-
纳米材料是指在三维空间尺度中,至少有一维的尺度在1—100 nm之间的材料[1]。随着纳米技术的不断发展,各种各样的纳米材料已经广泛应用于生物医药、航空航天、环境保护等很多领域,并发挥着巨大的作用[2-5]。纳米二氧化钛,又称纳米钛白粉,是目前使用较为广泛的无机纳米材料之一[6]。由于纳米二氧化钛具有良好的光催化特性以及紫外线屏蔽能力,其被广泛地应用于化妆品、涂料、油漆和光催化剂等产品中[7-9]。在纳米二氧化钛广泛应用的同时,其对生态环境的负面影响也受到了研究人员的关注[10]。在大量生产、运输、使用和废弃过程中,纳米二氧化钛颗粒会被不可避免地释放到环境中去[11-13]。当纳米二氧化钛被释放到环境介质中时,巨大的比表面积以及超强吸附性能使得它极易吸附环境介质中存在的有毒物质,如持久性有机污染物、重金属等,它可以充当这些有毒有害物质在环境介质中转移的载体或流动相,促进这些污染物在环境介质中的迁移,从而导致污染距离的增大和污染范围的扩大,最终会威胁生态环境安全和人体健康[12,14]。迁移过程是纳米二氧化钛环境地球化学行为中的重要步骤,研究纳米二氧化钛在自然界多孔介质中的迁移行为是揭示其在“固-液”和“固-液-气”界面迁移机制及对其在实际环境介质中的迁移行为做出正确评估的关键。因此,有必要进行纳米二氧化钛在环境介质中的迁移的研究。
近年来,国内外研究工作者关于探究纳米二氧化钛在多孔介质中的迁移规律做了大量的研究。研究表明,影响纳米二氧化钛在多孔介质中迁移行为的因素有很多,如纳米颗粒粒径、浓度、表面性质等纳米材料的性质[15-17],介质种类、孔隙结构、粒径分布等多孔介质的性质[18-19],以及pH 值、离子强度、离子组成、表面活性剂等背景溶液的性质[12,19-24]都会影响纳米二氧化钛在多孔介质中的迁移。目前,虽然有关纳米二氧化钛在多孔介质中迁移行为的研究较多,但这些研究大多限于均质的石英砂介质[25]。相比于石英砂,双孔隙介质更为复杂,与真实土壤介质更为接近。双孔隙介质这一概念最早由PIRSON[26]提出用于解释裂缝性油藏原油采收率低的问题,他表示裂缝性储集岩的孔隙度可以认为是由占储集层大部分孔隙空间的颗粒间孔隙度和占小部分孔隙空间的裂缝和裂隙空间组成的两个以上的孔隙-渗透系统组成。之后,PHILIP[27]提出了另一种双孔隙介质类型——聚集质介质(aggregated media)的概念,他表示这种类型介质的孔隙空间由两种不同类型的孔隙度组成:大孔隙 (颗粒间孔隙度)和微孔隙率(颗粒内孔隙率),并表示聚集体介质构成了聚集成岩土壤的真实表现。纳米二氧化钛在相同环境条件下在石英砂和双孔介质中的迁移规律是否一致,是有待研究的一个问题。目前,关于纳米二氧化钛在双孔隙介质中迁移行为的研究较少。因此,系统研究纳米二氧化钛在双孔隙介质中的迁移过程,对于理解和评估纳米二氧化钛在实际土壤及地下水中的环境风险是非常有必要的。
本研究选取石英砂和双孔隙介质两种多孔介质,探究pH、离子强度(IS)和十二烷基苯磺酸钠(SDBS)的3种环境因素对纳米二氧化钛迁移行为的影响,并通过HYDRUS-1D软件模拟实验结果,预测纳米二氧化钛在两种多孔介质中的迁移机理,为评价纳米二氧化钛的环境风险提供更为全面的理论依据。
不同环境因素对纳米二氧化钛在双孔隙介质中迁移行为的影响
TiO2 nanoparticles transport in aggregated porous media with intra- and interaggregate porosities: Effects of pH, ionic strength and sodium dodecylbenzene sulfonate
-
摘要: 选取石英砂和双孔隙介质两种多孔介质,通过柱实验探究pH、离子强度(IS)和阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的3种环境因素对纳米二氧化钛在饱和多孔介质中迁移行为的影响。通过HYDRUS-1D用两点动力学模型对实验结果进行模拟,并结合DLVO理论进行分析。结果表明,pH对纳米二氧化钛在两种多孔介质中迁移行为的影响与纳米二氧化钛等电点有关,当pH低于等电点时,纳米二氧化钛会在石英砂和双孔隙中大量滞留;由于双孔隙介质孔隙较多,且对纳米二氧化钛的吸附能力较弱,因而在相同pH下,纳米二氧化钛在双孔隙介质中比在细砂中的迁移能力较强,回收率较高;IS对纳米二氧化钛在两种介质中迁移行为的影响相似,均为高离子强度抑制、低离子强度促进纳米二氧化钛的迁移;由于纳米二氧化钛在双孔隙介质中比在细砂介质中的脱附能力弱,导致相比于细砂介质,在相同离子强度条件下,双孔隙介质表现为抑制纳米二氧化钛的迁移;SDBS的存在促进了纳米二氧化钛在两种多孔介质中的迁移,且随着SDBS浓度的增加,纳米二氧化钛的迁移能力增强,回收率增加;由于纳米二氧化钛颗粒在石英砂中的脱附能力要远大于在双孔隙介质中的脱附能力,从而导致相较于细砂介质,在同一SDBS浓度下,纳米二氧化钛在双孔隙介质中的滞留较多,回收率较低。Abstract: The influences of pH, ionic strength (IS) and sodium dodecylbenzene sulfonate (SDBS) on TiO2 nanoparticles transport behavior in saturated porous media were investigated by column experiment, and by selecting two kinds of porous media, i.e. quartz sand and aggregated porous media with intra- and interaggregate porosities (dual-porosity media). Experimental results were simulated using two-site model by HYDRUS-1D code and analyzed theoretically according to DLVO theory. The results showed that the effect of pH on the transport of TiO2 nanoparticles in both porous media was related to the isoelectric point of TiO2 nanoparticles. When pH was lower than the isoelectric point, TiO2 nanoparticles would be largely retained in both media. Due to the large number of pores and the weak adsorption capacity of the dual-porosity media for TiO2 nanoparticles and the large number of pores, the TiO2 nanoparticles in the dual-porosity media had a stronger transport capacity and a higher recovery rate under the same pH, compared to fine sand. Given to the effect of IS, high IS inhibited the transport of TiO2 nanoparticles, and low IS promoted the transport of TiO2 nanoparticles for both porous media. However, the transport of TiO2 nanoparticles was inhibited in the dual-porosity media under the same ionic strength compared to fine sand, because the desorption ability of TiO2 nanoparticles from the dual-porosity media was weak. The presence of SDBS promoted the transport of TiO2 nanoparticles in both porous media. Furthermore, with the increase of SDBS concentration, the transport ability of TiO2 nanoparticles was enhanced, and the recovery rate increased correspondingly. Because the desorption ability of TiO2 nanoparticles in fine sand was much greater than that in dual-porosity media, TiO2 nanoparticles remained more in dual-porosity media with the same SDBS concentration, and the recovery rate was correspondingly lower.
-
Key words:
- TiO2 nanoparticle /
- saturated porous media /
- transport
-
表 1 示踪剂实验条件表
Table 1. Tracer experimental conditions
多孔介质
Porous media介质堆积密度/(g·cm−3)
Bulk density孔隙度Porosity 流速/(cm·min−1)
Darcy velocity注入时间/min
Injection time回收率/%
Recovery石英砂
Quartz sand1.42 0.47 0.37 4.28 99.4 双孔隙介质
Dual-porosity media0.44 0.83 0.36 4.32 99.9 表 2 示踪剂实验参数模拟结果表
Table 2. Simulation results of tracer experimental parameters
多孔介质
Porous media扩散系数/cm
Diffusion coefficient扩散速率/min−1
Diffusion rateR2 石英砂
Quartz sand0.19 1.03×10−4 0.9961 双孔隙介质
Dual-porosity media1.95 3.4×10−1 0.9973 表 3 柱实验条件表
Table 3. Column experimental conditions
多孔介质
Porous media环境因素
Environmental conditions装柱密度/(g·cm−3)
Bulk density孔隙度/%
Porosity达西流速/(cm·min−1 )
Darcy velocity注入时间/min
Injection time回收率/%
Recovery滞留率/%
Detention石英砂
Quartz sandpH 2 1.33 0.5 0.37 4.28 1.7 98.3 6.9 1.35 0.49 0.35 4.4 30 70 IS 1 1.42 0.47 0.38 4.12 67.6 32.4 50 1.49 0.44 0.36 4.33 64.2 35.8 SDBS 0 1.35 0.49 0.35 4.4 30 70 0.01 1.4 0.47 0.43 3.97 74.2 25.8 0.1 1.41 0.47 0.39 4.32 97.5 2.5 双孔隙介质
Dual-porosity mediapH 2 0.42 0.83 0.32 4.82 2.6 97.4 6.9 0.43 0.83 0.36 4.32 50.8 49.2 IS 1 0.45 0.82 0.38 4.12 47.1 52.9 50 0.46 0.82 0.35 4.55 42.4 57.6 SDBS 0 0.43 0.83 0.36 4.32 50.8 49.2 0.01 0.44 0.82 0.36 4.37 67 33 0.1 0.45 0.82 0.35 4.48 78.1 21.9 表 4 柱实验模拟结果参数表
Table 4. Parameters of column experiment simulation results
多孔介质
Porous media环境因素
Environmental conditions模拟结果
Simulation resultskatt kdet R2 石英砂
Quartz sandpH 2 1.31×102 1.23×10−2 0.7872 6.9 1.28 3.95×10−2 0.7493 IS 1 0.316 1.34 0.9457 50 8.73 1.42 0.8506 SDBS 0 1.28 3.95×10−2 0.7493 0.01 0.228 0.194 0.9685 石英砂
Quartz sandSDBS 0.1 0.122 7.40×10−3 0.9939 双孔隙介质
Dual-porosity mediapH 2 19.4 3.50×10−4 0.9515 6.9 0.753 2.36×10−6 0.9467 IS 1 0.999 1.41×10−6 0.9828 50 1.77 3.92×10−5 0.9609 SDBS 0 0.753 2.36×10−6 0.9467 0.01 0.319 5.37×10−5 0.9647 0.1 0.261 1.39×10−5 0.965 -
[1] 沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 4版. 北京: 化学工业出版社, 2012: 329. SHEN Z, ZHAO Z G, KANG W L. Colloid and surface chemistry[M]. Beijing: Chemical Industry Press, 2012: 329(in Chinese).
[2] 于荣丽, 孙铁珩, 胡晓钧. 纳米材料的生物负效应研究进展 [J]. 安全与环境学报, 2009, 9(2): 121-124. YU R L, SUN T H, HU X J. Research progress on the negative effects of nanomaterials on biological systems [J]. Journal of Safety and Environment, 2009, 9(2): 121-124(in Chinese).
[3] KHAN S, NAUSHAD M, AL-GHEETHI A, et al. Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106160. doi: 10.1016/j.jece.2021.106160 [4] 李冉, 吴霜, 付鹏辉. 浅谈纳米技术在生活生产中的应用 [J]. 信息记录材料, 2019, 20(5): 14-15. LI R, WU S, FU P H. Application of nanotechnology in life production [J]. Information Recording Materials, 2019, 20(5): 14-15(in Chinese).
[5] 冯辰昀, 李旭东, 郑妤婕, 等. 纳米材料的毒理学研究进展[J/OL]. 中国科学: 化学: 2021, 51,doi: 10.1360/SSC-2021-0138. FENG C Y, LI X D, ZHENG Y J, et al. Recent progress in nanotoxicology of nanomaterials[J/OL]. Sci Sin Chim, 2021, 51,doi: 10.1360/SSC-2021-0138 (in Chinese).
[6] CHEN X B, MAO S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J]. Chemical Reviews, 2007, 107(7): 2891-2959. doi: 10.1021/cr0500535 [7] 刁润丽, 赵世伟. 纳米二氧化钛的应用研究进展 [J]. 山西化工, 2021, 41(3): 25-26,31. DIAO R L, ZHAO S W. Application research progress of Nano-titanium dioxide [J]. Shanxi Chemical Industry, 2021, 41(3): 25-26,31(in Chinese).
[8] 张海丰, 张鹏宇, 赵贵龙, 等. 纳米二氧化钛的制备及其应用研究进展 [J]. 东北电力大学学报, 2014, 34(2): 52-56. doi: 10.3969/j.issn.1005-2992.2014.02.011 ZHANG H F, ZHANG P Y, ZHAO G L, et al. Advances on preparation, modification and application of nanosized titanium dioxide [J]. Journal of Northeast Dianli University, 2014, 34(2): 52-56(in Chinese). doi: 10.3969/j.issn.1005-2992.2014.02.011
[9] 刁润丽. 纳米二氧化钛的光催化性及其应用研究进展 [J]. 佛山陶瓷, 2021, 31(6): 5-7. DIAO R L. Research progress on photocatalytic activity and application of nano-titanium dioxide [J]. Foshan Ceramics, 2021, 31(6): 5-7(in Chinese).
[10] 李润虎. 纳米技术的风险问题及对策研究 [J]. 工程研究-跨学科视野中的工程, 2020, 12(4): 380-387. LI R H. Research on risks and countermeasures of nanotechnology [J]. Journal of Engineering Studies, 2020, 12(4): 380-387(in Chinese).
[11] 刘诚, 孙强, 张刚, 等. 磷酸盐对纳米TiO2在土壤中迁移的影响 [J]. 苏州科技大学学报(自然科学版), 2018, 35(3): 44-50. LIU C, SUN Q, ZHANG G, et al. Influence of phosphate on the transport of nTiO2 in soil column [J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2018, 35(3): 44-50(in Chinese).
[12] 韩鹏, 王雪婷. 不同环境因子对纳米二氧化钛在饱和多孔介质中迁移持留行为的影响 [J]. 应用基础与工程科学学报, 2013, 21(3): 512-521. doi: 10.3969/j.issn.1005-0930.2013.03.013 HAN P, WANG X T. Transport and retention behaviors of TiO2 nanoparticles in saturated porous media: Effects of ionic strength, iron(hydr)oxide and humic acid [J]. Journal of Basic Science and Engineering, 2013, 21(3): 512-521(in Chinese). doi: 10.3969/j.issn.1005-0930.2013.03.013
[13] 彭爱夏, 占敬敬, 吴明火. 纳米粒子在多孔介质中迁移模型的优化 [J]. 化工学报, 2021, 72(10): 5114-5122. PENG A X, ZHAN J J, WU M H. Optimization of nanoparticles transport model in porous media [J]. CIESC Journal, 2021, 72(10): 5114-5122(in Chinese).
[14] 方婧, 余博阳. 3种金属氧化物纳米材料在不同土壤中运移行为研究 [J]. 环境科学, 2013, 34(10): 4050-4057. FANG J, YU B Y. Transport behaviors of metal oxide nanomaterials in various soils [J]. Environmental Science, 2013, 34(10): 4050-4057(in Chinese).
[15] 张柯柯. 纳米TiO2在土壤中迁移及其与Pb共迁移机制研究[D]. 杭州: 浙江工商大学, 2015: 72. ZHANG K K. Transport of nano-TiO2 in soil and the CO-transport mechanisms of Pb with nano-TiO2[D]. Hangzhou: Zhejiang Gongshang University, 2015: 72(in Chinese).
[16] FANG J, SHAN X Q, WEN B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns [J]. Environmental Pollution, 2009, 157(4): 1101-1109. doi: 10.1016/j.envpol.2008.11.006 [17] DUNPHY GUZMAN K A, FINNEGAN M P, BANFIELD J F. Influence of surface potential on aggregation and transport of titania nanoparticles [J]. Environmental Science & Technology, 2006, 40(24): 7688-7693. [18] CAI L, PENG S N, WU D, et al. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand [J]. Environmental Pollution, 2016, 208: 637-644. doi: 10.1016/j.envpol.2015.10.040 [19] 罗小廷, 吴丹, 梁嘉良, 等. 典型阴离子对纳米二氧化钛在载铁石英砂多孔介质中迁移行为的影响 [J]. 北京大学学报(自然科学版), 2017, 53(4): 749-757. LUO X T, WU D, LIANG J L, et al. Influence of typical anions on the transport of titanium dioxide nanoparticles in iron oxide-coated porous media [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 749-757(in Chinese).
[20] 吴其圣, 杨琛, 胡秀敏, 等. 环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响 [J]. 环境科学学报, 2012, 32(7): 1596-1603. WU Q S, YANG C, HU X M, et al. Influences of environmental factors on aggregation of titanium dioxide nanoparticles [J]. Acta Scientiae Circumstantiae, 2012, 32(7): 1596-1603(in Chinese).
[21] 张瑞昌, 章海波, 涂晨, 等. 腐殖酸作用下酸性多孔介质中纳米TiO2的迁移与滞留机制 [J]. 中国环境科学, 2018, 38(9): 3542-3551. doi: 10.3969/j.issn.1000-6923.2018.09.041 ZHANG R C, ZHANG H B, TU C, et al. Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids [J]. China Environmental Science, 2018, 38(9): 3542-3551(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.09.041
[22] SUN P D, ZHANG K K, FANG J, et al. Transport of TiO2 nanoparticles in soil in the presence of surfactants [J]. Science of the Total Environment, 2015, 527/528: 420-428. doi: 10.1016/j.scitotenv.2015.05.031 [23] GODINEZ I G, DARNAULT C J G. Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity [J]. Water Research, 2011, 45(2): 839-851. doi: 10.1016/j.watres.2010.09.013 [24] 张柯柯, 汪敏浩. 离子强度和富里酸对纳米TiO2在土壤中迁移的影响 [J]. 广州化工, 2014, 42(23): 110-111. ZHANG K K, WANG M H. Effect of ionic strength and fulvic acid on the transport of TiO2 nanoparticles in soil [J]. Guangzhou Chemical Industry, 2014, 42(23): 110-111(in Chinese).
[25] 杜宜春, 梁志卿. 多孔介质中纳米颗粒及其携带重金属污染物迁移研究进展 [J]. 河南科技, 2019(32): 133-136. doi: 10.3969/j.issn.1003-5168.2019.32.047 DU Y C, LIANG Z Q. Review of migration of nanoparticle and its facilitated heavy metal contaminants in porous media [J]. Henan Science and Technology, 2019(32): 133-136(in Chinese). doi: 10.3969/j.issn.1003-5168.2019.32.047
[26] PIRSON S J. Performance of fractured oil reservoirs [J]. AAPG Bulletin, 1953, 377(2): 232-244. doi: 10.1306/5ceadc4a-16bb-11d7-8645000102c1865d [27] PHILIP J R. The theory of absorption in aggregated media [J]. Soil Research, 1968, 6(1): 1. doi: 10.1071/SR9680001 [28] FANG J, XU M J, WANG D J, et al. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH [J]. Water Research, 2013, 47(3): 1399-1408. doi: 10.1016/j.watres.2012.12.005 [29] PACKMAN A I, BROOKS N H, MORGAN J J. A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms [J]. Water Resources Research, 2000, 36(8): 2351-2361. doi: 10.1029/2000WR900059 [30] WANG D J, CHU L Y, PARADELO M, et al. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition [J]. Journal of Colloid and Interface Science, 2011, 360(2): 398-407. doi: 10.1016/j.jcis.2011.04.064 [31] 方华祥. 溶液性质对金属纳米颗粒在多孔介质中迁移持留行为的影响机制研究[D]. 杭州: 浙江大学, 2017: 87. FANG H X. The influence mechanisms of solutions properties on the transport and retention behaviors of metal-based nanoparticles in porous media[D]. Hangzhou: Zhejiang University, 2017: 87(in Chinese).