[1] 沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 4版. 北京: 化学工业出版社, 2012: 329. SHEN Z, ZHAO Z G, KANG W L. Colloid and surface chemistry[M]. Beijing: Chemical Industry Press, 2012: 329(in Chinese).
[2] 于荣丽, 孙铁珩, 胡晓钧. 纳米材料的生物负效应研究进展 [J]. 安全与环境学报, 2009, 9(2): 121-124. YU R L, SUN T H, HU X J. Research progress on the negative effects of nanomaterials on biological systems [J]. Journal of Safety and Environment, 2009, 9(2): 121-124(in Chinese).
[3] KHAN S, NAUSHAD M, AL-GHEETHI A, et al. Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106160. doi: 10.1016/j.jece.2021.106160
[4] 李冉, 吴霜, 付鹏辉. 浅谈纳米技术在生活生产中的应用 [J]. 信息记录材料, 2019, 20(5): 14-15. LI R, WU S, FU P H. Application of nanotechnology in life production [J]. Information Recording Materials, 2019, 20(5): 14-15(in Chinese).
[5] 冯辰昀, 李旭东, 郑妤婕, 等. 纳米材料的毒理学研究进展[J/OL]. 中国科学: 化学: 2021, 51,doi: 10.1360/SSC-2021-0138. FENG C Y, LI X D, ZHENG Y J, et al. Recent progress in nanotoxicology of nanomaterials[J/OL]. Sci Sin Chim, 2021, 51,doi: 10.1360/SSC-2021-0138 (in Chinese).
[6] CHEN X B, MAO S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J]. Chemical Reviews, 2007, 107(7): 2891-2959. doi: 10.1021/cr0500535
[7] 刁润丽, 赵世伟. 纳米二氧化钛的应用研究进展 [J]. 山西化工, 2021, 41(3): 25-26,31. DIAO R L, ZHAO S W. Application research progress of Nano-titanium dioxide [J]. Shanxi Chemical Industry, 2021, 41(3): 25-26,31(in Chinese).
[8] 张海丰, 张鹏宇, 赵贵龙, 等. 纳米二氧化钛的制备及其应用研究进展 [J]. 东北电力大学学报, 2014, 34(2): 52-56. doi: 10.3969/j.issn.1005-2992.2014.02.011 ZHANG H F, ZHANG P Y, ZHAO G L, et al. Advances on preparation, modification and application of nanosized titanium dioxide [J]. Journal of Northeast Dianli University, 2014, 34(2): 52-56(in Chinese). doi: 10.3969/j.issn.1005-2992.2014.02.011
[9] 刁润丽. 纳米二氧化钛的光催化性及其应用研究进展 [J]. 佛山陶瓷, 2021, 31(6): 5-7. DIAO R L. Research progress on photocatalytic activity and application of nano-titanium dioxide [J]. Foshan Ceramics, 2021, 31(6): 5-7(in Chinese).
[10] 李润虎. 纳米技术的风险问题及对策研究 [J]. 工程研究-跨学科视野中的工程, 2020, 12(4): 380-387. LI R H. Research on risks and countermeasures of nanotechnology [J]. Journal of Engineering Studies, 2020, 12(4): 380-387(in Chinese).
[11] 刘诚, 孙强, 张刚, 等. 磷酸盐对纳米TiO2在土壤中迁移的影响 [J]. 苏州科技大学学报(自然科学版), 2018, 35(3): 44-50. LIU C, SUN Q, ZHANG G, et al. Influence of phosphate on the transport of nTiO2 in soil column [J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2018, 35(3): 44-50(in Chinese).
[12] 韩鹏, 王雪婷. 不同环境因子对纳米二氧化钛在饱和多孔介质中迁移持留行为的影响 [J]. 应用基础与工程科学学报, 2013, 21(3): 512-521. doi: 10.3969/j.issn.1005-0930.2013.03.013 HAN P, WANG X T. Transport and retention behaviors of TiO2 nanoparticles in saturated porous media: Effects of ionic strength, iron(hydr)oxide and humic acid [J]. Journal of Basic Science and Engineering, 2013, 21(3): 512-521(in Chinese). doi: 10.3969/j.issn.1005-0930.2013.03.013
[13] 彭爱夏, 占敬敬, 吴明火. 纳米粒子在多孔介质中迁移模型的优化 [J]. 化工学报, 2021, 72(10): 5114-5122. PENG A X, ZHAN J J, WU M H. Optimization of nanoparticles transport model in porous media [J]. CIESC Journal, 2021, 72(10): 5114-5122(in Chinese).
[14] 方婧, 余博阳. 3种金属氧化物纳米材料在不同土壤中运移行为研究 [J]. 环境科学, 2013, 34(10): 4050-4057. FANG J, YU B Y. Transport behaviors of metal oxide nanomaterials in various soils [J]. Environmental Science, 2013, 34(10): 4050-4057(in Chinese).
[15] 张柯柯. 纳米TiO2在土壤中迁移及其与Pb共迁移机制研究[D]. 杭州: 浙江工商大学, 2015: 72. ZHANG K K. Transport of nano-TiO2 in soil and the CO-transport mechanisms of Pb with nano-TiO2[D]. Hangzhou: Zhejiang Gongshang University, 2015: 72(in Chinese).
[16] FANG J, SHAN X Q, WEN B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns [J]. Environmental Pollution, 2009, 157(4): 1101-1109. doi: 10.1016/j.envpol.2008.11.006
[17] DUNPHY GUZMAN K A, FINNEGAN M P, BANFIELD J F. Influence of surface potential on aggregation and transport of titania nanoparticles [J]. Environmental Science & Technology, 2006, 40(24): 7688-7693.
[18] CAI L, PENG S N, WU D, et al. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand [J]. Environmental Pollution, 2016, 208: 637-644. doi: 10.1016/j.envpol.2015.10.040
[19] 罗小廷, 吴丹, 梁嘉良, 等. 典型阴离子对纳米二氧化钛在载铁石英砂多孔介质中迁移行为的影响 [J]. 北京大学学报(自然科学版), 2017, 53(4): 749-757. LUO X T, WU D, LIANG J L, et al. Influence of typical anions on the transport of titanium dioxide nanoparticles in iron oxide-coated porous media [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 749-757(in Chinese).
[20] 吴其圣, 杨琛, 胡秀敏, 等. 环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响 [J]. 环境科学学报, 2012, 32(7): 1596-1603. WU Q S, YANG C, HU X M, et al. Influences of environmental factors on aggregation of titanium dioxide nanoparticles [J]. Acta Scientiae Circumstantiae, 2012, 32(7): 1596-1603(in Chinese).
[21] 张瑞昌, 章海波, 涂晨, 等. 腐殖酸作用下酸性多孔介质中纳米TiO2的迁移与滞留机制 [J]. 中国环境科学, 2018, 38(9): 3542-3551. doi: 10.3969/j.issn.1000-6923.2018.09.041 ZHANG R C, ZHANG H B, TU C, et al. Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids [J]. China Environmental Science, 2018, 38(9): 3542-3551(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.09.041
[22] SUN P D, ZHANG K K, FANG J, et al. Transport of TiO2 nanoparticles in soil in the presence of surfactants [J]. Science of the Total Environment, 2015, 527/528: 420-428. doi: 10.1016/j.scitotenv.2015.05.031
[23] GODINEZ I G, DARNAULT C J G. Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity [J]. Water Research, 2011, 45(2): 839-851. doi: 10.1016/j.watres.2010.09.013
[24] 张柯柯, 汪敏浩. 离子强度和富里酸对纳米TiO2在土壤中迁移的影响 [J]. 广州化工, 2014, 42(23): 110-111. ZHANG K K, WANG M H. Effect of ionic strength and fulvic acid on the transport of TiO2 nanoparticles in soil [J]. Guangzhou Chemical Industry, 2014, 42(23): 110-111(in Chinese).
[25] 杜宜春, 梁志卿. 多孔介质中纳米颗粒及其携带重金属污染物迁移研究进展 [J]. 河南科技, 2019(32): 133-136. doi: 10.3969/j.issn.1003-5168.2019.32.047 DU Y C, LIANG Z Q. Review of migration of nanoparticle and its facilitated heavy metal contaminants in porous media [J]. Henan Science and Technology, 2019(32): 133-136(in Chinese). doi: 10.3969/j.issn.1003-5168.2019.32.047
[26] PIRSON S J. Performance of fractured oil reservoirs [J]. AAPG Bulletin, 1953, 377(2): 232-244. doi: 10.1306/5ceadc4a-16bb-11d7-8645000102c1865d
[27] PHILIP J R. The theory of absorption in aggregated media [J]. Soil Research, 1968, 6(1): 1. doi: 10.1071/SR9680001
[28] FANG J, XU M J, WANG D J, et al. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH [J]. Water Research, 2013, 47(3): 1399-1408. doi: 10.1016/j.watres.2012.12.005
[29] PACKMAN A I, BROOKS N H, MORGAN J J. A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms [J]. Water Resources Research, 2000, 36(8): 2351-2361. doi: 10.1029/2000WR900059
[30] WANG D J, CHU L Y, PARADELO M, et al. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition [J]. Journal of Colloid and Interface Science, 2011, 360(2): 398-407. doi: 10.1016/j.jcis.2011.04.064
[31] 方华祥. 溶液性质对金属纳米颗粒在多孔介质中迁移持留行为的影响机制研究[D]. 杭州: 浙江大学, 2017: 87. FANG H X. The influence mechanisms of solutions properties on the transport and retention behaviors of metal-based nanoparticles in porous media[D]. Hangzhou: Zhejiang University, 2017: 87(in Chinese).