-
传统生物脱氮的硝化过程可分为两个阶段,第一阶段:氨氧化菌(AOB)将氨氮(NH4+-N)氧化为亚硝酸盐(NO2--N);第二阶段:亚硝酸盐氧化菌(NOB)将亚硝酸盐氧化为硝酸盐(NO3- -N)。因此,硝化反应是由两类微生物独立完成的生化反应过程。
废水中的氨氮因pH值的不同有分子态和离子态两种存在形式。游离氨(FA)是氨氮的分子态形式,通常存在于城市污水和工业废水中。游离氨(FA)浓度可通过Anthonisen 等[1]提出的公式计算得出:
由公式可以看出,FA浓度是氨氮浓度、温度T和pH值三者的函数,并且与三者呈正相关。高氨氮废水的特征是氨氮浓度高,同时还具有较高的pH值,这导致废水中产生较高浓度的FA。高浓度的FA对AOB和NOB的活性具有一定的抑制作用[2-3],降低了生物脱氮硝化过程的生化反应速率,导致系统运行费用增加。几十年来,众多学者针对FA抑制硝化菌的活性方面开展了大量研究[4-11],大多集中于FA选择性抑制 AOB和NOB活性实现短程硝化。此外,FA对AOB和NOB的分解代谢和合成代谢过程均具有一定程度的抑制作用,这揭示了FA抑制其代谢能力的机制[12-14]。
微生物组成是影响生物脱氮效能的关键因素[15]。高通量测序技术是第二代测序技术[16],借助这项技术,许多研究人员研究了生物脱氮硝化过程中FA对细菌种群结构的影响[17-19]。这些研究清楚地表明,随着FA浓度的增加,微生物多样性和硝化细菌丰度均会降低。此外,FA对AOB和NOB活性的抑制阈值的差异[20-22],很可能是由于细菌种群结构的不同引起的。然而,在众多文献中,用于分析微生物群落的活性污泥大多源于FA浓度有差异的生物反应器和污水处理厂,对于在精确/受控条件下驯化的微生物群落的研究较少。为了补充这一研究内容,本试验应用16S r RNA 基因-Illumina MiSeq 高通量测序技术,研究了4种FA浓度(0.5、5、10、15 mg·L−1)条件下长期驯化的活性污泥细菌种群结构的差异以期揭示FA影响生物脱氮硝化过程的生物学机制,为生物脱氮技术的应用提供微生物理论支撑。
游离氨对生物脱氮硝化过程细菌种群结构的影响
Effect of free ammonia on microbial community structure in biological nitrification process
-
摘要: 为揭示游离氨(FA)对硝化过程影响的生物学机制,本试验以人工模拟废水为研究对象,采用4组平行的SBR反应器(R0.5、R5、R10和R15),基于16S rRNA基因-IlluminaMiSeq高通量测序技术,考察了4种FA浓度(0.5、5、10、15 mg·L−1)对SBR反应器中的细菌种群结构的影响。结果表明,FA会显著影响系统内的微生物多样性和菌群结构。R0.5的Chao1、ACE、Shannon和Simpson指数均为最大,其具有最高的微生物多样性,而R15的微生物多样性最低。在微生物门水平上,最优势菌门变形菌门(Proteobacteria)的相对丰度与FA浓度呈正相关,硝化螺旋菌门(Nitrospirae)的相对丰度在R15中最低。在微生物属水平上,亚硝化单胞菌属(Nitrosomonas)和硝化螺旋菌属(Nitrospira)的相对丰度在R10中显著较高,动胶菌属(Zoogloea)和陶厄氏菌属(Thauera)的相对丰度与FA浓度呈显著的线性相关。基于LEfSe分析共获得了24种具有显著差异的微生物,从而得到了4种FA浓度条件下的关键微生物标记物。本研究加深了对生物脱氮硝化过程菌群结构的认识,为深入研究生物脱氮硝化的抑制机理提供了借鉴。
-
关键词:
- 游离氨 /
- Illumina MiSeq高通量测序 /
- 硝化过程 /
- 微生物多样性 /
- LEfSe组间差异
Abstract: Based on 16S rRNA genes-Illumina MiSeq high-throughput sequencing, this study is to investigate the community and structure of characteristic microbial communities related to nitrification under four FA concentrations (0.5, 5, 10, 15 mg·L−1) settled in four parallel laboratory-scale sequencing batch reactors (SBRs, denoted as R0.5, R5, R10, R15) to reveal the biological mechanism of how does FA influence the nitrification. Results indicated that FA concentration significantly affects the microbial diversity and community structure in the system. The largest α-diversity values of Chao1, ACE, Shannon and Simpson were achieved in R0.5, which represents with highest diversity of bacterial community, while the lowest was achieved in R15. At the the phylum level, the relative abundance of Proteobacteria which is the predominant phylum, increased with the increasing of FA concentration. The relative abundance of Nitrospira in the nitrification process was the lowest in R15. At the genus level, the relative abundance of Nitrosomonas and Nitrospira was significantly higher in R10. The relative abundance of Zoogloea and Thauera showed a significant linear correlation with FA concentration. A total of 25 groups of microorganisms with significant differences were obtained based on LEfSe analysis, thereby key biomarkers of the microflora were obtained at the microbiological classification level under four FA concentrations. This study has deepened the understanding of the microbial community structure in the biological nitrification process, and provided a reference for in-depth study of the inhibition mechanism of biological nitrification process. -
表 1 SBR反应器运行条件
Table 1. Operating conditions of SBR reactors
FA/
(mg·L−1)初始运行参数
Initial operational parameters运行周期及各阶段反应时间/min
Phase time of the SBRCOD/
(mg·L−1)NH4+-N /
(mg·L−1)温度/ ℃
TemperaturepH 周期时间
One cycle进水
Filling曝气
Aeration缺氧
Anoxia沉淀排水
Setting0.5 80 40 20±2.0 7.5±0.2 520 5 270 180 45 5 80 90 25±2.0 8.0±0.2 570 5 300 200 25 10 80 130 30±2.0 8.0±0.2 660 5 360 240 25 15 80 55 35±2.0 8.5±0.2 490 5 240 160 45 表 2 4组活性污泥样品中微生物群落的丰富度及多样性
Table 2. Four groups in activated sludge samples the richness and diversity of microbial communities
样品
Samples有效序列数
Amount of
effective
sequencingOTUs 微生物数量
Amount of microbial groups细菌群落的α多样性
α-diversity of bacterial community门
Phylum纲
Class目
Order科
Family属
Genus种
SpeciesChao1 ACE Shannon Simpson R0.5 45637 2766 27 55 69 101 137 54 1915 1915 8.83 0.99 R5 40901 2521 20 48 58 79 107 47 1731 1732 7.85 0.97 R10 44160 1349 17 31 44 57 68 33 1238 1268 6.24 0.94 R15 38423 1438 20 39 59 74 79 41 1169 1179 5.68 0.86 表 3 门水平上样品中的主要菌群
Table 3. The main flora in the samples at the phylum level
门水平微生物
Taxon总计
Total样品
SamplesR0.5 R5 R10 R15 变形菌门(Proteobacteria) 54.50% 45.90% 53.49% 48.17% 70.46% 拟杆菌门(Bacteroidetes) 25.95% 31.17% 19.55% 41.25% 11.84% 绿弯菌门(Chloroflexi) 4.05% 4.40% 3.85% 3.10% 4.86% Parcubacteria 3.59% 0.95% 13.35% 0.06% 0.01% 浮霉菌门(Planctomycetes) 3.15% 6.80% 1.35% 0.49% 3.96% 硝化螺旋菌门(Nitrospirae) 2.78% 6.15% 2.44% 1.57% 0.96% Ignavibacteriae 1.27% 1.24% 2.54% 0.38% 0.89% 绿菌门(Chlorobi) 0.99% 1.24% 0.40% 0.03% 2.28% Omnitrophica 0.60% 0.01% 2.37% 0.00% 0.00% 表 4 属水平上样品中的主要菌群
Table 4. The main flora in the samples at the genus level
属水平微生物
Taxon总计
Total样品
SamplesR0.5 R5 R10 R15 陶厄氏菌属(Thauera) 31.97% 5.05% 28.76% 37.78% 56.29% 腐螺旋菌属(Saprospiraceae) 8.78% 21.45% 13.08% 0.36% 0.24% 噬纤维菌属(Cytophagaceae) 8.38% 1.46% 0.09% 31.10% 0.85% 赖文氏菌属(Lewinella) 4.86% 1.21% 1.44% 9.03% 7.76% 动胶菌属(Zoogloea) 4.60% 11.23% 5.12% 1.09% 0.94% 厌氧绳菌属(Anaerolineaceae) 3.21% 3.28% 3.16% 2.22% 4.16% 硝化螺旋菌属(Nitrospira) 2.78% 1.57% 0.96% 6.14% 2.44% 脱氯菌属(Dechloromonas) 2.40% 0.04% 9.51% 0.05% 0.00% 丛毛单胞菌属(Comamonadaceae) 1.63% 2.66% 2.32% 1.20% 0.33% OM190 1.42% 4.46% 0.88% 0.30% 0.05% 固氮弓菌属(Azoarcus) 1.30% 3.68% 0.85% 0.38% 0.30% 食酸菌属(Acidovorax) 1.27% 1.08% 3.88% 0.09% 0.03% 亚硝化单胞菌属(Nitrosomonas) 1.25% 0.13% 1.09% 3.17% 0.60% 浮霉菌属(Planctomycetaceae) 1.01% 0.12% 0.11% 0.07% 3.76% -
[1] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrousacid [J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-52. [2] FUX C, BOEHLER M, HUBER P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Biotechnology, 2002, 99(3): 295-306. doi: 10.1016/S0168-1656(02)00220-1 [3] KIM D J, LEE D I, KELLER J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH [J]. Bioresource Technology, 2006, 97(3): 459-468. doi: 10.1016/j.biortech.2005.03.032 [4] JIANG Y S, POH L S, LIM C P, et al. Effect of free ammonia inhibition on process recovery of partial nitritation in a membrane bioreactor [J]. Bioresource Technology Reports, 2019, 6: 152-158. doi: 10.1016/j.biteb.2019.02.014 [5] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响 [J]. 中国环境科学, 2015, 35(1): 95-100. SUN H W, YOU Y J, ZHAO H N, et al. Inhibitory effect of free ammonia on the activity of nitrifying bacteria and recoverability [J]. China Environmental Science, 2015, 35(1): 95-100(in Chinese).
[6] 孙洪伟, 吕心涛, 魏雪芬, 等. 游离氨(FA)耦合曝气时间对硝化菌活性的抑制影响 [J]. 环境科学, 2016, 37(3): 1075-1081. SUN H W, LÜ X T, WEI X F, et al. Synergetic inhibitory effect of free ammonia and aeration phase length control on the activity of nitrifying bacteria [J]. Environmental Science, 2016, 37(3): 1075-1081(in Chinese).
[7] 张亮, 张树军, 彭永臻. 污水处理中游离氨对硝化作用抑制影响研究 [J]. 哈尔滨工业大学学报, 2012, 44(2): 75-79. doi: 10.11918/j.issn.0367-6234.2012.02.016 ZHANG L, ZHANG S J, PENG Y Z. Review of study on the effects of free ammonia inhibitions on nitrifying bacteria in wastewater treatment [J]. Journal of Harbin Institute of Technology, 2012, 44(2): 75-79(in Chinese). doi: 10.11918/j.issn.0367-6234.2012.02.016
[8] YAO Q, PENG D C, WANG B, et al. Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and extracellular polymeric substance distribution of ammonium oxidizing bacteria in partial nitrification [J]. Journal of Bioscience and Bioengineering, 2017, 124(3): 319-326. doi: 10.1016/j.jbiosc.2017.03.015 [9] POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge [J]. Water Research, 2016, 106: 518-530. doi: 10.1016/j.watres.2016.10.028 [10] KENT T R, SUN Y W, AN Z H, et al. Mechanistic understanding of the NOB suppression by free ammonia inhibition in continuous flow aerobic granulation bioreactors [J]. Environment International, 2019, 131: 105005. doi: 10.1016/j.envint.2019.105005 [11] DUAN H R, YE L, WANG Q L, et al. Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation [J]. Water Research, 2019, 162: 331-338. doi: 10.1016/j.watres.2019.07.002 [12] LIU Y W, NGO H H, GUO W S, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review [J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 [13] WANG B, WANG Z H, WANG S Y, et al. Recovering partial nitritation in a PN/A system during mainstream wastewater treatment by reviving AOB activity after thoroughly inhibiting AOB and NOB with free nitrous acid [J]. Environment International, 2020, 139: 105684. doi: 10.1016/j.envint.2020.105684 [14] YU L T, CHEN S D, CHEN W J, et al. Experimental investigation and mathematical modeling of the competition among the fast-growing “r-strategists” and the slow-growing “K-strategists” ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in nitrification [J]. Science of the Total Environment, 2020, 702: 135049. doi: 10.1016/j.scitotenv.2019.135049 [15] ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China [J]. Environment International, 2016, 92/93: 11-22. doi: 10.1016/j.envint.2016.03.024 [16] CHU Y J, COREY D R. RNA sequencing: Platform selection, experimental design, and data interpretation [J]. Nucleic Acid Therapeutics, 2012, 22(4): 271-274. doi: 10.1089/nat.2012.0367 [17] VADIVELU V M, KELLER J, YUAN Z G. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture [J]. Biotechnology and Bioengineering, 2006, 95(5): 830-839. doi: 10.1002/bit.21018 [18] CHEN W J, DAI X H, CAO D W, et al. Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater [J]. Scientific Reports, 2016, 6: 35693. doi: 10.1038/srep35693 [19] SUI Q W, LIU C, ZHANG J Y, et al. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater [J]. Applied Microbiology and Biotechnology, 2016, 100(9): 4177-4187. doi: 10.1007/s00253-015-7183-z [20] ZHANG C, QIN Y G, XU Q X, et al. Free ammonia-based pretreatment promotes short-chain fatty acid production from waste activated sludge [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9120-9129. [21] VADIVELU V M, KELLER J, YUAN Z G. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture [J]. Water Research, 2007, 41(4): 826-834. doi: 10.1016/j.watres.2006.11.030 [22] HULLE S W, VOLCKE E I, TERUEL J L, et al. Influence of temperature and pH on the kinetics of the Sharon nitritation process [J]. Journal of Chemical Technology & Biotechnology, 2007, 82(5): 471-480. [23] CHAO A. Nonparametric estimation of the number of classes in a population [J]. Scand J Statist, 1984, 11(4): 265-270. [24] CHAO A, YANG M C K. Stopping rules and estimation for recapture debugging with unequal failure rates [J]. Biometrika, 1993, 80(1): 193-201. doi: 10.1093/biomet/80.1.193 [25] SHANNON C E. A mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x [26] SIMPSON E H. Measurement of diversity [J]. Journal of Cardiothoracic & Vascular Anesthesia, 1997, 11(6): 812-812. [27] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions [J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063 [28] USHIKI N, FUJITANI H, AOI Y, et al. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant [J]. Microbes and Environments, 2013, 28(3): 346-353. doi: 10.1264/jsme2.ME13042 [29] CAO J S, YU Y X, XIE K, et al. Characterizing the free ammonia exposure to the nutrients removal in activated sludge systems [J]. RSC Advances, 2017, 7(87): 55088-55097. doi: 10.1039/C7RA10751J [30] GILBERT E M, AGRAWAL S, BRUNNER F, et al. Response of different Nitrospira species to anoxic periods depends on operational DO [J]. Environmental Science & Technology, 2014, 48(5): 2934-2941. [31] CHIELLINI C, MUNZ G, PETRONI G, et al. Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: A focus on Nitrospira and planctomycetes bacterial Phyla [J]. Current Microbiology, 2013, 67(1): 77-90. doi: 10.1007/s00284-013-0333-6 [32] LOZUPONE C A, HAMADY M, KELLEY S T, et al. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities [J]. Applied and Environmental Microbiology, 2007, 73(5): 1576-1585. doi: 10.1128/AEM.01996-06 [33] ZHANG T, SHAO M F, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants [J]. The ISME Journal, 2012, 6(6): 1137-1147. doi: 10.1038/ismej.2011.188 [34] SUN H W, SHI W Y, CAI C J, et al. Responses of microbial structures, functions, metabolic pathways and community interactions to different C/N ratios in aerobic nitrification [J]. Bioresource Technology, 2020, 311: 123422. doi: 10.1016/j.biortech.2020.123422 [35] CHEN H, LI A, CUI D, et al. Evolution of microbial community and key genera in the formation and stability of aerobic granular sludge under a high organic loading rate [J]. Bioresource Technology Reports, 2019, 7: 100280. doi: 10.1016/j.biteb.2019.100280 [36] 杨华, 黄钧, 赵永贵, 等. 陶厄氏菌Thauera sp. TN9的鉴定及特性 [J]. 应用与环境生物学报, 2013, 19(2): 318-323. doi: 10.3724/SP.J.1145.2013.00318 YANG H, HUANG J, ZHAO Y G, et al. Identif ication and characterization of Thauera sp. strain TN9 [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(2): 318-323(in Chinese). doi: 10.3724/SP.J.1145.2013.00318
[37] ETCHEBEHERE C, TIEDJE J. Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor [J]. Applied and Environmental Microbiology, 2005, 71(9): 5642-5645. doi: 10.1128/AEM.71.9.5642-5645.2005 [38] SRINANDAN C S, SHAH M, PATEL B, et al. Assessment of denitrifying bacterial composition in activated sludge [J]. Bioresource Technology, 2011, 102(20): 9481-9489. doi: 10.1016/j.biortech.2011.07.094 [39] DU S, YA T, ZHANG M L, et al. Distinct microbial communities and their networks in an anammox coupled with sulfur autotrophic/mixotrophic denitrification system [J]. Environmental Pollution, 2020, 262: 114190. doi: 10.1016/j.envpol.2020.114190