-
矿业是经济和社会发展的重要支柱产业之一。随着我国采矿业的迅速发展,矿业活动导致的环境污染问题日益突出。矿山开采过程中产生的大量酸性矿山废水(acid mine drainage, AMD)未经处理直接排放进入河流、湖泊等水体会破坏水生生态系统,引起水体恶化、桥梁船舶和堤坝的腐蚀、微生物正常繁衍受损等问题[1]。除此之外,AMD含有的重金属离子会污染土壤,影响植被生长,长期使用酸性废水灌溉会导致土壤酸化,从而致使粮食减产。如果AMD处理不当会对自然环境以及人类社会产生巨大威胁[2]。因此,如何有效地处理AMD,防止其进入自然环境中产生污染是当前研究的热点之一。目前,处理AMD的常用方法有硫化法、化学中和法、微生物法等[3]。在使用硫化法时,AMD的pH值不会成为限制因素,产生的污染物呈固态,易去除,但使用硫化剂常常会产生对人体有害的H2S气体,且运行成本相对较高;化学中和法具有工艺简单、易操作、运行成本不高等优点,但在处理过程中会产生大量污泥和高浓度废水,去除效率低且极易对环境造成二次污染;相较于国外,国内微生物法起步较晚[2],但与其他AMD处理方法相比,微生物法的成本较低,适用范围较广,可以对AMD中的重金属或其他污染物进行有效的处理[4],但其处理效果受季节、气温、光照等自然因素影响较大。以上这些处理方法虽然处理效果好,但由于投资大、成本高、稳定性差、可能会产生二次污染等原因限制了其推广应用。生物炭修复技术具有低成本、高效率、环境友好等优点,近年来在环境修复领域受到广泛关注。
生物炭是生物质在缺氧或限氧条件下,经过高温慢热解或水热碳化制备的一类难熔、稳定、芳香化程度高、表面含氧官能团和碳含量丰富的固态物质[5-9]。作为一种新型的碳材料,生物炭具有高度的芳香性和多孔结构,其稳定性好、吸附能力强,已被广泛应用于环境修复和土壤改良[10-14]。目前,国内对生物炭在水环境中重金属离子的吸附方面已有大量研究报道,且发现生物炭对于废水中的重金属离子具有良好的吸附效果,但生物炭吸附去除AMD中的重金属离子方面则鲜有报道。如曹玮等[15]利用磁性谷壳生物炭吸附废水中的Cd2+和Zn2+,发现在磁性谷壳生物炭的吸附下,Zn2+和Cd2+的去除率分别达到了60.4%和61.1%。刘秀等[16]使用笼芯陶黑碳微珠生物炭去除模拟废水中的Cd2+,结果表明在适宜的条件下添加笼芯陶黑碳微珠生物炭有利于Cd2+的吸附去除。魏啸楠等[17]使用磷酸改性生物炭负载硫化锰去除废水中的Cd2+,发现在偏酸性条件下去除Cd2+的效果显著。在国外,已有利用生物炭处理AMD的相关研究报道。Mohapatra等[18]发现改性玉米芯生物炭可以较好地吸附铬铁矿废水和表土堆放场的Cd2+,当pH≤3且有Fe和S共存时,改性玉米芯生物炭的吸附效果更为显著。Giachini等[19]研究发现,与原始AMD相比,富含牛粪的生物炭可促进41%的硫酸盐还原,与其他处理(AMD沉积物、污泥)相比,硫酸盐减少了39%。Oh等[20]使用家禽粪便制备的生物炭处理韩国铜废弃矿产生的AMD,结果表明AMD内含有的高浓度Fe、Al、Mn、Cu、As被完全去除,Zn、Mn、SO42−的去除率分别达到了99%、61%和31%。Liatsou等[21]利用硫尿嘧啶改性前后的生物炭纤维对Cu2+的吸附,实验结果显示在一定酸性范围内,该改性生物炭纤维对当地铜矿排水样品中的Cu2+的去除率达100%。Mosley等[22]的实验结果表明,用芦苇制成的生物炭具有中和pH和从AMD中去除金属的能力。生物炭与酸性废水接触,渗滤液中的pH值得到中和,重金属含量也降低了97%,而生物炭渗滤液的pH值维持在6.5以上。综上可见,生物炭技术已逐渐被用于处理AMD,因此将其用于AMD的治理具有非常重要的意义。
由于AMD的pH值较低且成分复杂,其中含有不同的重金属离子,因此不同属性生物炭对AMD的吸附效果差异较大。目前已有许多研究者在实验室内进行了AMD的模拟吸附实验,由于不同材料、不同条件下制备的生物炭,其吸附特性有一定的差异,且不同类型的生物炭对于不同重金属离子的吸附能力也各相同。此外,尽管生物炭可以吸附水中的重金属离子,但现有文献中关于生物炭对AMD中重金属离子的吸附机理尚不清楚,许多吸附机制都可能在生物炭从水溶液中去除重金属的过程中发挥作用,如沉淀、络合、离子交换、静电相互作用和物理吸附等[23]。因此,在多种重金属离子共存的环境条件下,生物炭对多种重金属的吸附机理也有待进一步的研究。
基于以上原因,本文在对AMD的特征及其常用处理方法进行概述的基础上,介绍了生物炭的常规制备方法及理化性质表征,对生物炭处理AMD的影响因素、处理效果及其机理进行了综述,最后对生物炭技术在处理AMD方面的研究与应用提出了展望。
利用生物炭技术处理酸性矿山废水的研究进展
Progress on treatment of acid mine drainage by biochar technology
-
摘要: 随着社会经济的不断发展,矿业开发过程中产生的一系列环境问题引起国内外的广泛关注,其中采矿过程中产生的酸性矿山废水(acid mine drainage, AMD)问题尤为突出。AMD会导致水质酸化、土壤重金属污染以及植物枯萎死亡等问题。因此,如何对AMD进行有效处理已成为环境治理的焦点问题。现有的AMD处理方法主要包括中和法、人工湿地法和微生物法,但这些方法大多存在后续管理难、维护成本高、处理浓度低等问题。相比之下,生物炭技术因原料成本低、制备简便且原材料来源广泛等优点而被广泛应用于环境修复领域。近年来国内外已有关于利用生物炭技术处理AMD的研究报道,但其处理机制尚不清楚,许多研究还停留在实验室阶段,尚未形成规模化的应用模式。因此,本文首先对AMD的特征及其常用处理方法进行了概述,并介绍了生物炭的常规制备方法及理化性质表征,对生物炭处理AMD的影响因素、处理效果及其机理进行了综述,最后对生物炭技术在处理AMD方面的研究与应用进行了展望。Abstract: With the rapid development of society and economy, a series of environmental problems in mining development have attracted wide attention all over the world, especially the acid mine drainage (AMD) issue. AMD can cause a series of ecological environment problems, such as water acidification, soil contamination with heavy metals, and plant wilting and apoptosis. Therefore, the treatment of AMD has become the focus of environmental governance. The current disposal methods of AMD mainly include neutralization method, constructed wetland method and microbial method. However, most of these treatment methods have the problems of difficult follow-up management, high maintenance cost and low treatment concentration. In contrast, biochar technology has been widely used in the field of environmental remediation due to its advantages such as low cost, easy preparation and wide source of raw materials. In recent years, there have been some reports on the treatment of AMD with biochar technology, but the treatment mechanism is still unclear, and many studies are still in its infancy, which has not yet formed a large-scale application model. Therefore, in this paper, the characteristics of AMD and its common treatment methods are summarized, the conventional preparation methods and physicochemical properties of biochar are introduced, the influencing factors, effect and mechanism of biochar treatment of AMD are reviewed. Finally the prospect of the research and application of biochar in AMD treatment is proposed.
-
Key words:
- biochar /
- acid mine drainage /
- water acidification /
- treatment technology /
- Mechanism
-
表 1 AMD各种处理方法优缺点比较
Table 1. Comparison of advantages and disadvantages of various AMD processing methods
处理方法
Processing methods优点
Advantages缺点
Disadvantages微生物燃料电池技术 原料来源广、温和高效 能耗大、运行费用高、设备要求高 物理化学法 离子去除率高 对吸附材料膜的性能要求较高,运行成本偏高,对水体、温度、停留时间等要求高 微生物法 简单易行、成本低廉、环境友好、适应性强、不会发生二次污染 操作环境不易控制 人工湿地法 环境友好、处理效果好、成本低、
不会发生二次污染占地面积大、时间长、各种作用难以控制 电化学法 清洁的去除方式、效率高、占地少、
不会发生二次污染初始投资大、电力供应大、电极材料寿命短等问题难以突破 中和法 初始成本低、操作简单、对设备要求相对简单、处理效果好 产生大量污泥易造成二次污染,增大处理成本 源头治理技术 高效经济、不会对环境产生二次伤害 技术不够成熟 -
[1] 王磊, 李泽琴, 姜磊. 酸性矿山废水的危害与防治对策研究 [J]. 环境科学与管理, 2009, 34(10): 82-84. doi: 10.3969/j.issn.1673-1212.2009.10.020 WANG L, LI Z Q, JIANG L. Acidic mine waste water hazards and countermeasures research [J]. Environmental Science and Management, 2009, 34(10): 82-84(in Chinese). doi: 10.3969/j.issn.1673-1212.2009.10.020
[2] 牟力, 何腾兵, 黄会前, 等. 酸性矿山废水治理技术的研究进展 [J]. 天津农业科学, 2017, 23(2): 42-45. doi: 10.3969/j.issn.1006-6500.2017.02.010 MOU L, HE T B, HUANG H Q, et al. Progress in research on the acid mine drainage treatment [J]. Tianjin Agricultural Sciences, 2017, 23(2): 42-45(in Chinese). doi: 10.3969/j.issn.1006-6500.2017.02.010
[3] 刘志勇, 陈建中, 康海笑, 等. 酸性矿山废水的处理研究 [J]. 四川环境, 2004, 23(6): 50-53,57. doi: 10.3969/j.issn.1001-3644.2004.06.014 LIU Z Y, CHEN J Z, KANG H X, et al. Treatment and study of acid mine drainage [J]. Sichuan Environment, 2004, 23(6): 50-53,57(in Chinese). doi: 10.3969/j.issn.1001-3644.2004.06.014
[4] 邓川, 陈韵竹, 李瑶. 矿山废水处理的研究综述 [J]. 当代化工研究, 2017(11): 57-58. doi: 10.3969/j.issn.1672-8114.2017.11.035 DENG C, CHEN Y Z, LI Y. Review of research on mine wastewater treatment [J]. Modern Chemical Research, 2017(11): 57-58(in Chinese). doi: 10.3969/j.issn.1672-8114.2017.11.035
[5] 钟晓晓, 王涛, 原文丽, 等. 生物炭的制备、改性及其环境效应研究进展 [J]. 湖南师范大学自然科学学报, 2017, 40(5): 44-50. doi: 10.7612/j.issn.1000-2537.2017.05.007 ZHONG X X, WANG T, YUAN W L, et al. Progresses of preparation, modification and environmental behavior of biochar [J]. Journal of Natural Science of Hunan Normal University, 2017, 40(5): 44-50(in Chinese). doi: 10.7612/j.issn.1000-2537.2017.05.007
[6] WANG B, MA Y N, LEE X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer [J]. Science of the Total Environment, 2021, 758: 143664. doi: 10.1016/j.scitotenv.2020.143664 [7] WANG B, WAN Y S, ZHENG Y L, et al. Alginate-based composites for environmental applications: A critical review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(4): 318-356. doi: 10.1080/10643389.2018.1547621 [8] WANG B, GAO B, WAN Y S. Comparative study of calcium alginate, ball-milled biochar, and their composites on aqueous methylene blue adsorption [J]. Environmental Science and Pollution Research, 2019, 26(12): 11535-11541. doi: 10.1007/s11356-018-1497-1 [9] WANG B, GAO B, WAN Y S. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(Ⅱ) [J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 161-168. doi: 10.1016/j.jiec.2017.12.013 [10] 马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 38(11): 2425-2434. MA C R, ZHANG X C, WANG P, et al. Effect of physical and chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 38(11): 2425-2434(in Chinese).
[11] TENG D Y, ZHANG B B, XU G M, et al. Efficient removal of Cd(Ⅱ) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, 2020, 265: 115001. doi: 10.1016/j.envpol.2020.115001 [12] DAI W J, WU P, LIU D, et al. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites [J]. Chemosphere, 2020, 251: 126074. doi: 10.1016/j.chemosphere.2020.126074 [13] WANG Q, WANG B, LEE X, et al. Sorption and desorption of Pb(Ⅱ) to biochar as affected by oxidation and pH [J]. Science of the Total Environment, 2018, 634: 188-194. doi: 10.1016/j.scitotenv.2018.03.189 [14] WANG B, LEHMANN J, HANLEY K, et al. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH [J]. Chemosphere, 2015, 138: 120-126. doi: 10.1016/j.chemosphere.2015.05.062 [15] 曹玮, 周航, 邓贵友, 等. 改性谷壳生物炭负载磁性Fe去除废水中Pb2+的效果及机制 [J]. 环境工程学报, 2017, 11(3): 1437-1444. doi: 10.12030/j.cjee.201511081 CAO W, ZHOU H, DENG G Y, et al. Effects and mechanisms of magnetic iron supported on rice husk biochar removing Pb2+ in wastewater [J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1437-1444(in Chinese). doi: 10.12030/j.cjee.201511081
[16] 刘秀, 刘立恒, 刘睿, 等. 笼芯陶黑碳微珠生物炭去除模拟废水中铬的实验研究[J]. 环境工程, 2021, 29(3): 75-81 LIU X, LIU L H, LIU R, et al. Experimental study on Cr removal from simulated wastewater by cage core black carbon beads[J/OL]. Environmental Engineering , 2021, 29(3): 75-81.
[17] 魏啸楠, 张倩, 李孟, 等. 磷酸改性生物炭负载硫化锰去除废水中重金属镉 [J]. 中国环境科学, 2020, 40(5): 2095-2102. doi: 10.3969/j.issn.1000-6923.2020.05.028 WEI X N, ZHANG Q, LI M, et al. Removal of cadmium in wastewater by phosphoric acid modified biochar supported manganese sulfide [J]. China Environmental Science, 2020, 40(5): 2095-2102(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.028
[18] MOHAPATRA S, KUMAR M, KARIM A A, et al. Biochars evaluation for chromium pollution abatement in chromite mine wastewater and overburden of Sukinda, Odisha, India [J]. Arabian Journal of Geosciences, 2020, 13(13): 1-14. [19] GIACHINI A J, SULZBACH T S, PINTO A L, et al. Microbially-enriched poultry litter-derived biochar for the treatment of acid mine drainage [J]. Archives of Microbiology, 2018, 200(8): 1227-1237. doi: 10.1007/s00203-018-1534-y [20] OH S Y, YOON M K. Biochar for treating acid mine drainage [J]. Environmental Engineering Science, 2013, 30(10): 589-593. doi: 10.1089/ees.2013.0063 [21] LIATSOU I, PASHALIDIS I, DOSCHE C. Cu(Ⅱ) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(Ⅵ) [J]. Journal of Hazardous Materials, 2020, 383: 120950. doi: 10.1016/j.jhazmat.2019.120950 [22] MOSLEY L M, WILLSON P, HAMILTON B, et al. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage [J]. Environmental Science and Pollution Research, 2015, 22(19): 15113-15122. doi: 10.1007/s11356-015-4735-9 [23] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. doi: 10.1080/10643389.2015.1096880 [24] 辛瑞瑞. 不同酸性废水库中微生物群落季节变化及宏基因组学研究 [D]. 北京: 中国地质大学(北京), 2019. XIN R R. Seasonal variation of microbial community and metagenomics analysis in different acid mine drainage lakes [D]. Beijing: China University of Geosciences, 2019.
[25] 白润才, 李彬, 李三川, 等. 矿山酸性废水处理技术现状及进展 [J]. 长江科学院院报, 2015, 32(2): 14-19. BAI R C, LI B, LI S C, et al. Development and status of the treatment technology for acid mine drainage [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(2): 14-19(in Chinese).
[26] 王颖南, 邓奇根, 王浩, 等. 硫酸盐还原菌胞外聚合物处理酸性矿山废水的研究进展 [J]. 水处理技术, 2020, 46(12): 7-11. WANG Y N, DENG Q G, WANG H, et al. Research progress on treatment of acid mine wastewater by extracellular polymeric substances of sulfate reducing bacteria [J]. Technology of Water Treatment, 2020, 46(12): 7-11(in Chinese).
[27] 洪思奇. 聚吡咯改性活性炭去除酸性矿山废水中的硫酸盐 [D]. 北京: 中国地质大学(北京), 2014. HONG S Q. Sulfate removal from acid mine drainage using polypyrrole-grafted activated carbon [D]. Beijing: China University of Geosciences, 2014.
[28] 王贺松. 酸性矿山废水中处理技术的研究进展 [J]. 民营科技, 2018(5): 62. WANG H S. Research progress of treatment technology in acid mine wastewater [J]. Private Technology, 2018(5): 62(in Chinese).
[29] KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review [J]. Journal of Cleaner Production, 2017, 151: 475-493. doi: 10.1016/j.jclepro.2017.03.082 [30] 郑琳姗, 张秀玲, 李惠雨, 等. 微生物燃料电池技术及其影响因素研究进展 [J]. 精细化工, 2021, 38(1): 1-8. ZHENG L S, ZHANG X L, LI H Y, et al. Research progress on microbial fuel cell technology and its influencing factors [J]. Fine Chemicals, 2021, 38(1): 1-8(in Chinese).
[31] 丁伟, 阿柔娜, 付志敏, 等. 重金属离子对微生物燃料电池产电性能的影响 [J]. 环境工程, 2016, 34(7): 61-65. DING W, A R N, FU Z M, et al. The influence of heavy metal ions on the microbial fuel cell performance [J]. Environmental Engineering, 2016, 34(7): 61-65(in Chinese).
[32] FADZLI F S, RASHID M, YAQOOB A A, et al. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs) [J]. Biochemical Engineering Journal, 2021, 172: 108067. doi: 10.1016/j.bej.2021.108067 [33] FU W, JI G Z, CHEN H H, et al. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater [J]. Separation and Purification Technology, 2020, 251: 117407. doi: 10.1016/j.seppur.2020.117407 [34] 辛金豪. 离子交换法处理回用电镀含铬废水的研究进展 [J]. 资源节约与环保, 2015(7): 36,39. XIN J H. Ion exchange method and treatment of recycling the research progress of electroplating wastewater containing chromium [J]. Resources Economization & Environmental Protection, 2015(7): 36,39(in Chinese).
[35] 隋岩峰, 刘松林, 杨帆. 反渗透膜处理磷肥废水的实验研究 [J]. 应用化工, 2019, 48(4): 823-826. doi: 10.3969/j.issn.1671-3206.2019.04.020 SUI Y F, LIU S L, YANG F. Experimental study on the treatment of phosphate fertilizer wastewater by reverse osmosis membrane [J]. Applied Chemical Industry, 2019, 48(4): 823-826(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.04.020
[36] 戴祥昕, 桂梦瑶, 杜俊逸, 等. 硫酸盐还原菌包覆矿石控制酸性废水排放及碳源的优选研究 [J]. 地球与环境, 2021, 49(1): 73-81. DAI X X, GUI M Y, DU J Y, et al. Sulphate-reducing bacteria covered mine refuse to control acid mine drainage and the optimization of relevant carbon sources [J]. Earth and Environment, 2021, 49(1): 73-81(in Chinese).
[37] SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage [J]. Minerals Engineering, 2013, 48: 56-60. doi: 10.1016/j.mineng.2012.10.019 [38] 龙中, 吴攀, 黄家琰, 等. 多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水 [J]. 环境工程学报, 2019, 13(6): 1391-1399. doi: 10.12030/j.cjee.201810086 LONG Z, WU P, HUANG J Y, et al. Advanced treatment of acid mine drainage by multi-stage reoxygenation reaction-vertical flow constructed wetland [J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1391-1399(in Chinese). doi: 10.12030/j.cjee.201810086
[39] 徐晶晶, 张继伟, 崔树军, 等. 煤矸石山酸性废水污染控制技术研究进展 [J]. 中国矿业, 2017, 26(1): 43-48. doi: 10.3969/j.issn.1004-4051.2017.01.012 XU J J, ZHANG J W, CUI S J, et al. Research progress in pollution control technologies of acidic wastewater from coal gangue [J]. China Mining Magazine, 2017, 26(1): 43-48(in Chinese). doi: 10.3969/j.issn.1004-4051.2017.01.012
[40] 蒋文瑞, 涂志红, 周姝, 等. 黄铁矿表面氧化机理及动力学影响因素研究进展 [J]. 金属矿山, 2021(3): 88-102. JIANG W R, TU Z H, ZHOU S, et al. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation [J]. Metal Mine, 2021(3): 88-102(in Chinese).
[41] SKOUSEN J G, ZIEMKIEWICZ P F, MCDONALD L M. Acid mine drainage formation, control and treatment: Approaches and strategies [J]. The Extractive Industries and Society, 2019, 6(1): 241-249. doi: 10.1016/j.exis.2018.09.008 [42] 朱爱平, 田虎伟. 浅谈金属矿山酸性废水处理工艺 [J]. 现代矿业, 2020, 36(1): 204-206. doi: 10.3969/j.issn.1674-6082.2020.01.062 ZHU A P, TIAN H W. Discussion on acid mine waste water treatment process in metal mine [J]. Modern Mining, 2020, 36(1): 204-206(in Chinese). doi: 10.3969/j.issn.1674-6082.2020.01.062
[43] 曾威鸿, 董颖博, 林海. 酸性矿山废水源头控制技术研究进展 [J]. 安全与环境工程, 2020, 27(1): 104-110. ZENG W H, DONG Y B, LIN H. Research progress of source control technologies of acid mine drainage [J]. Safety and Environmental Engineering, 2020, 27(1): 104-110(in Chinese).
[44] YANG B J, LUO W, WANG X X, et al. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution [J]. Science of the Total Environment, 2020, 737: 139485. doi: 10.1016/j.scitotenv.2020.139485 [45] CHAI Y Z, QIN P F, ZHANG J C, et al. Simultaneous removal of Fe(Ⅱ) and Mn(Ⅱ) from acid mine wastewater by electro-Fenton process [J]. Process Safety and Environmental Protection, 2020, 143: 76-90. doi: 10.1016/j.psep.2020.06.026 [46] 丛宏斌, 赵立欣, 姚宗路, 等. 我国生物质炭化技术装备研究现状与发展建议 [J]. 中国农业大学学报, 2015, 20(2): 21-26. doi: 10.11841/j.issn.1007-4333.2015.02.003 CONG H B, ZHAO L X, YAO Z L, et al. Research status of biomass carbonization technical equipment and proposals for its development in China [J]. Journal of China Agricultural University, 2015, 20(2): 21-26(in Chinese). doi: 10.11841/j.issn.1007-4333.2015.02.003
[47] 孟凡彬, 孟军. 生物质炭化技术研究进展 [J]. 生物质化学工程, 2016, 50(6): 61-66. doi: 10.3969/j.issn.1673-5854.2016.06.010 MENG F B, MENG J. Review of biomass carbonization technology [J]. Biomass Chemical Engineering, 2016, 50(6): 61-66(in Chinese). doi: 10.3969/j.issn.1673-5854.2016.06.010
[48] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响 [D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017. WEI S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, , 2017(in Chinese).
[49] XIANG W, ZHANG X Y, CHEN J J, et al. Biochar technology in wastewater treatment: A critical review [J]. Chemosphere, 2020, 252: 126539. doi: 10.1016/j.chemosphere.2020.126539 [50] 王志鹏, 陈蕾. 秸秆生物炭的研究进展 [J]. 应用化工, 2019, 48(2): 444-447. doi: 10.3969/j.issn.1671-3206.2019.02.045 WANG Z P, CHEN L. Research progress on straw-based biochar [J]. Applied Chemical Industry, 2019, 48(2): 444-447(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.02.045
[51] 李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展 [J]. 石油学报(石油加工), 2020, 36(5): 1101-1110. LI X P, ZHANG J G. Progress on biochar preparation through pyrolysis process [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1101-1110(in Chinese).
[52] OGINNI O, SINGH K. Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104169. doi: 10.1016/j.jece.2020.104169 [53] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x [54] FENG Q W, WANG B, CHEN M, et al. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review [J]. Resources, Conservation and Recycling, 2021, 164: 105204. doi: 10.1016/j.resconrec.2020.105204 [55] 盘丽珍. 大豆秸秆生物炭对金属硫化物尾矿污染土壤的修复作用[D]. 湘潭: 湖南科技大学, 2017. PAN L Z. The remediation of metal mine tailings contaminated siol by biochar derived from soybean straw[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[56] 张天乐, 邱凌, 王雅君. 慢速热解对玉米秸秆炭理化特性的影响 [J]. 可再生能源, 2019, 37(10): 1423-1428. doi: 10.3969/j.issn.1671-5292.2019.10.001 ZHANG T L, QIU L, WANG Y J. Study on process optimization of slow pyrolysis parameters of corn stalks [J]. Renewable Energy Resources, 2019, 37(10): 1423-1428(in Chinese). doi: 10.3969/j.issn.1671-5292.2019.10.001
[57] 李敏, 赵立欣, 孟海波, 等. 慢速热解条件下生物炭理化特性分析 [J]. 农机化研究, 2015, 37(3): 248-253. doi: 10.3969/j.issn.1003-188X.2015.03.061 LI M, ZHAO L X, MENG H B, et al. Analysis of biochar physical and chemical properties under the condition of slow pyrolysis [J]. Journal of Agricultural Mechanization Research, 2015, 37(3): 248-253(in Chinese). doi: 10.3969/j.issn.1003-188X.2015.03.061
[58] 肖琴, 刘有才, 曹占芳, 等. 生物炭吸附废水中重金属离子的研究进展 [J]. 环境科技, 2019, 32(1): 68-73. XIAO Q, LIU Y C, CAO Z F, et al. Research progress on the absorption of heavy metals from wastewater by biochar [J]. Environmental Science and Technology, 2019, 32(1): 68-73(in Chinese).
[59] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响 [J]. 环境化学, 2016, 35(8): 1663-1669. doi: 10.7524/j.issn.0254-6108.2016.08.2016010607 GAO K F, JIAN M F, YU H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environmental Chemistry, 2016, 35(8): 1663-1669(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010607
[60] 勾芒芒, 屈忠义. 生物炭对改善土壤理化性质及作物产量影响的研究进展 [J]. 中国土壤与肥料, 2013(5): 1-5. doi: 10.11838/sfsc.20130501 GOU M M, QU Z Y. Research on using biochar to agricultural soil amendment and crop yield [J]. Soil and Fertilizer Sciences in China, 2013(5): 1-5(in Chinese). doi: 10.11838/sfsc.20130501
[61] 王彤彤, 王晓琳, 任志胜, 等. 不同原料制备的生物炭形貌结构及表面特性研究 [J]. 环境科学与技术, 2017, 40(1): 42-48. WANG T T, WANG X L, REN Z S, et al. Microscopic morphology and surface features of biochars derived from different raw materials [J]. Environmental Science & Technology, 2017, 40(1): 42-48(in Chinese).
[62] 刘青松, 赵丽芳. 热解温度对生物炭表面性质及释放氮磷的影响 [J]. 农业资源与环境学报, 2016, 33(2): 164-169. LIU Q S, ZHAO L F. Effects of biochar pyrolysis temperature on its surface characteristics and nitrogen and phosphorus release [J]. Journal of Agricultural Resources and Environment, 2016, 33(2): 164-169(in Chinese).
[63] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[64] 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析 [J]. 农业资源与环境学报, 2017, 34(6): 543-549. SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials [J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549(in Chinese).
[65] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质 [J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107 LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar under different materials and carbonization temperatures [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3200-3206(in Chinese). doi: 10.12030/j.cjee.201501107
[66] 尹云锋, 张鹏, 雷海迪, 等. 不同热解温度对生物质炭化学性质的影响 [J]. 热带作物学报, 2014, 35(8): 1496-1500. doi: 10.3969/j.issn.1000-2561.2014.08.008 YIN Y F, ZHANG P, LEI H D, et al. Influence of different pyrolysis temperature on chemical properties of biochar [J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1496-1500(in Chinese). doi: 10.3969/j.issn.1000-2561.2014.08.008
[67] 胡华英, 曹升, 杨靖宇, 等. 生物炭对杉木人工林土壤磷素吸附解吸特性的影响 [J]. 西北林学院学报, 2019, 34(4): 8-15. doi: 10.3969/j.issn.1001-7461.2019.04.02 HU H Y, CAO S, YANG J Y, et al. Effects of biochar on phosphorus adsorption and desorption characteristics of Cunninghamia lanceolata plantation [J]. Journal of Northwest Forestry University, 2019, 34(4): 8-15(in Chinese). doi: 10.3969/j.issn.1001-7461.2019.04.02
[68] 周强, 黄代宽, 余浪, 等. 热解温度和时间对生物炭pH值的影响 [J]. 地球环境学报, 2015, 6(3): 195-200. doi: 10.7515/JEE201503008 ZHOU Q, HUANG D K, YU L, et al. Effects of pyrolysis temperature, time and biochar mass ratio on pH value determination for four biochar solutions [J]. Journal of Earth Environment, 2015, 6(3): 195-200(in Chinese). doi: 10.7515/JEE201503008
[69] 徐佳, 刘荣厚. 不同慢速热裂解工艺条件下棉花秸秆生物炭的理化特性分析 [J]. 上海交通大学学报(农业科学版), 2017, 35(2): 19-24. XU J, LIU R H. Physicochemical properties of cotton stalk biochar under different slow pyrolysis conditions [J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2017, 35(2): 19-24(in Chinese).
[70] MENG J, FENG X L, DAI Z M, et al. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto biochar derived from swine manure [J]. Environmental Science and Pollution Research, 2014, 21(11): 7035-7046. doi: 10.1007/s11356-014-2627-z [71] WANG H, TAN L Y, HU B W, et al. Removal of Cr(Ⅵ) from acid mine drainage with clay-biochar composite [J]. Desalination and Water Treatment, 2019, 165: 212-221. doi: 10.5004/dwt.2019.24572 [72] YOON K, CHO D W, TSANG D C W, et al. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water [J]. Bioresource Technology, 2017, 246: 69-75. doi: 10.1016/j.biortech.2017.07.020 [73] PAN J J, JIANG J, XU R K. Adsorption of Cr(Ⅲ) from acidic solutions by crop straw derived biochars [J]. Journal of Environmental Sciences, 2013, 25(10): 1957-1965. doi: 10.1016/S1001-0742(12)60305-2 [74] 刘延湘, 黄彪, 张丽. 花生壳生物炭对水中重金属Cr6+、Cu2+的吸附研究 [J]. 科学技术与工程, 2017, 17(13): 81-85. doi: 10.3969/j.issn.1671-1815.2017.13.015 LIU Y X, HUANG B, ZHANG L. Adsorption of heavy metal Cr6+ and Cu2+ in aqueous solutions by peanut shell biochar [J]. Science Technology and Engineering, 2017, 17(13): 81-85(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.13.015
[75] 王桂仙, 张启伟. 竹炭对水体中重金属离子的吸附规律研究 [J]. 化学与生物工程, 2008, 25(3): 66-68. doi: 10.3969/j.issn.1672-5425.2008.03.019 WANG G X, ZHANG Q W. Adsorption law of bamboo-charcoal for heavy metal ions in aqueous solution [J]. Chemistry & Bioengineering, 2008, 25(3): 66-68(in Chinese). doi: 10.3969/j.issn.1672-5425.2008.03.019
[76] PARK J H, CHO J S, OK Y S, et al. Comparison of single and competitive metal adsorption by pepper stem biochar [J]. Archives of Agronomy and Soil Science, 2016, 62(5): 617-632. doi: 10.1080/03650340.2015.1074186 [77] 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展 [J]. 化工进展, 2019, 38(1): 692-706. WANG C Q, WANG H, JIANG X Y, et al. Research advances on adsorption of heavy metals by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706(in Chinese).
[78] 杨选民, 王雅君, 邱凌, 等. 温度对生物质三组分热解制备生物炭理化特性的影响 [J]. 农业机械学报, 2017, 48(4): 284-290. doi: 10.6041/j.issn.1000-1298.2017.04.037 YANG X M, WANG Y J, QIU L, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.04.037
[79] 蒋艳艳, 胡孝明, 金卫斌. 生物炭对废水中重金属吸附研究进展 [J]. 湖北农业科学, 2013, 52(13): 2984-2988. doi: 10.3969/j.issn.0439-8114.2013.13.003 JIANG Y Y, HU X M, JIN W B. Advances on absorption of heavy metals in the waste water by biochar [J]. Hubei Agricultural Sciences, 2013, 52(13): 2984-2988(in Chinese). doi: 10.3969/j.issn.0439-8114.2013.13.003
[80] 丁文川, 杜勇, 曾晓岚, 等. 富磷污泥生物炭去除水中Pb(Ⅱ)的特性研究 [J]. 环境化学, 2012, 31(9): 1375-1380. DING W C, DU Y, ZENG X L, et al. Aqueous solution Pb(Ⅱ) removal by biochar derived from phosphorus-rich excess sludge [J]. Environmental Chemistry, 2012, 31(9): 1375-1380(in Chinese).
[81] 徐楠楠, 林大松, 徐应明, 等. 玉米秸秆生物炭对Cd2+的吸附特性及影响因素 [J]. 农业环境科学学报, 2014, 33(5): 958-964. doi: 10.11654/jaes.2014.05.019 XU N N, LIN D S, XU Y M, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover [J]. Journal of Agro-Environment Science, 2014, 33(5): 958-964(in Chinese). doi: 10.11654/jaes.2014.05.019
[82] ZHANG Z B, CAO X H, LIANG P, et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization [J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 1201-1208. doi: 10.1007/s10967-012-2017-2 [83] 沈州, 罗仙平, 周丹, 等. 生物炭对离子型稀土矿山尾水中氨氮的吸附特性研究 [J]. 中国稀土学报, 2021, 17(5): 1-14. SHEN Z, LUO X P, ZHOU D, et al. Study on the adsorption characteristics of biochar to ammonia nitrogen in ionic rare earth mine tail water [J]. Journal of the Chinese Rare Earth Society, 2021, 17(5): 1-14(in Chinese).
[84] 郭海艳, 李雪琴, 王章鸿, 等. 蚯蚓粪生物炭对Cu(Ⅱ)的吸附性能 [J]. 环境工程学报, 2016, 10(7): 3811-3818. doi: 10.12030/j.cjee.201501229 GUO H Y, LI X Q, WANG Z H, et al. Performances of Cu(Ⅱ) adsorption by biochar derived from earthworm manure [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3811-3818(in Chinese). doi: 10.12030/j.cjee.201501229
[85] WANG B, LEHMANN J, HANLEY K, et al. Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times [J]. RSC Advances, 2016, 6(48): 41907-41913. doi: 10.1039/C6RA06419A [86] TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(Ⅱ) by biochars generated from three crop straws [J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834. [87] BANDARA T, XU J M, POTTER I D, et al. Mechanisms for the removal of Cd(Ⅱ) and Cu(Ⅱ) from aqueous solution and mine water by biochars derived from agricultural wastes [J]. Chemosphere, 2020, 254: 126745. doi: 10.1016/j.chemosphere.2020.126745 [88] 戴静, 刘阳生. 四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究 [J]. 北京大学学报(自然科学版), 2013, 49(6): 1075-1082. DAI J, LIU Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075-1082(in Chinese).
[89] WANG S S, GAO B, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass [J]. Chemosphere, 2015, 134: 257-262. doi: 10.1016/j.chemosphere.2015.04.062 [90] LI H B, DONG X L, da SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications [J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072 [91] 张继义, 蒲丽君, 李根. 秸秆生物碳质吸附剂的制备及其吸附性能 [J]. 农业工程学报, 2011, 27(增刊2): 104-109. ZHANG J Y, PU L J, LI G. Preparation of biochar adsorbent from straw and its adsorption capability [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(Sup 2): 104-109.
[92] 林芳竹, 张珣. 生物炭在环境领域的研究与应用进展 [J]. 环境保护与循环经济, 2019, 39(10): 17-20,70. doi: 10.3969/j.issn.1674-1021.2019.10.006 LIN F Z, ZHANG X. Progress in research and application of biochar in the field of environment [J]. Environmental Protection and Circular Economy, 2019, 39(10): 17-20,70(in Chinese). doi: 10.3969/j.issn.1674-1021.2019.10.006
[93] 蒲生彦, 上官李想, 刘世宾, 等. 生物炭及其复合材料在土壤污染修复中的应用研究进展 [J]. 生态环境学报, 2019, 28(3): 629-635. PU S Y, SHANGGUAN L X, LIU S B, et al. A review of the application of biochar and its composites in soil remediation [J]. Ecology and Environmental Sciences, 2019, 28(3): 629-635(in Chinese).
[94] WANG B, LEE X, THENG B K G, et al. Biochar addition can reduce NOx gas emissions from a calcareous soil [J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 38-48. doi: 10.1080/09542299.2018.1544035 [95] FANG B, LEE X, ZHANG J, et al. Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in Karst area, Southwest China [J]. Soil Science and Plant Nutrition, 2016, 62(5/6): 526-533. [96] 李阳, 李心清, 王兵, 等. 四种改良剂对酸性黄壤土壤酸度和肥力的影响 [J]. 地球与环境, 2016, 44(6): 683-690. LI Y, LIN X Q, WANG B, et al. Effects of four soil amendments on improving soil quality and acidity of yellow soils [J]. Earth and Environment, 2016, 44(6): 683-690(in Chinese).
[97] 徐东昱, 周怀东, 高博. 生物炭吸附重金属污染物的研究进展 [J]. 中国水利水电科学研究院学报, 2016, 14(1): 7-15. XU D Y, ZHOU H D, GAO B. Review of sorption of heavy metal contaminant on biochar [J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(1): 7-15(in Chinese).
[98] 刘俊峰, 祝怡斌, 杨晓松, 等. 生物炭去除重金属的研究进展 [J]. 价值工程, 2015, 34(22): 149-152. LIU J F, ZHU Y B, YANG X S, et al. Research progress of dislodging heavy metals by biochar [J]. Value Engineering, 2015, 34(22): 149-152(in Chinese).
[99] QIN Y J, ZHU X L, SU Q, et al. Enhanced removal of ammonium from water by ball-milled biochar [J]. Environmental Geochemistry and Health, 2020, 42(6): 1579-1587. doi: 10.1007/s10653-019-00474-5 [100] 莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理 [J]. 化工学报, 2020, 71(5): 2352-2362. MO G H, XIE S B, ZENG T T, et al. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar [J]. CIESC Journal, 2020, 71(5): 2352-2362(in Chinese).
[101] 朱墨染. 农业废弃物改性生物炭对水中Fe2+和Mn2+去除的应用研究[D]. 哈尔滨: 东北农业大学, 2017. ZHU M R. Study on the use of agricultural waste modified biochar removal of iron ions and manganese ions from water [D]. Harbin: Northeast Agricultural University, 2017.
[102] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能 [J]. 环境化学, 2020, 39(8): 2196-2205. doi: 10.7524/j.issn.0254-6108.2019052001 SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A (BPA) [J]. Environmental Chemistry, 2020, 39(8): 2196-2205(in Chinese). doi: 10.7524/j.issn.0254-6108.2019052001
[103] WANG D M, ROOT R A, CHOROVER J. Biochar-templated surface precipitation and inner-sphere complexation effectively removes arsenic from acid mine drainage [J]. Environmental Science and Pollution Research, 2021: 1-15. [104] 常帅帅, 张学杨, 王洪波, 等. 木屑生物炭的制备及其对Pb2+的吸附特性研究 [J]. 生物质化学工程, 2020, 54(3): 37-44. doi: 10.3969/j.issn.1673-5854.2020.03.006 CHANG S S, ZHANG X Y, WANG H B, et al. Preparation of biochar from sawdust and it's adsorption property on Pb2+ [J]. Biomass Chemical Engineering, 2020, 54(3): 37-44(in Chinese). doi: 10.3969/j.issn.1673-5854.2020.03.006
[105] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附 [J]. 农业环境科学学报, 2015, 34(5): 1001-1008. doi: 10.11654/jaes.2015.05.025 LI R Y, CHEN D, LI L Q, et al. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues [J]. Journal of Agro-Environment Science, 2015, 34(5): 1001-1008(in Chinese). doi: 10.11654/jaes.2015.05.025
[106] 曹健华, 刘凌沁, 黄亚继, 等. 原料种类和热解温度对生物炭吸附Cd2+的影响 [J]. 化工进展, 2019, 38(9): 4183-4190. CAO J H, LIU L Q, HUANG Y J, et al. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4183-4190(in Chinese).
[107] 廖衡妍. 生物炭和电石渣对矿区AMD污染的控制和修复作用[D]. 湘潭: 湖南科技大学, 2019. LIAO H Y. Control and remediation of AMD pollution by biochar and carbide slag in mining area [D]. Xiangtan: Hunan University of Science and Technology, 2019.
[108] AO H T, CAO W, HONG Y X, et al. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel [J]. Science of the Total Environment, 2020, 708: 135092. doi: 10.1016/j.scitotenv.2019.135092 [109] 敖涵婷. 锆改性柚子皮生物炭吸附硫酸根的性能及机理研究[D]. 泉州: 华侨大学, 2020. AO H T. Performance and mechanism of sulfate adsorption byzirconium-modified pomelo peel biochar [D]. Quanzhou: Huaqiao University, 2020.