[1] 张志, 张润宇, 王立英, 等. 淡水沉积物中重金属生物有效性的研究进展 [J]. 地球与环境, 2020, 48(3): 385-394. ZHANG Z, ZHANG R Y, WANG L Y, et al. Research advance in bioavailability of heavy metals in freshwater sediment [J]. Earth and Environment, 2020, 48(3): 385-394(in Chinese).
[2] 杨颖, 孙文, 刘吉宝, 等. 北运河流域沙河水库沉积物重金属分布及生态风险评估 [J]. 环境科学学报, 2021, 41(1): 217-227. YANG Y, SUN W, LIU J B, et al. Distribution and ecological risk assessment of heavy metals in sediments of Shahe Reservoir in Northern Canal Basin [J]. Acta Scientiae Circumstantiae, 2021, 41(1): 217-227(in Chinese).
[3] 柳肖竹, 刘群群, 王文静, 等. 水力扰动对河口沉积物中重金属再释放的影响 [J]. 生态与农村环境学报, 2020, 36(11): 1460-1467. LIU X Z, LIU Q Q, WANG W J, et al. Effect of hydraulic disturbance on Re-release of heavy metals in estuarine sediments [J]. Journal of Ecology and Rural Environment, 2020, 36(11): 1460-1467(in Chinese).
[4] YUAN H Z, YIN H B, YANG Z, et al. Diffusion kinetic process of heavy metals in lacustrine sediment assessed under different redox conditions by DGT and DIFS model [J]. Science of the Total Environment, 2020, 741: 140418. doi: 10.1016/j.scitotenv.2020.140418
[5] PENG W H, LI X M, XIAO S T, et al. Review of remediation technologies for sediments contaminated by heavy metals [J]. Journal of Soils and Sediments, 2018, 18(4): 1701-1719. doi: 10.1007/s11368-018-1921-7
[6] ZANG F, WANG S L, NAN Z R, et al. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess [J]. Chemosphere, 2017, 181: 83-91. doi: 10.1016/j.chemosphere.2017.04.070
[7] WANG M M, REN L S, WANG D Y, et al. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods [J]. Journal of Environmental Sciences, 2019, 79: 91-99. doi: 10.1016/j.jes.2018.11.007
[8] DENG R, HUANG D L, XUE W J, et al. Eco-friendly remediation for lead-contaminated riverine sediment by sodium lignin sulfonate stabilized nano-chlorapatite [J]. Chemical Engineering Journal, 2020, 397: 125396. doi: 10.1016/j.cej.2020.125396
[9] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments [J]. Journal of Hazardous Materials, 2021, 404: 124052. doi: 10.1016/j.jhazmat.2020.124052
[10] CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in situ remediation of heavy metal(loid) contaminated sediments: A review [J]. Science of the Total Environment, 2019, 662: 205-217. doi: 10.1016/j.scitotenv.2019.01.180
[11] XIONG C H, WANG D Y, TAM N F, et al. Enhancement of active thin-layer capping with natural zeolite to simultaneously inhibit nutrient and heavy metal release from sediments [J]. Ecological Engineering, 2018, 119: 64-72. doi: 10.1016/j.ecoleng.2018.05.008
[12] LI X C, YANG Z Z, ZHANG C, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment [J]. Chemical Engineering Journal, 2019, 373: 307-317. doi: 10.1016/j.cej.2019.05.015
[13] RAKHYM A B, SEILKHANOVA G A, KURMANBAYEVA T S. Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay [J]. Materials Today:Proceedings, 2020, 31: 482-485. doi: 10.1016/j.matpr.2020.05.672
[14] PERIĆ J, TRGO M, VUKOJEVIĆ MEDVIDOVIĆ N. Removal of zinc, copper and lead by natural zeolite-a comparison of adsorption isotherms [J]. Water Research, 2004, 38(7): 1893-1899. doi: 10.1016/j.watres.2003.12.035
[15] WANG J M, ZHAO J, QIN X Z, et al. Theoretical study of adsorption mechanism of heavy metals As and Pb on the calcite (104) surface [J]. Materials Today Communications, 2021, 26: 101742. doi: 10.1016/j.mtcomm.2020.101742
[16] WEN T, ZHAO Y L, ZHANG T T, et al. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate [J]. Chemosphere, 2019, 230: 127-135. doi: 10.1016/j.chemosphere.2019.04.213
[17] ROUFF A A, REEDER R J, FISHER N S. Electrolyte and pH effects on Pb(Ⅱ)-calcite sorption processes: The role of the $ {\text{PbCO}}_{3({\text{aq}})}^0 $complex [J]. Journal of Colloid and Interface Science, 2005, 286(1): 61-67. doi: 10.1016/j.jcis.2005.01.053
[18] BAI X Y, LIN J W, ZHANG Z B, et al. Interception of sedimentary phosphorus release by iron-modified calcite capping [J]. Journal of Soils and Sediments, 2021, 21(1): 641-657. doi: 10.1007/s11368-020-02754-5
[19] FIELDH R, WHITAKERA H, HENSONJ A, et al. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits [J]. Science of the Total Environment, 2019, 697: 134111. doi: 10.1016/j.scitotenv.2019.134111
[20] LIU J, ZHU R L, MA L Y, et al. Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite [J]. Geoderma, 2021, 383: 114799. doi: 10.1016/j.geoderma.2020.114799
[21] GAO L, LI R, LIANG Z B, et al. Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China [J]. Journal of Hazardous Materials, 2021, 410: 124590. doi: 10.1016/j.jhazmat.2020.124590
[22] SUNH R, GAOB, GAOL, et al. Using diffusive gradients in thin films (DGT) and DGT-induced fluxes in sediments model to assess the dynamic release of copper in sediment cores from the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2019, 672: 192-200. doi: 10.1016/j.scitotenv.2019.03.400
[23] CHEN Y, ARMUTLULU A, SUN W L, et al. Ultrafast removal of Cu(II) by a novel hierarchically structured faujasite-type zeolite fabricated from lithium silica fume [J]. Science of the Total Environment, 2020, 714: 136724. doi: 10.1016/j.scitotenv.2020.136724
[24] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [J]. Water Research, 2017, 120: 88-116. doi: 10.1016/j.watres.2017.04.014
[25] JOSEPH I V, TOSHEVA L, DOYLE A M. Simultaneous removal of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103895. doi: 10.1016/j.jece.2020.103895
[26] DJAMEL N, SAMIRA A. Mechanism of Cu2+ ions uptake process by synthetic NaA zeolite from aqueous solution: Characterization, Kinetic, intra-crystalline diffusion and thermodynamic studies [J]. Journal of Molecular Liquids, 2021, 323: 114642. doi: 10.1016/j.molliq.2020.114642
[27] BU N J, LIU X M, SONG S L, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution [J]. Advanced Powder Technology, 2020, 31(7): 2699-2710. doi: 10.1016/j.apt.2020.04.035
[28] QIU W, ZHENG Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash [J]. Chemical Engineering Journal, 2009, 145(3): 483-488. doi: 10.1016/j.cej.2008.05.001
[29] XIONG B W, ZHANG T T, ZHAO Y L, et al. Utilization of carbonate-based tailings to remove Pb(Ⅱ) from wastewater through mechanical activation [J]. Science of the Total Environment, 2020, 698: 134270. doi: 10.1016/j.scitotenv.2019.134270
[30] GUIMARÃES T, PAQUINI L D, LYRIO FERRAZ B R, et al. Efficient removal of Cu(Ⅱ) and Cr(Ⅲ) contaminants from aqueous solutions using marble waste powder [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103972. doi: 10.1016/j.jece.2020.103972
[31] LIN P Y, WU H M, HSIEH S L, et al. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal [J]. Chemosphere, 2020, 254: 126903. doi: 10.1016/j.chemosphere.2020.126903
[32] LI J C, LI M, Song Q, et al. Efficient recovery of Cu(Ⅱ) by LTA-zeolites with hierarchical pores and their resource utilization in electrochemical denitrification: Environmentally friendly design and reutilization of waste in water [J]. Journal of Hazardous Materials, 2020, 394: 122554. doi: 10.1016/j.jhazmat.2020.122554
[33] HONG M, YU L Y, WANG Y D, et al. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture [J]. Chemical Engineering Journal, 2019, 359: 363-372. doi: 10.1016/j.cej.2018.11.087
[34] TANG H M, XIAN H Y, HE H P, et al. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions [J]. Science of the Total Environment, 2019, 668: 602-616. doi: 10.1016/j.scitotenv.2019.02.232
[35] SONG X W, CAO Y W, BU X Z, et al. Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process [J]. Applied Surface Science, 2021, 536: 147958. doi: 10.1016/j.apsusc.2020.147958
[36] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides [J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930
[37] 雷沛, 张洪, 王超, 等. 沉积物-水界面污染物迁移扩散的研究进展 [J]. 湖泊科学, 2018, 30(6): 1489-1508. doi: 10.18307/2018.0602 LEI P, ZHANG H, WANG C, et al. Migration and diffusion for pollutants across the sediment-water interface in lakes: A review [J]. Journal of Lake Sciences, 2018, 30(6): 1489-1508(in Chinese). doi: 10.18307/2018.0602
[38] LIN J W, HE S Q, ZHANG H H, et al. Effect of zirconium-modified zeolite addition on phosphorus mobilization in sediments [J]. Science of the Total Environment, 2019, 646: 144-157. doi: 10.1016/j.scitotenv.2018.07.281
[39] 房煦, 罗军, 高悦, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅱ: 土壤与沉积物原位高分辨分析中的方法与应用 [J]. 农业环境科学学报, 2017, 36(9): 1693-1702. doi: 10.11654/jaes.2017-0454 FANG X, LUO J, GAO Y, et al. Theory and application of diffusive gradients in thin-films in the environment: High-resolution analysis and its applications in soils and sediments [J]. Journal of Agro-Environment Science, 2017, 36(9): 1693-1702(in Chinese). doi: 10.11654/jaes.2017-0454
[40] ZHANG T, LI L J, XU F, et al. Assessing the remobilization and fraction of cadmium and lead in sediment of the Jialing River by sequential extraction and diffusive gradients in films (DGT) technique [J]. Chemosphere, 2020, 257: 127181. doi: 10.1016/j.chemosphere.2020.127181
[41] 江涛, 林伟稳, 曹英杰, 等. 梅江流域清凉山水库沉积物重金属污染、生态风险评价及来源解析 [J]. 环境科学, 2020, 41(12): 5410-5418. JIANG T, LIN W W, CAO Y J, et al. Pollution and ecological risk assessment and source apportionment of heavy metals in sediments of Qingliangshan reservoir in the Meijiang basin [J]. Environmental Science, 2020, 41(12): 5410-5418(in Chinese).
[42] 姜时欣, 翟付杰, 张超, 等. 伊通河(城区段)沉积物重金属形态分布特征及风险评价 [J]. 环境科学, 2020, 41(6): 2653-2663. JIANG S X, ZHAI F J, ZHANG C, et al. Speciation distribution and risk assessment of heavy metals in sediments from the Yitong river city area [J]. Environmental Science, 2020, 41(6): 2653-2663(in Chinese).
[43] 徐晨, 王沛芳, 陈娟, 等. 望虞河西岸河网重金属污染特征及生态风险评价 [J]. 环境科学, 2019, 40(11): 4914-4923. XU C, WANG P F, CHEN J, et al. Contaminant characteristics and ecological risk assessments of heavy metals from river networks in the western area of the Wangyu river [J]. Environmental Science, 2019, 40(11): 4914-4923(in Chinese).