最佳。即10%园林废弃物堆肥与90%珍珠岩混合能够用作屋顶绿化轻型基质,且不需要添加泥炭,从而能够解决基质配制过程中泥炭资源不足的问题。
园林废弃物堆肥用于屋顶绿化轻型基质的配方筛选
Screening of light substrate formulations of garden waste compost for roof greening
-
摘要: 针对用于屋顶绿化基质的泥炭存在资源不足的问题,以园林废弃物堆肥、泥炭和珍珠岩配制9组混合基质,以马蔺为供试植物,通过基质筛选和屋顶绿化模拟栽培实验研究园林废弃物堆肥替代泥炭用于屋顶绿化轻型基质的效果。结果表明,9组基质干容重为0.08~0.11 g·cm−3、饱和水容重为0.46~0.56 g·cm−3。添加20%泥炭的处理组总孔隙度和通气孔隙度较小,持水孔隙度较大。9组基质的pH和EC适宜植物生长。结合隶属度评价结果和北京市《屋顶绿化规范》,筛选T3组(10%园林废弃物堆肥+90%珍珠岩)和T6组(10%园林废弃物堆肥+10%泥炭+80%珍珠岩)2组处理用于屋顶绿化模拟栽培实验。结果表明,2组基质全氮、有效磷、速效钾质量分数变化趋势基本一致,T6组中10%园林废弃物堆肥和10%泥炭的混合加入提升了基质全氮和有机质质量分数,但抑制了基质有效磷和速效钾的释放。2组处理中的马蔺均生长良好,T3组(1.475 mg·g−1)马蔺叶绿素质量分数比T6组(1.154 mg·g−1)处理提升了27.82%,而T6组基质促进了株高增长、地上部和地下部生物量积累。主成分综合评价得分为T3组>T6组,即10%园林废弃物堆肥与90%珍珠岩混合配制的基质得分最高,能够替代泥炭用于屋顶绿化中。本研究结果可为园林废弃物堆肥用作屋顶绿化轻型基质提供参考。Abstract: In order to solve the problem of insufficient resources of peat in light substrate of roof greening, nine groups of mixed substrates were prepared by using garden waste compost, peat and perlite, and Iris lactea Pall was selected as test plant. The effect of garden waste compost replacing peat used in the light substrate of roof greening were by carrying out the substrate screening and roof greening simulation cultivation experiment. The results showed that the dry bulk density of nine treatments was 0.08~0.11 g·cm−3, and saturated water bulk density was 0.46~0.56 g·cm−3. The treatment with 20% peat had smaller total porosity, aeration porosity, and larger water holding porosity. The pH and EC of nine treatments were all suitable for plant growth. Combined with the comprehensive evaluation results of membership function and the code for roof greening in Beijing, T3 (10% garden waste compost+90% perlite) and T6 (10% garden waste compost+10% peat+80% perlite) were screened for the simulated cultivation experiment of roof greening. The results showed that the dynamic change trends of total nitrogen, available phosphorus and available potassium in the two treatments were basically the same. The mixed addition of 10% garden waste compost and 10% peat of T6 elevated the total nitrogen and organic matter content in the substrate, but restricted the release of available phosphorus and available potassium. The leaf chlorophyll content of Iris lactea Pall in T3 (1.475 mg·g−1) was 27.82% higher than that in T6 (1.154 mg·g−1), but the growth of plant height, the biomass of both aboveground and underground in T6 were promoted. The comprehensive score evaluation showed that T3 gained higher score than T6, that is, the substrate constituted by 10% garden waste compost and 90% perlite had the highest score, which could replace peat for roof greening substrate. This study can provide a scientific reference for the application of garden waste compost as light substrate for roof greening.
-
Key words:
- garden waste compost /
- roof greening /
- light substrates /
- Iris lactea Pall
-
近年来,我国水产养殖业快速发展,随之带来的环境问题也日益凸显。剩余饵料、养殖对象排泄物等的排放导致尾水中氮磷普遍超标。同时,为了预防和控制疾病,大量的抗生素被广泛应用于水产养殖中[1]。养殖环境中抗生素污染问题已不容忽视,四环素类、喹诺酮类、磺胺类、氯霉素类[2-3]等在养殖尾水或养殖水域中广泛存在。残留在水中的抗生素不仅直接威胁鱼虾的生存,还会加剧环境中耐药菌和耐药基因问题[4]。目前,国家正在大力发展绿色健康养殖业,养殖尾水治理力度不断增加,研发绿色、高效、低成本的抗生素去除技术对于降低抗生素排放、缓解水环境污染具有非常重要的价值。
人工湿地具有处理成本低、操作简单、不会形成二次污染等特点被广泛应用于水产养殖尾水的处理,主要通过基质吸附、微生物降解和植物吸收等过程去除废水中的污染物[5]。然而已有研究表明,不同设计参数与系统结构,如流态、基质类型和组成结构、植物类型与组成结构、水力停留时间和水力负荷、pH和季节因素(如气温、光照等)等均会导致营养盐和抗生素的去除效率存在明显差异[6-7]。同时,抗生素的存在可能会影响人工湿地系统中营养盐的去除。但是,部分研究结果和结论尚不完全一致。有研究表明,废水中抗生素的存在会降低氮磷的去除效率[8]。另一些研究表明,抗生素的存在反而提高氨氮的去除率[9]。此外,也有研究表明,2 mg·L−1的土霉素不会影响人工湿地系统对氮、磷的去除[10]。抗生素的存在对人工湿地系统去除氮磷等营养盐的影响机制尚不清晰,相关研究有待深入探讨。
本研究以3套不同基质和植物条件的上行垂直潜流人工湿地小试系统为研究对象,探究不同季节、不同基质和是否种植耐盐植物海马齿(Sesuvium portulacastrum)情况下,上行垂直潜流人工湿地系统对养殖尾水中4种典型抗生素的去除效果及抗生素的存在是否影响人工湿地系统对营养盐的去除效率。本研究结果有望为进一步改进人工湿地系统设计参数,提高污染物去除效率,促进人工湿地在淡水和海水养殖尾水治理中的应用。
1. 材料与方法
1.1 人工湿地设计
本研究构建了3种不同基质或植物条件的垂直潜流人工湿地小试系统(CW1、CW2和CW3),结构示意图如图1所示。系统由圆柱体玻璃钢制成,高80 cm、半径为40 cm,水位控制在60 cm,侧面设置3个不同高度的采样口,本研究统一从最底部采样口采样。系统中种植的植物为多年生且生命力顽强耐干旱的草本盐生植物—海马齿,选取高度在15~20 cm,生长良好的植株移栽至系统中,种植密度为40株·m−2。CW1的基质组成结构为底部铺设5 cm左右的砾石,中下层铺设30 cm高小粒径沸石,中上层铺设20 cm高中粒径沸石,上层铺设10 cm高麦饭石。CW2在CW1的基础上种植海马齿(图1(a))。CW3在CW2的基础上用生物炭层替换相同体积的沸石层(图1(b)),使用2.5 kg生物炭分5层铺设替换共0.05 m3沸石。本实验中使用的生物炭是经过500 ℃高温裂解的玉米秸秆生物炭。
1.2 实验设计
实验时间为2021年3月(春季)—2021年6月(夏季)。其中,春季的实验时间为3月10日—4月22日;夏季的实验时间为5月12日—6月25日。受试用的水产养殖尾水均来自福建省淡水水产研究所科研中试基地。本实验选用了养殖水体中常被检出的4种抗生素(氟苯尼考、土霉素、氧氟沙星和磺胺甲恶唑),设计添加质量浓度为250 µg·L−1。春、夏季实验开始前均通过向系统中输入未添加抗生素的养殖尾水进行挂膜,持续20 d。春季实验结束后,通过清水对系统进行清洗,持续20 d。系统采用间歇流(快速进水)运行方式,包括进水-反应-排水-排空闲置4个阶段,每个周期时长为4 d。其中进水时间0.5 h,反应时间为89 h,排水时间为0.5 h,排空闲置6 h。系统每个周期的进水水量约为8 000 L,水力停留时间(HRT)设置为0 (进水)和3 d。春季和夏季,分别采集HRT为0 (进水)和3 d的抗生素和营养盐水样进行分析。
1.3 营养盐、抗生素水样前处理及测定方法
待营养盐样品采集完成后,将其装入1 000 mL聚乙烯塑料瓶中,在现场用WTW便携式水质测定仪(Multi 3630)测定水温(T)、电导率(EC)、溶解氧(DO)和pH后,将样品贮存于4 ℃采样箱中,立即带回实验室。用0.45 μm的玻璃纤维滤膜过滤500 mL水样,用于硝态氮(NO3−-N)、氨氮(NH4+-N)的测定,未过滤的水样用于总氮(TN)和总磷(TP)的测定,48 h内完成样品的分析,测定方法参照相关文献[11]。
抗生素水样采集完成后装入100 mL棕色玻璃瓶中并立即运回实验室,用0.22 μm的玻璃纤维滤膜过滤样品,取1 mL注入液相进样小瓶。植物体内抗生素提取方法主要参照陈军[8]并根据多次实验结果进行相应改进。抗生素水样和植物抗生素样品均用高效液相色谱串联质谱仪(LC-MS)测定,其具体参数为:色谱柱为XTERRA MS C18(3.0 mm×100 mm,5 μm)。色谱柱柱温为35 ℃,进样量为5 µL。流动相流速为0.4 mL·min−1,流动相A是体积分数为0.1%的甲酸-水溶液。流动相B为甲醇,洗脱梯度程序设置如下:0~0.5 min,5%B;0.5~3 min,5%~40%B;3~4 min,40%B;4~5 min,40%~95%B;5~7.5 min,95%B;7.5~7.51 min,95%~5%B;7.51~9 min,5%B。
1.4 数据分析
本研究应用One-Way ANOVA单因素方差分析研究不同组别去除率总体分布是否有显著性差异;相关统计分析应用SPSS 26软件进行;图件制作应用Origin软件完成;数据预处理采用Excel软件完成。抗生素和营养盐的去除率按照公式(1)计算。
η=ci−ceci×100% (1) 式中:
为进水营养盐浓度,mg·L−1和进水抗生素浓度,µg·L−1;η为去除率,%;ci 为出水营养盐平衡浓度,mg·L−1和抗生素平衡浓度,µg·L−1。ce 2. 结果与讨论
2.1 进、出水水质变化
春季和夏季进、出水水质状况见表1和表2。总体而言,夏季进、出水平均水温比春季平均水温分别高5.65 ℃和7.20 ℃;夏季进、出水pH平均值比春季分别低0.21和0.26;夏季进、出水电导率平均值比春季分别高5.73 μs·cm−1和7.42 μs·cm−1;夏季进、出水溶解氧平均值比春季分别低0.81 mg·L−1和3.97 mg·L−1。春季和夏季,进水pH均呈弱酸性,经过系统处理后pH呈弱碱性;与进水相比,出水电导率均有所上升,而溶解氧含量下降。
表 1 春季无抗生素和抗生素存在条件下进、出水水质状况Table 1. Characteristics of inlet and outlet water before and after antibiotic exposure in spring实验条件 系统 温度/ ℃ pH 电导率/(μs·cm−1) 溶解氧/(mg·L−1) 无抗生素 CW0 21.33±0.79 6.88±0.12 69.33±9.60 7.25±0.93 CW1 22.30±0.37 7.87±0.05 136.2±9.43 5.40±0.93 CW2 22.53±0.33 7.75±0.02 141.7±9.80 5.32±0.26 CW3 22.43±0.37 7.71±0.06 154.0±11.0 5.56±0.78 有抗生素 CW0 26.63±1.78 6.82±0.07 53.50±3.21 7.25±0.27 CW1 26.70±2.24 7.90±0.17 124.8±1.32 5.21±0.25 CW2 26.90±2.30 7.77±0.12 132.43±3.74 5.09±0.32 CW3 26.83±2.24 7.77±0.10 142.13±3.56 5.26±0.38 注:CW0为进水。 表 2 夏季无抗生素和抗生素存在条件下进、出水水质状况Table 2. Characteristics of inlet and outlet water before and after antibiotic exposure in summer实验条件 系统 温度/ ℃ pH 电导率/(μs·cm−1) 溶解氧/(mg·L−1) 无抗生素 CW0 29.63±0.85 6.89±0.10 57.93±0.37 6.28±0.34 CW1 29.40±0.65 7.84±0.10 129.47±5.20 1.44±0.01 CW2 29.57±0.74 7.69±0.10 140.83±7.24 1.15±0.07 CW3 29.70±0.86 7.64±0.10 151.33±8.01 1.28±0.04 有抗生素 CW0 29.33±0.86 6.29±0.06 83.37±11.64 6.60±0.61 CW1 28.60±1.23 7.52±0.10 142.47±7.90 1.27±0.08 CW2 28.87±1.35 7.46±0.07 149.30±7.68 1.36±0.20 CW3 28.80±1.31 7.38±0.08 162.43±2.80 1.54±0.12 注:CW0为进水。 2.2 人工湿地设计参数对养殖尾水中抗生素去除效率的影响
春季和夏季,3套系统进、出水中氟苯尼考、土霉素、氧氟沙星和磺胺甲恶唑质量浓度见表3;CW1、CW2和CW3对4种抗生素的去除率见图2。无论春季或夏季,3套系统对土霉素和氧氟沙星的去除率均无明显差异,且均具有良好的去除能力。春季,与CW1相比,CW2对氟苯尼考和磺胺甲恶唑的去除率分别提升了2.71%和1.59%;与CW2相比,CW3对氟苯尼考和磺胺甲恶唑的去除率分别提升了25.34%和45.48%。夏季,与CW1相比,CW2对氟苯尼考和磺胺甲恶唑的去除率分别提升了2.97%和10.16%;与CW2相比,CW3对氟苯尼考和磺胺甲恶唑的平均去除率分别提高19.87%和22.36%。结果表明,种植海马齿可以在一定程度上提升以沸石为主人工湿地系统对氟苯尼考和磺胺甲恶唑的去除效果,添加生物炭可以显著提高(p≤0.05)这两种抗生素的去除率。
表 3 春季和夏季3套系统进、出水中抗生素的质量浓度Table 3. Antibiotics concentrations in the inlet and outlet water of three systems in spring and summer μg·L-1季节 系统 氟苯尼考 土霉素 氧氟沙星 磺胺甲恶唑 春季 CW0 257.5±20.85 237.03±15.36 309.91±15.38 271.16±9.38 CW1 193.11±36.01 12.35±0.23 20.42±2.11 244.92±11.88 CW2 186.12±37.31 8.14±5.77 19.00±2.34 243.29±8.73 CW3 120.41±25.50 10.47±1.03 18.10±2.05 136.45±38.87 夏季 CW0 238.78±8.09 250.04±19.43 255.80±16.31 250.33±10.00 CW1 202.65±6.14 14.87±4.92 37.84±7.97 175.76±13.73 CW2 195.48±1.34 15.34±4.41 36.29±9.84 150.50±13.55 CW3 148.00±2.86 13.12±5.14 34.31±8.88 94.58±14.43 注:CW0为进水。 人工湿地系统去除抗生素的主要途径包括基质吸附截留、植物吸收、光降解和生物降解等过程,对于垂直潜流人工湿地系统而言,光解作用可以忽略[12]。本研究中3套垂直潜流湿地系统对土霉素和氧氟沙星均有良好的净化效果,而磺胺甲恶唑和氟苯尼考的去除率明显低于土霉素和氧氟沙星,这与其他研究结论一致[13]。土霉素和氧氟沙星分别属于四环素类和氟喹诺酮类抗生素。基质吸附作用是废水中喹诺酮类和四环素类抗生素的主要去除途径[14],一旦暴露在环境中可以快速光解或者被基质吸附,这可能是3套系统均表现出对土霉素和氧氟沙星有良好净化能力的主要原因。氟苯尼考属于甲砜霉素的单氟衍生物,具有氟、氯多个卤代基团和苯环结构,性质较为稳定,不易发生光解和水解,在常规的人工湿地中难以被去除[15]。磺胺甲恶唑属于磺胺类抗生素,在环境中降解速度缓慢,生物降解是磺胺类的抗生素的最主要去除路径[16]。已有研究发现好氧微生物降解、部分厌氧微生物或者兼性厌氧微生物均可促进磺胺甲恶唑降解[17-18]。由于不同研究的进水水质、基质、植物等存在较大差异,系统内微生物群落结构和多样性也不同,磺胺甲恶唑去除率存在较大的差异[19-20]。与一些研究相比[21],本研究中CW1和CW2对磺胺甲恶唑的去除率偏低。这可能是因为水产养殖尾水C/N较低,碳源不足时,不利于磺胺甲恶唑的降解[13]。水体中微生物的种群、数量和活性都与水体中有机质的含量成正相关[22],寡营养态水体中磺胺甲恶唑的降解效率普遍偏低[19]。此外,不同研究中除了植物和基质对抗生素吸收和吸附能力存在差异外,磺胺甲恶唑初始质量浓度的差异,导致其对系统微生物群落结构和多样性的影响也不同,这可能是影响人工湿地系统对其净化能力存在差异的另一重要因素[16]。部分研究也发现,以沸石为主的人工湿地对低浓度的磺胺甲恶唑的去除效果不佳[5,19]。
除夏季土霉素外,植物组(CW2)对4种抗生素的去除率均优于无植物组(CW1)。植物主要通过根系的吸收作用、根际的吸附和截留、根系分泌物和氧气释放增强微生物活性等方式直接或间接去除废水中的抗生素[23]。虽然大部分研究认为植物吸收过程不是人工湿地去除磺胺甲恶唑和氟苯尼考的主要途径,但是适当种植植物可以提高抗生素的去除率[24]。本研究中检测到海马齿中土霉素的质量浓度在851.55~1691.48 µg·L−1,磺胺甲恶唑的质量浓度在125.07~291.67 µg·L−1,表明海马齿能够通过吸收过程移除水体中土霉素和磺胺甲恶唑。结合植物组和无植物组系统对4种抗生素的去除率,说明海马齿对这4种抗生素去除起到一定的促进作用。相比春季,夏季促进效果更明显,可能因为夏季植物生长更旺盛,有利于海马齿对污染物的吸收。
基质是人工湿地的重要组成部分之一,除了对污染物具有吸附作用外,还可为微生物和植物提供基本的生长环境和营养物质[12]。因此,基质的物理化学特征直接影响人工湿地系统对抗生素的净化能力。春季和夏季,添加生物炭均可显著提高垂直潜流人工湿地对氟苯尼考和磺胺甲恶唑的净化能力。相比沸石,生物炭孔隙结构明显、比表面积大,且具有亲水、疏水和酸碱性等性质[25],对抗生素的吸附速度更快,尤其在酸性环境[26]。人工湿地对抗生素的净化能力与基质的类型、组成、微生物群落结构等关系密切,添加生物炭后会改变系统内pH、营养盐和氧气的流动、植物生长状况等,影响系统内其他基质表面的微生物群落结构,进而提升系统对抗生素的净化能力[27]。pH是影响抗生素去除效率的关键因素之一,在酸性条件下磺胺类抗生素以阳离子形式存在。CW3的pH低于CW1和CW2,更有利于生物炭对磺胺甲恶唑和氟苯尼考的吸附。
2.3 抗生素对营养盐去除的影响
春季和夏季抗生素添加前后3套系统进、出水中总氮、总磷、氨氮和硝态氮的质量浓度见图3。春季,抗生素存在条件下,3种不同条件系统的总氮、总磷、氨氮和硝态氮平均去除率分别下降了11.69%、17.53%、10.04%和4.07%,且3套系统均显著降低了其对总磷的去除效率(P≤0.05)(图4(a))。夏季,抗生素存在条件下,总磷和氨氮的平均去除率分别下降了19.41%和5.53%,而总氮和硝态氮平均去除率分别提高了11.66%和10.42%(图4(b))。
本研究结果表明,春季和夏季抗生素存在对人工湿地去除总氮和硝氮的影响截然不同,而对总磷和氨氮的去除均表现为抑制作用,且在春季3套系统均可以显著降低对总磷的去除效率。其他研究[28]也发现,添加质量浓度为50~100 ng·L−1的氟喹诺酮类抗生素后,TP的去除率下降。基质吸附、植物吸收和聚磷菌(PAOs)的吸收是人工湿地系统中磷的主要去除路径。基质中吸附的土霉素(四环素类)和氧氟沙星(喹诺酮类)可能会与磷争夺吸附位点,导致磷的去除效率下降[9]。抗生素的存在也可能影响聚磷菌的丰度,削弱微生物对磷的吸收过程。YI等[8]发现添加2 mg·L−1的环丙沙星后会降低系统中聚磷菌的丰度,减少细菌对磷的吸收。夏季系统中溶解氧的浓度显著低于春季(表1和表2),厌氧或缺氧条件下,聚磷菌会释放磷,在一定程度上抑制尾水中总磷的去除,这可能是夏季总磷去除率比春季下降更明显的原因之一。
硝化、反硝化、厌氧氨氧化等微生物转化过程是人工湿地系统去除废水中无机氮的主要机制。课题组前期研究发现,抗生素添加前尾水中的细菌群落主要为α-变形菌(α-Proteobacteria)、γ-变形菌(γ-Proteobacteria)、拟杆菌(Bacteroidia)和放线菌(Actinomycete),这些微生物在人工湿地系统去除氮的过程中起着非常关键的作用[29]。好氧条件下,硝化细菌[30](如假单胞菌(Pseudomonas))将系统中NH4+氧化成NO3−的过程是人工湿地系统去除氨氮的重要途径。抗生素的添加可能会影响微生物群落的结构和多样性,从而影响氮的转化过程。YAN等[31]研究发现人工湿地系统中微生物多样性和丰度指数与磺胺甲恶唑、氧氟沙星、罗红霉素等抗生素呈负相关关系,多种抗生素的存在会降低水体中变形菌门(Proteobacteria)的丰度,导致系统对氨氮的去除效率下降,这与本研究的结论一致。夏季,抗生素添加后氨氮去除率下降幅度比春季小,可能因为夏季水温更高,促进微生物硝化作用,提高氨氮去除率,在一定程度上抵消抗生素存在对氨氮去除的不利影响。反硝化过程是指在厌氧条件下,硝酸盐和亚硝酸盐被反硝化细菌异化还原为N2的过程,是系统中硝态氮去除的重要形式。YI等[8]研究发现添加2 mg·L−1的环丙沙星会降低系统对硝态氮的去除。本研究中抗生素添加对硝态氮去除的影响由春季的抑制作用转为夏季的促进作用,可能是因为夏季尾水中溶解氧(<2 mg·L−1)远低于春季(5.09~5.26 mg·L−1),低氧或厌氧条件下有利于拟杆菌和放线菌等反硝化菌群繁殖,促进反硝化过程的发生,提高硝氮的去除效率。硝态氮在进水中占总氮的比重在27.70%~53.89%,是无机氮的主要赋存形态,尤其是夏季,这可能是抗生素添加对总氮和硝态氮去除的影响一致的原因。CHEN等[32]也发现2 mg·L−1的四环素影响了系统内反硝化菌的丰度,系统内硝态氮浓度增加,降低了对总氮的去除率。
在已有的研究中,人工湿地系统基质的组成结构和类型、运行方式、流式、植物类型等不尽相同,且添加的抗生素种类和质量浓度也存在差异,大部分研究结论尚不一致。CHEN[32]等研究发现系统中四环素的质量浓度为2 mg·L−1时不会影响除磷效果,但会降低系统对总氮的去除率;TONG等[33]研究发现添加质量浓度为0.1、10和1 000 µg·L−1氧氟沙星后,人工湿地系统中氨氮的去除率由72.60%提高至80.70%~82.10%;KUYPERS等[34]研究发现在磺胺甲嘧啶质量浓度为100 µg·L−1时,处理组的氨氮去除率略高于对照组。本研究仅考虑4种不同类型抗生素复合对营养盐去除的影响,将来研究中会进一步分析抗生素添加前后微生物群落结构的变化,为阐明本研究试验抗生素添加浓度条件下对营养盐去除影响的机理提供理论依据。
3. 结 论
1)本研究所构建的3种不同条件垂直潜流人工湿地系统对氧氟沙星和土霉素在春季和夏季均表现出良好的去除效果,去除率均在85%以上。与氧氟沙星和土霉素相比,系统对磺胺甲恶唑和氟苯尼考的去除效率相对较低,春季,系统对氟苯尼考和磺胺甲恶唑的去除率分别为17.23%~67.50%和8.37%~67.87%;夏季,系统对氟苯尼考和磺胺甲恶唑的去除率分别为12.01%~41.29%和19.28%~67.04%。
2)春季和夏季,种植海马齿整体上可以提高系统对4种抗生素的去除效率,但均不具有显著性差异;春季和夏季,添加生物炭均可提高系统对4种抗生素的去除效率,且会显著提高系统对磺胺甲恶唑和氟苯尼考的去除效率。
3)无论是春季还是夏季,4种抗生素添加均对总磷和氨氮的去除产生一定的负面影响,但不同季节对总氮和硝态氮去除效率的影响存在差异。在抗生素存在的条件下,春季,3种不同条件的人工湿地系统对总氮、总磷、氨氮和硝态氮平均去除率分别下降了11.69%、17.53%、10.04%和4.07%;夏季,总磷和氨氮的平均去除率分别下降了19.41%和5.53%,而总氮和硝态氮的平均去除率分别提高了11.67%和10.42%。
-
表 1 基质配方质量分数
% Table 1. Mass fraction of substrates for formulations
% 实验组别 园林废弃物堆肥 泥炭 珍珠岩 T1 0 0 100 T2 5 0 95 T3 10 0 90 T4 0 10 90 T5 5 10 85 T6 10 10 80 T7 0 20 80 T8 5 20 75 T9 10 20 70 表 2 不同基质理化性质
Table 2. Physical and chemical properties of different substrates
实验组别 干容重/(g·cm−3) 饱和水容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/% 大小孔隙比 pH EC/(μs·cm−1) T1 0.08d 0.51bc 70.70a 28.29ab 42.70a 0.70 7.76a 41.33f T2 0.08cd 0.46d 62.79bc 23.7abc 38.10b 0.60 7.48ab 205.24d T3 0.09bc 0.52ab 70.29a 27.56ab 43.36a 0.70 7.44b 282.67ab T4 0.08bcd 0.46d 66.53ab 28.83a 37.79b 0.80 5.65e 136.00e T5 0.09bc 0.48cd 67.32ab 29.31a 39.10b 0.80 6.22d 253.75c T6 0.09bc 0.46d 60.48c 22.84bc 37.64b 0.60 6.87c 315.00a T7 0.09b 0.53ab 54.53d 10.22d 43.87a 0.20 5.86e 295.00abc T8 0.11a 0.56a 67.19ab 22.16bc 45.03a 0.50 6.31d 276.00bc T9 0.10a 0.55a 62.08bc 17.57c 44.39a 0.40 6.29d 281.00abc 注:同列数据后不同小写字母表示不同处理间差异显著(P <0.05)。 表 3 隶属度得分及综合排序
Table 3. Score and comprehensive ranking of membership function
实验组别 干容重/(g·cm−3) 饱和水容重/(g·cm−3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/% 大小孔隙比 pH EC/(μs·cm−1) 综合得分 综合排名 T1 0.51 0.64 0.53 0.31 0.57 0.33 0.46 0.47 0.479 5 T2 0.30 0.29 0.44 0.61 0.30 0.55 0.49 0.56 0.443 8 T3 0.48 0.60 0.45 0.49 0.64 0.39 0.41 0.43 0.486 4 T4 0.30 0.52 0.63 0.65 0.43 0.62 0.49 0.59 0.529 3 T5 0.55 0.46 0.47 0.37 0.42 0.35 0.38 0.37 0.421 9 T6 0.76 0.48 0.54 0.64 0.38 0.66 0.68 0.34 0.559 2 T7 0.55 0.61 0.56 0.66 0.60 0.52 0.66 0.65 0.600 1 T8 0.36 0.48 0.59 0.55 0.46 0.53 0.37 0.41 0.468 7 T9 0.51 0.46 0.47 0.60 0.47 0.57 0.33 0.41 0.478 6 表 4 主成分分析结果
Table 4. Results of principal component analysis
主成分 各指标得分系数 特征值 方差贡献率% 累计方差贡献率% pH EC 干容重 饱和水容重 总孔隙度 通气孔隙度 持水孔隙度 大小孔隙比 株高 叶绿素质量分数 地上生物量鲜重 地上生物量干重 地下生物量干重 1 0.889 0.009 0.473 0.814 0.938 0.635 0.822 0.108 −0.302 0.903 −0.837 −0.965 −0.978 7.143 54.950 54.950 2 −0.270 0.797 0.801 0.579 −0.009 −0.566 0.540 −0.848 0.086 0.003 0.286 0.188 0.162 3.167 24.364 79.313 3 −0.203 0.497 −0.056 0.028 0.327 0.493 0.021 0.463 0.852 0.368 0.456 0.095 0.112 1.948 14.981 94.294 -
[1] 北京市质量技术监督局. 屋顶绿化规范: DB11/T 281-2005[S]. 北京: 北京市园林绿化局, 2005. [2] 李树华, 殷丽峰. 世界屋顶花园的历史与分类[J]. 中国园林, 2005(5): 57-61. doi: 10.3969/j.issn.1000-6664.2005.05.013 [3] 陈辉, 任珺, 杜忠. 屋顶绿化的功能及国内外发展状况[J]. 环境科学与管理, 2007, 32(2): 162-165. doi: 10.3969/j.issn.1673-1212.2007.02.047 [4] 杨渝兰, 郑星, 刘葆华, 等. 屋顶绿化的功能及应用现状[J]. 节能, 2011, 30(6): 4-6. doi: 10.3969/j.issn.1004-7948.2011.06.001 [5] 邓雄, 彭晓春, 覃超梅. 屋顶绿化的功能、特点及其在我国的现状和存在的问题[J]. 中山大学学报(自然科学版), 2010, 49(S1): 99-101. [6] 吉文丽, 李卫忠, 王诚吉, 等. 屋顶花园发展现状及北方屋顶绿化植物选择与种植设计[J]. 西北林学院学报, 2005, 20(3): 180-183,188. doi: 10.3969/j.issn.1001-7461.2005.03.048 [7] 孟宪民. 我国泥炭资源概况与园艺种苗基质解决方案[J]. 中国花卉园艺, 2004(22): 14-17. [8] 杜林峰, 孙向阳, 沈彦. 泥炭作为园艺基质的研究进展[J]. 北方园艺, 2007(10): 68-70. doi: 10.3969/j.issn.1001-0009.2007.10.026 [9] 黄蓉, 吴永华, 张建旗, 等. 兰州市屋顶绿化地被植物种植基质的筛选[J]. 草业科学, 2020, 37(6): 1088-1097. doi: 10.11829/j.issn.1001-0629.2019-0485 [10] 韦杰文, 韩柳, 赵晓红, 等. 给水厂铝污泥作为屋顶绿化基质应用的关键问题分析[J]. 环境工程, 2019, 37(12): 34-40. [11] SOLODAR A, BAWAB O, LEVY S, et al. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs[J]. Science of the Total Environment, 2018, 633: 1272-1279. doi: 10.1016/j.scitotenv.2018.03.291 [12] NOYA M G, CUQUEL F L, SCHAFER G, et al. Substrates for cultivating herbaceous perennial plants in extensive green roofs[J]. Ecological Engineering, 2017, 102: 662-669. doi: 10.1016/j.ecoleng.2017.02.042 [13] 陈彤, 邱军付, 齐兴育, 等. 园林废弃物基栽培基质的配方筛选及综合评价[J]. 环境工程学报, 2021, 15(4): 1444-1450. doi: 10.12030/j.cjee.202008169 [14] TIAN Y, SUN X, LI S, et al. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv fasciata[J]. Scientia Horticulturae, 2012, 143: 15-18. doi: 10.1016/j.scienta.2012.05.018 [15] 鲍士旦. 土壤农化分析第3版[M]. 北京: 中国农业出版社. 2000. [16] 刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社. 2010. [17] 蔡永萍. 植物生理学[M]. 北京: 中国农业大学出版社. 2008. [18] 肖超群, 郭小平, 刘玲, 等. 绿化废弃物堆肥配制屋顶绿化新型基质的研究[J]. 浙江农林大学学报, 2019, 36(3): 598-604. doi: 10.11833/j.issn.2095-0756.2019.03.022 [19] 王朴, 金晶, 康凯丽, 等. 园林有机废弃物在花卉栽培中的应用效果[J]. 安徽农业科学, 2021, 49(5): 155-157+161. doi: 10.3969/j.issn.0517-6611.2021.05.043 [20] 田赟. 园林废弃物堆肥化处理及其产品的应用研究[D]. 北京林业大学, 2012. [21] 刘永和, 孟宪民, 王忠强. 泥炭资源的基本属性、理化性质和开发利用方向[J]. 干旱区资源与环境, 2003(2): 18-22. doi: 10.3969/j.issn.1003-7578.2003.02.004 [22] 龚小强, 孙向阳, 李燕, 等. 组配改良剂对园林废弃物堆肥基质理化性质及鸟巢蕨生长影响[J]. 西北林学院学报, 2015, 30(5): 126-132. doi: 10.3969/j.issn.1001-7461.2015.05.20 [23] 李斗争. 组成成分及颗粒粒径对基质孔隙特性的影响研究[D]. 山东农业大学, 2006. [24] 李光义, 余小兰, 徐林, 等. 木薯茎秆栽培基质氮变化规律研究[J]. 安徽农业科学, 2018, 46(17): 68-71+75. doi: 10.3969/j.issn.0517-6611.2018.17.021 [25] 杨梦珂, 郑思俊, 张青萍, 等. 应用于垂直绿化栽培的基质保肥性研究[J]. 河南农业科学, 2017, 46(11): 120-126. [26] 吴小盈. 基质配比对3种珍贵树种容器苗生长及养分积累的影响[D]. 浙江农林大学, 2021. [27] 刘帅成, 何洪城, 曾琴. 国内外育苗基质研究进展[J]. 北方园艺, 2014(15): 205-208. [28] 柴喜荣, 程智慧, 孟焕文, 等. 有机基质栽培番茄氮磷钾养分吸收与基质养分释放规律的研究[J]. 北方园艺, 2011(16): 4-7. [29] 白龙强, 李衍素, 贺超兴, 等. 添加草炭对基质栽培番茄生理特性、产量与品质的影响[J]. 中国蔬菜, 2012(16): 57-62. [30] 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境, 2019, 33(4): 103-108. [31] 殷庆霏, 郭建斌, 倪肖卫, 等. 不同堆肥对南方屋顶绿化植物生长特性的影响[J]. 环境工程学报, 2017, 11(11): 6205-6213. doi: 10.12030/j.cjee.201704020 [32] 赵倩雯, 孟军, 陈温福. 生物炭对大白菜幼苗生长的影响[J]. 农业环境科学学报, 2015, 34(12): 2394-2401. doi: 10.11654/jaes.2015.12.020 [33] 张国斌. 低温弱光对辣椒幼苗生长与光合生理特性的影响[D]. 甘肃农业大学, 2005. [34] 张璐, 孙向阳, 田赟. 园林废弃物堆肥用于青苹果竹芋栽培研究[J]. 北京林业大学学报, 2011, 33(5): 109-114. [35] 周佩华, 高峰, 杨涵童, 等. 以菌渣为主料的人参栽培基质筛选研究[J]. 扬州大学学报(农业与生命科学版), 2022, 43(1): 118-127. -