-
进入环境中的重金属具有高毒性、持久性、不可生物降解性和生物累积性等的特点,不仅会威胁生态系统的安全,而且还可以通过食物链危及人群的身体健康[1-4]。底泥是重金属的重要载体。随着全球城镇化和工业化进程的加快,大量的重金属排入湖泊、水库和河流等地表水体,最终汇集到底泥中,造成水体底泥的重金属污染[1-4]。当外界环境条件合适时,底泥中累积的重金属会释放出来进入上覆水体中,成为水体重金属污染的内源,对水体造成二次污染[3-4]。目前,水体底泥的重金属污染已成为世界范围内的一个重要环境问题[5-6]。因此,控制水体污染底泥中重金属的释放刻不容缓。
水体底泥重金属释放控制技术可分为两大类:异位和原位控制技术[5-7]。原位覆盖/改良技术,即将修复材料覆盖到底泥-水界面上方或直接添加进底泥中,被认为是一种极具应用前景的水体底泥重金属释放控制技术[5-7]。该技术具有运行简单、修复成本低、修复速度快和环境友好等的优点[5-7]。选择合适的修复材料,对于利用原位覆盖/改良技术控制底泥中重金属释放而言是非常重要的。目前,许多重金属污染底泥的修复材料已引起了人们的关注,包括磷灰石[8]、生物炭[9]、碳纳米管[10]、零价铁[10]、沸石[11]和铁氧化物[12]等。
铜(Cu)和铅(Pb)是两种底泥中广泛存在的重金属。沸石是一种含水的碱或碱土金属铝硅酸盐矿物,不仅来源广泛、价格低廉,而且对水中Cu2+和Pb2+等重金属阳离子的吸附性能较好[13-14]。Xiong等研究发现,2 cm厚天然沸石覆盖层对底泥中Pb释放的抑制率可达85.7%[11]。方解石是一种分布很广的碳酸钙矿物。研究发现,方解石对水中Cu2+和Pb2+等重金属阳离子的去除性能较好[15-17]。另外,最近的研究发现,采用铁盐对方解石进行改性所获得的铁改性方解石(铁方解石)是一种非常有应用前景的用于控制水体底泥磷释放的活性覆盖材料[18]。考虑到铁氧化物对水中Cu2+和Pb2+等重金属阳离子具有较好的吸附能力[19-20],因此天然沸石和铁方解石的联合覆盖预计也可用于水体底泥中Cu和Pb等重金属释放的控制。但是,目前对天然沸石和铁方解石联合覆盖控制水体底泥Cu和Pb释放效果及机制的了解尚不十分清楚。
为此,本研究分析了天然沸石和铁方解石对水中Cu2+和Pb2+的吸附特性,考察了天然沸石和铁方解石联合覆盖对上覆水中Cu和Pb浓度动态变化的影响,辨析了联合覆盖对上覆水-底泥垂向剖面上有效态Cu和Pb分布特征的影响,观察了联合覆盖对底泥-水界面Cu和Pb扩散通量的影响,分析了被联合覆盖层所吸附Cu和Pb的赋存形态,探讨了天然沸石和铁方解石联合覆盖对底泥中Cu和Pb释放的控制机制,以期为联合利用天然沸石和铁方解石作为覆盖材料控制水体底泥中重金属释放提供科技支撑。
天然沸石和铁改性方解石联合覆盖对底泥铜和铅释放的控制效果及机制
Efficiency and mechanism of combined capping system using natural zeolite and iron-modified calcite for controlling copper and lead release from sediment
-
摘要: 本研究考察了天然沸石和铁改性方解石联合覆盖对水体底泥中铜(Cu)和铅(Pb)释放的控制效果,并探讨了相关的控制作用机制。结果发现,天然沸石(NZ)和铁改性方解石(FeCA)对水中Cu2+和Pb2+具有较好的吸附能力;与Langmuir模型相比,NZ对水中Cu2+和Pb2+的等温吸附行为更适合采用Freundlich模型加以描述;与Freundlich模型相比,Langmuir模型更适合用于描述FeCA对水中Cu2+和Pb2+的等温吸附行为;根据Langmuir模型计算确定的NZ和FeCA对水中Cu2+的最大单分子层吸附量分别为7.98 mg·g−1和27.2 mg·g−1,而NZ和FeCA对水中Pb2+的最大单分子层吸附量分别为75.4 mg·g−1和1150 mg·g−1。显然,FeCA对水中Cu2+和Pb2+的吸附能力优于NZ。NZ单独覆盖、FeCA单独覆盖以及NZ/FeCA联合覆盖均可以显著地降低底泥中Cu和Pb向上覆水体中释放的风险,且NZ和FeCA的联合覆盖控制底泥中Cu和Pb向上覆水体中释放的效率高于NZ的单独覆盖。NZ和FeCA联合覆盖不仅可以有效地降低上覆水-底泥垂向剖面上DGT(薄膜梯度扩散技术)有效态Cu和Pb的浓度,而且可以降低底泥-水界面Cu和Pb扩散通量。被NZ和FeCA联合覆盖层所吸附的Cu主要以可氧化态和残渣态这两种形态存在(占总量的91.5%),而Pb的存在形式则为残渣态(48.8%)>可还原态(26.9%)>可交换态(17.2%)>可氧化态(7.16%)。NZ和FeCA联合覆盖对底泥中DGT有效态Cu和Pb的削减,对于其控制底泥中Cu和Pb向上覆水体中释放是至关重要的。Abstract: This study investigated the efficiency and mechanism of a combined active capping system using natural zeolite (NZ) and iron-modified calcite (FeCA) for the interception of copper (Cu) and lead (Pb) released from sediment. The results revealed that NZ and FeCA exhibited good adsorption performance towards Cu(Ⅱ) and Pb(Ⅱ) in water. The adsorption isotherm data of Cu(Ⅱ) and Pb(Ⅱ) on NZ complied better with the Freundlich model than the Langmuir model, while those of Cu(Ⅱ) and Pb(Ⅱ) on FeCA was well consistent with the Langmuir model. Based on the Langmuir isotherm model, the predicted maximum Cu(Ⅱ) adsorption capacities for NZ and FeCA were 7.98 mg·g−1 and 27.2 mg·g−1, respectively, and the predicted maximum Pb(Ⅱ) adsorption capacities for NZ and FeCA were 75.4 mg·g−1 and 1150 mg·g−1, respectively. It is clear that the Cu(Ⅱ) or Pb(II) adsorption ability for FeCA was higher than that for NZ. Single capping with NZ or FeCA and the combination capping could all greatly reduce the risk of Cu and Pb release from sediment into the overlying water. The controlling efficiency of Cu and Pb by the NZ/FeCA combined capping was higher than that by the single NZ capping. Combined capping not only resulted in the reduction of DGT (diffusive gradient in thin-films technique)-labile Cu and Pb concentrations in the profile of sediment and overlying water, but also led to the decrease of the diffusion flux of Cu and Pb through the interface between sediment and overlying water. Oxidable and residual Cu (91.5% of total Cu) are two major forms of adsorbed Cu inthe NZ/FeCA combined capping layer. The percentages of different Pb species in the total Pb adsorbed by the NZ/FeCA combined capping layer decreased in the order of residual Pb (48.8%) > reducible Pb (26.9%)> exchangeable Pb (17.2%) >oxidable Pb (7.16%). Our results highlighted the reduction of DGT-labile Cu and Pb concentrations in sediment by the combined capping using NZ and FeCA is key to the control of Cu and Pb liberation from the sediment into the overlying water by the NZ/FeCA combined capping.
-
Key words:
- sediment /
- natural zeolite /
- iron-modified calcite /
- combined capping /
- lead /
- copper
-
图 3 各实验组上覆水中Cu浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Cu的去除率
Figure 3. Change in Cu concentration of overlying water in control, natural zeolite (NZ) capping, iron-modified calcite (FeCA) capping, and NZ/FeCA combined capping columns and the reduction efficiencies of overlying water Cu by the NZ capping, FeCA capping and NZ/FeCA combined capping
图 4 各实验组上覆水中Pb浓度随培养时间变化而变化的规律以及NZ覆盖、FeCA覆盖和联合覆盖对上覆水中Pb的去除率
Figure 4. Change in Pb concentration of overlying water in control, natural zeolite (NZ) capping, iron-modified calcite (FeCA) capping, and NZ/FeCA combined capping columns and the reduction efficiencies of overlying water Pb by the NZ capping, FeCA capping and NZ/FeCA combined capping
表 1 天然沸石和铁方解石吸附水中Cu(Ⅱ)和Pb(Ⅱ)的等温线模型参数拟合结果
Table 1. Fitting results of isotherm models for Cu(Ⅱ) and Pb(Ⅱ) uptake by natural zeolite and iron-modified calcite
等温吸附模型
Isotherm model参数
Parameter天然沸石
Natural zeolite铁方解石
Iron-modified calciteCu(Ⅱ) Pb(Ⅱ) Cu(Ⅱ) Pb(Ⅱ) Langmuir QMAX/(mg·g−1) 7.98 75.4 27.2 1150 KL/(L·mg−1) 4.29 0.252 17.4 9.29 R2 0.685 0.515 0.983 0.722 Freundlich KF 5.40 43.8 20.3 685 1/n 0.153 0.114 0.132 0.119 R2 0.968 0.741 0.770 0.454 表 2 国内外沸石、碳酸盐基材料和铁氧化物对水中Cu(Ⅱ)和Pb(Ⅱ)的最大吸附量
Table 2. The maximum Cu(Ⅱ) and Pb(Ⅱ) uptake capacities for zeolite, carbonate-based material and iron oxide reported in previous literatures
序号
Number吸附剂名称
Adsorbent nameCu(Ⅱ)最大吸附量/
(mg·g−1)
Copper maximum
adsorption capacityPb(Ⅱ)最大吸附量/
(mg·g−1)
Lead maximum
adsorption capacity确定方法
Determination
method参考文献
Reference1 天然沸石 — 14.2 Langmuir模型 [13] 2 天然沸石 26.24(0.410 mmol·g−1) 89.096(0.430 mmol·g−1) Langmuir-Freundlich模型 [14] 3 FAU型沸石 57.803 109.890 Langmuir模型 [25] 4 NaA型沸石 202.76 — Langmuir模型 [26] 5 NaY型沸石 — 431.60 Langmuir模型 [27] 6 钙霞石型沸石 133.18 (2.081 mmol·g−1) 441.336 (2.130 mmol·g−1) Langmuir模型 [28] 7 碳酸盐基尾矿渣 — 832 实验 [29] 8 大理石 222.84 — Langmuir模型 [30] 9 球霰石型碳酸钙 — 499.86 实验 [31] 10 NZ 7.98 75.4 Langmuir模型 本研究 11 FeCA 27.2 1150 Langmuir模型 本研究 -
[1] 张志, 张润宇, 王立英, 等. 淡水沉积物中重金属生物有效性的研究进展 [J]. 地球与环境, 2020, 48(3): 385-394. ZHANG Z, ZHANG R Y, WANG L Y, et al. Research advance in bioavailability of heavy metals in freshwater sediment [J]. Earth and Environment, 2020, 48(3): 385-394(in Chinese).
[2] 杨颖, 孙文, 刘吉宝, 等. 北运河流域沙河水库沉积物重金属分布及生态风险评估 [J]. 环境科学学报, 2021, 41(1): 217-227. YANG Y, SUN W, LIU J B, et al. Distribution and ecological risk assessment of heavy metals in sediments of Shahe Reservoir in Northern Canal Basin [J]. Acta Scientiae Circumstantiae, 2021, 41(1): 217-227(in Chinese).
[3] 柳肖竹, 刘群群, 王文静, 等. 水力扰动对河口沉积物中重金属再释放的影响 [J]. 生态与农村环境学报, 2020, 36(11): 1460-1467. LIU X Z, LIU Q Q, WANG W J, et al. Effect of hydraulic disturbance on Re-release of heavy metals in estuarine sediments [J]. Journal of Ecology and Rural Environment, 2020, 36(11): 1460-1467(in Chinese).
[4] YUAN H Z, YIN H B, YANG Z, et al. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model [J]. Science of the Total Environment, 2020, 741: 140418. doi: 10.1016/j.scitotenv.2020.140418 [5] PENG W H, LI X M, XIAO S T, et al. Review of remediation technologies for sediments contaminated by heavy metals [J]. Journal of Soils and Sediments, 2018, 18(4): 1701-1719. doi: 10.1007/s11368-018-1921-7 [6] ZANG F, WANG S L, NAN Z R, et al. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess [J]. Chemosphere, 2017, 181: 83-91. doi: 10.1016/j.chemosphere.2017.04.070 [7] WANG M M, REN L S, WANG D Y, et al. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods [J]. Journal of Environmental Sciences, 2019, 79: 91-99. doi: 10.1016/j.jes.2018.11.007 [8] DENG R, HUANG D L, XUE W J, et al. Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite [J]. Chemical Engineering Journal, 2020, 397: 125396. doi: 10.1016/j.cej.2020.125396 [9] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments [J]. Journal of Hazardous Materials, 2021, 404: 124052. doi: 10.1016/j.jhazmat.2020.124052 [10] CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in situ remediation of heavy metal(loid) contaminated sediments: A review [J]. Science of the Total Environment, 2019, 662: 205-217. doi: 10.1016/j.scitotenv.2019.01.180 [11] XIONG C H, WANG D Y, TAM N F, et al. Enhancement of active thin-layer capping with natural zeolite to simultaneously inhibit nutrient and heavy metal release from sediments [J]. Ecological Engineering, 2018, 119: 64-72. doi: 10.1016/j.ecoleng.2018.05.008 [12] LI X C, YANG Z Z, ZHANG C, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment [J]. Chemical Engineering Journal, 2019, 373: 307-317. doi: 10.1016/j.cej.2019.05.015 [13] RAKHYM A B, SEILKHANOVA G A, KURMANBAYEVA T S. Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay [J]. Materials Today:Proceedings, 2020, 31: 482-485. doi: 10.1016/j.matpr.2020.05.672 [14] PERIĆ J, TRGO M, VUKOJEVIĆ MEDVIDOVIĆ N. Removal of zinc, copper and lead by natural zeolite-a comparison of adsorption isotherms [J]. Water Research, 2004, 38(7): 1893-1899. doi: 10.1016/j.watres.2003.12.035 [15] WANG J M, ZHAO J, QIN X Z, et al. Theoretical study of adsorption mechanism of heavy metals As and Pb on the calcite (104) surface [J]. Materials Today Communications, 2021, 26: 101742. doi: 10.1016/j.mtcomm.2020.101742 [16] WEN T, ZHAO Y L, ZHANG T T, et al. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate [J]. Chemosphere, 2019, 230: 127-135. doi: 10.1016/j.chemosphere.2019.04.213 [17] ROUFF A A, REEDER R J, FISHER N S. Electrolyte and pH effects on Pb(Ⅱ)-calcite sorption processes: The role of the $ {\text{PbCO}}_{3({\text{aq}})}^0 $ complex [J]. Journal of Colloid and Interface Science, 2005, 286(1): 61-67. doi: 10.1016/j.jcis.2005.01.053[18] BAI X Y, LIN J W, ZHANG Z B, et al. Interception of sedimentary phosphorus release by iron-modified calcite capping [J]. Journal of Soils and Sediments, 2021, 21(1): 641-657. doi: 10.1007/s11368-020-02754-5 [19] FIELDH R, WHITAKERA H, HENSONJ A, et al. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits [J]. Science of the Total Environment, 2019, 697: 134111. doi: 10.1016/j.scitotenv.2019.134111 [20] LIU J, ZHU R L, MA L Y, et al. Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite [J]. Geoderma, 2021, 383: 114799. doi: 10.1016/j.geoderma.2020.114799 [21] GAO L, LI R, LIANG Z B, et al. Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China [J]. Journal of Hazardous Materials, 2021, 410: 124590. doi: 10.1016/j.jhazmat.2020.124590 [22] SUNH R, GAOB, GAOL, et al. Using diffusive gradients in thin films (DGT) and DGT-induced fluxes in sediments model to assess the dynamic release of copper in sediment cores from the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2019, 672: 192-200. doi: 10.1016/j.scitotenv.2019.03.400 [23] CHEN Y, ARMUTLULU A, SUN W L, et al. Ultrafast removal of Cu(II) by a novel hierarchically structured faujasite-type zeolite fabricated from lithium silica fume [J]. Science of the Total Environment, 2020, 714: 136724. doi: 10.1016/j.scitotenv.2020.136724 [24] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [J]. Water Research, 2017, 120: 88-116. doi: 10.1016/j.watres.2017.04.014 [25] JOSEPH I V, TOSHEVA L, DOYLE A M. Simultaneous removal of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103895. doi: 10.1016/j.jece.2020.103895 [26] DJAMEL N, SAMIRA A. Mechanism of Cu2+ ions uptake process by synthetic NaA zeolite from aqueous solution: Characterization, Kinetic, intra-crystalline diffusion and thermodynamic studies [J]. Journal of Molecular Liquids, 2021, 323: 114642. doi: 10.1016/j.molliq.2020.114642 [27] BU N J, LIU X M, SONG S L, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution [J]. Advanced Powder Technology, 2020, 31(7): 2699-2710. doi: 10.1016/j.apt.2020.04.035 [28] QIU W, ZHENG Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash [J]. Chemical Engineering Journal, 2009, 145(3): 483-488. doi: 10.1016/j.cej.2008.05.001 [29] XIONG B W, ZHANG T T, ZHAO Y L, et al. Utilization of carbonate-based tailings to remove Pb(Ⅱ) from wastewater through mechanical activation [J]. Science of the Total Environment, 2020, 698: 134270. doi: 10.1016/j.scitotenv.2019.134270 [30] GUIMARÃES T, PAQUINI L D, LYRIO FERRAZ B R, et al. Efficient removal of Cu(Ⅱ) and Cr(Ⅲ) contaminants from aqueous solutions using marble waste powder [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103972. doi: 10.1016/j.jece.2020.103972 [31] LIN P Y, WU H M, HSIEH S L, et al. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal [J]. Chemosphere, 2020, 254: 126903. doi: 10.1016/j.chemosphere.2020.126903 [32] LI J C, LI M, Song Q, et al. Efficient recovery of Cu(Ⅱ) by LTA-zeolites with hierarchical pores and their resource utilization in electrochemical denitrification: Environmentally friendly design and reutilization of waste in water [J]. Journal of Hazardous Materials, 2020, 394: 122554. doi: 10.1016/j.jhazmat.2020.122554 [33] HONG M, YU L Y, WANG Y D, et al. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture [J]. Chemical Engineering Journal, 2019, 359: 363-372. doi: 10.1016/j.cej.2018.11.087 [34] TANG H M, XIAN H Y, HE H P, et al. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions [J]. Science of the Total Environment, 2019, 668: 602-616. doi: 10.1016/j.scitotenv.2019.02.232 [35] SONG X W, CAO Y W, BU X Z, et al. Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process [J]. Applied Surface Science, 2021, 536: 147958. doi: 10.1016/j.apsusc.2020.147958 [36] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides [J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930 [37] 雷沛, 张洪, 王超, 等. 沉积物-水界面污染物迁移扩散的研究进展 [J]. 湖泊科学, 2018, 30(6): 1489-1508. doi: 10.18307/2018.0602 LEI P, ZHANG H, WANG C, et al. Migration and diffusion for pollutants across the sediment-water interface in lakes: A review [J]. Journal of Lake Sciences, 2018, 30(6): 1489-1508(in Chinese). doi: 10.18307/2018.0602
[38] LIN J W, HE S Q, ZHANG H H, et al. Effect of zirconium-modified zeolite addition on phosphorus mobilization in sediments [J]. Science of the Total Environment, 2019, 646: 144-157. doi: 10.1016/j.scitotenv.2018.07.281 [39] 房煦, 罗军, 高悦, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅱ: 土壤与沉积物原位高分辨分析中的方法与应用 [J]. 农业环境科学学报, 2017, 36(9): 1693-1702. doi: 10.11654/jaes.2017-0454 FANG X, LUO J, GAO Y, et al. Theory and application of diffusive gradients in thin-films in the environment: High-resolution analysis and its applications in soils and sediments [J]. Journal of Agro-Environment Science, 2017, 36(9): 1693-1702(in Chinese). doi: 10.11654/jaes.2017-0454
[40] ZHANG T, LI L J, XU F, et al. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique [J]. Chemosphere, 2020, 257: 127181. doi: 10.1016/j.chemosphere.2020.127181 [41] 江涛, 林伟稳, 曹英杰, 等. 梅江流域清凉山水库沉积物重金属污染、生态风险评价及来源解析 [J]. 环境科学, 2020, 41(12): 5410-5418. JIANG T, LIN W W, CAO Y J, et al. Pollution and ecological risk assessment and source apportionment of heavy metals in sediments of Qingliangshan reservoir in the Meijiang basin [J]. Environmental Science, 2020, 41(12): 5410-5418(in Chinese).
[42] 姜时欣, 翟付杰, 张超, 等. 伊通河(城区段)沉积物重金属形态分布特征及风险评价 [J]. 环境科学, 2020, 41(6): 2653-2663. JIANG S X, ZHAI F J, ZHANG C, et al. Speciation distribution and risk assessment of heavy metals in sediments from the Yitong river city area [J]. Environmental Science, 2020, 41(6): 2653-2663(in Chinese).
[43] 徐晨, 王沛芳, 陈娟, 等. 望虞河西岸河网重金属污染特征及生态风险评价 [J]. 环境科学, 2019, 40(11): 4914-4923. XU C, WANG P F, CHEN J, et al. Contaminant characteristics and ecological risk assessments of heavy metals from river networks in the western area of the Wangyu river [J]. Environmental Science, 2019, 40(11): 4914-4923(in Chinese).