Loading [MathJax]/jax/output/HTML-CSS/jax.js

生活垃圾处理的低碳化研究进展

杨国栋, 颜枫, 王鹏举, 张作泰. 生活垃圾处理的低碳化研究进展[J]. 环境工程学报, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
引用本文: 杨国栋, 颜枫, 王鹏举, 张作泰. 生活垃圾处理的低碳化研究进展[J]. 环境工程学报, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
YANG Guodong, YAN Feng, WANG Pengju, ZHANG Zuotai. Research progress on low carbonization of municipal solid waste treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
Citation: YANG Guodong, YAN Feng, WANG Pengju, ZHANG Zuotai. Research progress on low carbonization of municipal solid waste treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016

生活垃圾处理的低碳化研究进展

    作者简介: 杨国栋(1980—),男,博士研究生,高级工程师,ssswordman@qq.com
    通讯作者: 张作泰(1978—),男,博士,教授,E-mail:zhangzt@sustech.edu.cn
  • 基金项目:
    国家重点研发计划“固废资源化”专项(2018YFC1902900);深圳市基础研究重点项目自然科学基金(JCYJ20200109141642225)
  • 中图分类号: X705

Research progress on low carbonization of municipal solid waste treatment

    Corresponding author: ZHANG Zuotai, zhangzt@sustech.edu.cn
  • 摘要: 在“碳中和”背景下,对国内外生活垃圾处理低碳化发展的现状及研究进展进行了回顾与研究。分析了生活垃圾填埋、焚烧、堆肥处理等过程中的温室气体排放问题,并对碳排放的主要核算方法及工具进行了综述。结合“无废城市”、循环经济等先进理念,对我国生活垃圾低碳化治理的政策法规和技术路径进行了梳理。为准确核证垃圾处理过程的碳排量,应建立符合我国实际的碳排放监测、报告、核查标准体系。宜采取减量化、资源化和系统化的管理策略与技术手段,提高资源、能源的回收利用率,以促进减污降碳协同增效。各地应充分考虑其经济发展水平、垃圾产量组分和处理利用能力等,通过全生命周期的经济、社会与生态环境等多目标综合分析,采取优化组合的分类处理技术路线。
  • 随着环保意识的增强,天然气作为一种清洁能源被广泛使用,但天然气中含有的大量H2S,不仅会对设备和管线造成腐蚀,而且也是造成酸雨的污染源之一,严重危害环境和人类健康[1-2]。因此,脱除天然气中的H2S,对保护设备、管线和环境等具有重大意义。

    目前,工业中应用较多的天然气脱硫工艺主要有湿法、干法和膜法脱硫。湿法脱硫技术主要有乙醇胺(MEA)法[3]、低温甲醇法[4]、DDS脱硫技术[5]和LO-CAT硫磺回收技术[6];干法脱硫技术主要有活性炭法、分子筛法和氧化铁法[7];膜法脱硫技术主要有膜基吸收法和膜蒸馏法[8]。尽管这些技术已经在工程中得到了较为广泛的应用,却不能忽视其在实际应用中存在的问题:湿法脱硫技术存在工艺复杂、投资费用高、能耗大和产生大量的脱硫废水等缺点[9];干法脱硫技术存在脱硫条件要求严格、不适用于高浓度H2S脱除和再生困难等缺点[10];膜法脱硫技术存在制膜工艺较为复杂、膜的使用寿命短和处理后浓缩液难处理等缺点[11-12]。因此,亟需研发一种工艺简单、成本低、安全高效的脱硫技术,探究内循环微电解技术应用于天然气中H2S处理的可行性及其对天然气中H2S的处理效果,旨在为内循环微电解应用于天然气中H2S的处理提供指导,同时为天然气中H2S处理提供一种简单高效的技术方法。

    内循环微电解技术将铁作为阳极,将活性炭作为阴极,当混合浸入废水时,形成大量的微小原电池,其主要通过微电池、氧化还原、絮凝、吸附沉淀和微电场附集等作用去除废水中的污染物[13-14]。内循环微电解具有成本低、工艺简单、使用范围广、使用寿命长、处理效果好及操作维护简单等优点[15],在印染[16]、焦化[17-18]、石油[19]、制药[20]、造纸[21]等工业废水的处理中得到了广泛的应用,对COD和色度的去除具有很好的效果,但内循环微电解技术应用于天然气脱硫的研究却鲜有报道。

    本研究采用内循环微电解技术处理天然气中的H2S,考察了反应时间、通气速率、铁炭比和pH等4个因素对H2S去除效果的影响,筛选出3个影响H2S去除效果的主控因子,采用Box-Behnken响应曲面法,对处理H2S的反应条件进行了优化,以得到内循环微电解应用于天然气中H2S的处理的最佳工艺条件。最终可以得出内循环微电解应用于天然气中H2S的处理是可行的,研究结果为内循环微电解应用于天然气中H2S的处理提供参考,同时,为天然气中H2S的处理提供了一种简单高效的技术方法。

    实验中使用的NaOH、Na2S、盐酸和丙酮等试剂,均为分析纯;实验室用水为去离子水。使用的主要仪器有Multi3420型pH计、TD5002C分析天平、YQY-12氧气减压阀、CHYS-241硫化物测量仪、A14 H2S气瓶、LZB型空气流量计和内循环式反应器,反应器为自制,结构如图1所示。

    图 1  内循环反应器结构图
    Figure 1.  Schematic diagram of internal circulation reactor

    实验装置如图2所示。在进行铁屑预处理时,首先用去离子水反复清洗3~5遍,以去除表面的灰尘,然后将铁屑置于丙酮溶液中浸泡30 min,去除表面的油污及其他杂质,再用5%的盐酸浸泡30 min,去除铁屑表面的氧化膜,使铁屑活化,最后用去离子水清洗至中性[22]

    图 2  实验流程示意图
    Figure 2.  Schematic diagram of experimental process

    在进行活性炭预处理时,首先,用去离子水反复清洗3~5遍,以去除表面的灰尘和杂质,然后将活性炭浸泡在高浓度的Na2S溶液中3 d以上,以消除实验过程中活性炭吸附作用的影响[23]

    将预处理后的铁屑和活性炭按照一定的质量比(总质量为300 g)混合后,置于内循环式反应器中,并在反应器中加入适量的水,气瓶中含有H2S的天然气(为了防止甲烷引起爆炸,本研究采用N2和H2S的混合气体进行模拟),用空气流量计控制流量,经过干燥器(防止水蒸气进入气体流量计和储气瓶而发生腐蚀泄露)干燥后,通入反应器中进行反应,尾部通过NaOH溶液吸收尾气中的H2S,以测定处理后H2S的剩余含量,计算H2S的去除率。

    使用Multi3420型pH计进行pH的测定;处理后,H2S的剩余含量使用CHYS-241硫化物测量仪进行测定,此方法具有简便快捷的优点,准确度和精密度均可达到检测要求[24]

    内循环微电解技术脱除天然气中H2S见反应式(1)和式(2),同时会有Fe(OH)3的生成(见式(3)),可以通过混凝沉淀作用加快FeS的沉淀。

    Fe2eFe2+ (1)
    Fe2++S2FeS (2)
    4Fe2++8OH+O2+2H2O4Fe(OH)3(胶体) (3)

    1)单因素实验设计。通过控制变量,分别研究不同反应时间、通气速率、铁炭比和pH对H2S去除率的影响,筛选出影响H2S去除效果的3个主要因素。

    2)响应曲面优化实验设计。在单因素实验的基础上,采用Design Expert软件中Box-Behnken法进行设计,以H2S去除率为响应值,确定3因素3水平的响应曲面分析实验,对实验结果进行ANOVA分析及二次回归拟合,确定模型的可行性。最终获得各因素间的交互作用对响应值的影响和最优反应条件。采用二阶模型[22]计算H2S去除率,计算方法如式(4)所示。

    Y=0+ki=1iXi+ki=1iiX2i+k1<i<j<kijXiXj (4)

    式中:Y为H2S去除率的预测值;0为偏移项;i为线性偏移系数;ii为二阶偏移系数;∝ij为交互作用系数。

    3)验证实验设计。在模型预测的最佳反应条件下进行实验,测定H2S剩余含量,计算去除率,验证模型的可靠性。

    1)反应时间对处理效果的影响。在实验中,天然气中H2S的初始含量为800 mg·m−3,在室温、通气速率为0.4 m3·h−1、铁炭比为1∶1和pH为7的条件下,研究了反应时间对H2S去除率的影响,实验结果如图3所示。由图3可见,随着反应时间的增加,H2S剩余含量逐渐减少,H2S去除率逐渐增大。反应30 min前,H2S剩余含量迅速减少,H2S去除率迅速增大,这是由于反应初期水中不断产生Fe2+,从而加速FeS的生成,同时氧化还原、絮凝沉淀等作用也起到很好的脱硫促进作用[25],进而可以迅速去除H2S;在30 min时,H2S剩余含量为377.5 mg·m−3,其去除率达到52.81%;而在反应30 min后,H2S剩余含量随着时间的延长缓慢减少,H2S去除率随着时间的延长缓慢升高,这主要是因为随着反应的进行,Fe被大量消耗,形成的原电池数量减少,从而使反应速率下降;在反应进行到120 min时,H2S剩余含量仅剩63.5 mg·m−3,去除率高达92.06%。由于在反应时间为30 min时,剩余H2S的浓度接近《天然气》(GB 17820-2012)中三类标准,综合因素优化和经济因素考虑,后续实验中的反应时间设为30 min。

    图 3  反应时间对H2S去除率的影响
    Figure 3.  Effect of reaction time on H2S removal efficiency

    2) 通气速率对处理效果的影响。控制天然气中H2S初始含量为800 mg·m−3,在室温、反应时间为30 min、铁炭比为1∶1和pH为7的条件下,研究通气速率对H2S去除率的影响,实验结果如图4所示。由图4可知,随着通气速率的增大,H2S剩余含量先减少后增加,H2S去除率先升高后降低,当通气速率为0.4 m3·h−1时,H2S剩余含量达到最低值,为387.5 mg·m−3,其去除率为51.56%;当通气速率小于0.4 m3·h−1时,H2S去除率随着通气速率的增大而升高,这是因为在一定条件下,传质系数会随着通气速率的增大而增大[26],天然气中的H2S与铁炭的接触更加充分,从而使处理效果越来越好。当通气速率大于0.4 m3·h−1时,H2S去除率随着通气速率的增大而降低,分析其原因主要有以下2点:通气速率增大,气体对铁炭的作用力也相应增大,使得铁炭分离,形成的原电池数量大量减少而影响处理效果;随着通气速率增大,溶液中的气泡数量会随之增加,大量的气泡聚集导致气泡的体积增大,比表面积减少,使传质系数减少而影响处理效果。因此,最终确定反应的最佳通气速率为0.4 m3·h−1

    图 4  通气速率对H2S去除率的影响
    Figure 4.  Effect of ventilation rate on H2S removal efficiency

    3) 铁炭比对处理效果的影响。控制天然气中H2S的初始含量为800 mg·m−3,在室温、反应时间为30 min、通气速率为0.4 m3·h−1和pH=7的条件下,研究了铁炭比(总质量不变)对H2S去除率的影响,实验结果如图5所示。由图5可见,随着铁炭比的增加,H2S剩余含量先减少后增加,H2S去除率先增大后降低,当铁炭比为3∶2时去除效果最好,H2S剩余含量达到最低值,为232.75 mg·m−3,H2S去除率达到70.91%。当铁炭比小于3∶2时,随着铁炭比的增加,反应体系中Fe的含量增加,使反应器中原电池的数量增加,有效地提高了H2S的去除效果,使得H2S去除率呈现逐渐升高的趋势;当铁炭比大于3∶2时,造成Fe大量剩余,当反应开始后,短时间内会形成过多的铁泥沉积在活性炭表面,使形成原电池数量减少,从而阻碍反应的进行[21],故导致H2S去除率呈现逐渐降低的趋势。因此,最终确定反应的最佳铁炭比为3∶2。

    图 5  铁炭比对H2S去除率的影响
    Figure 5.  Effect of iron-carbon ratio on H2S removal efficiency

    4) pH对处理效果的影响。控制天然气中H2S的初始含量为800 mg·m−3,在室温、反应时间为30 min、通气速率为0.4 m3·h−1和铁炭比为3∶2的条件下,研究pH对H2S去除率的影响,结果如图6所示。由图6可知,随着pH的增加,H2S剩余含量逐渐减少,H2S去除率逐渐升高;当pH为6时,H2S剩余含量为14.5 mg·m−3,去除率高达98.19%;而当pH为12时,H2S剩余含量为377.5 mg·m−3,去除率仅为52.81%,可见pH对H2S的去除效果有着重要的影响。这是因为当pH较低时,反应体系酸性越强,微电池的电位差越大,原电池的电动势越大,微电解反应较快,处理效果较好;随着pH的增加,微电池的电位差降低,反应变慢,导致处理效果下降[27]

    图 6  pH对H2S去除率的影响
    Figure 6.  Effect of pH on H2S removal efficiency

    1) Box-Behnken设计。从以上单因素实验结果可知,反应时间对H2S的去除效果有一定的影响,但当反应一段时间后,对H2S的去除效果的影响很小。因此,最终选择铁炭比、通气速率和pH 3个因素进行响应曲面分析,采用Design Expert软件中的Box-Behnken法进行设计,以铁炭比、通气速率和pH作为自变量,以H2S去除率作为因变量,进行3因素3水平的响应曲面分析,确定各个因素对H2S处理效果的影响。实验设计因素与水平如表1所示,响应曲面实验运行结果如表2所示。实验中H2S的初始含量为800 mg·m−3

    表 1  实验设计因素与水平
    Table 1.  Influence factors and level design of experiment
    因素编码编码水平
    −101
    铁炭比A1∶23∶22∶1
    通气速率/(m3·h−1)B0.20.40.8
    pHC6710
     | Show Table
    DownLoad: CSV
    表 2  响应曲面实验运行结果
    Table 2.  Response surface experimental program and results
    序号ABCH2S去除率/%
    100070.91
    201−148.09
    300090.5
    400081.46
    501137.5
    60−1141.45
    7−10−165.37
    810169.66
    900089.29
    100−1−180.91
    111−1067.74
    1211047.25
    13−10159.13
    1410−188.19
    1500090.5
    16−11042.31
    17−1−1056.75
     | Show Table
    DownLoad: CSV

    2) ANOVA分析及二次回归拟合。根据Design Expert软件设计的实验模型进行ANOVA分析和模型的显著性分析,结果如表3所示。分析结果显示,在H2S去除率的模型中P=0.003 3,P<0.05,说明回归模型显著;失拟项不显著(P=0.676 9>0.05),这说明模型的预测值和实际值的误差较小,能够较好地反映响应值变化;在95%置信区间内,模型与实际值拟合较好。因此,可以将此模型用于内循环微电解处理天然气中H2S效果的预测。由图7可知,模型的实际值与预测值差别较小,R2为0.921 2,这说明模型可以较好地反映各个因素对H2S去除效果的影响。通过统计学分析,估计出二次回归方程中的回归系数(表3),由实验结果拟合得到天然气中H2S去除率的二次响应曲面方程(如式(5)所示)。

    表 3  回归系数和模型的显著性分析
    Table 3.  Regression coefficients and significant analysis
    因素回归系数标准误差平方和FP显著性
    截距(模型)84.533.415 110.249.760.003 3显著
    A(铁炭比)6.162.7303.565.220.056 2显著
    B(通气速率)−8.962.7642.6111.050.012 7显著
    C(pH)−9.352.7699.7512.030.010 4显著
    AB−1.513.819.150.160.703 4不显著
    AC−3.073.8137.760.650.446 9不显著
    BC7.223.81208.373.580.100 3不显著
    A2−6.213.72162.362.790.138 7不显著
    B2−24.813.722 591.6844.560.000 3显著
    C2−7.733.72251.94.330.076 0显著
    失拟项118.240.550.676 9不显著
     | Show Table
    DownLoad: CSV
    图 7  H2S去除率的实际值与预测值分布图
    Figure 7.  Distribution profile of actual and predicted values of H2S removal efficiency
    Y=84.53+6.16A8.96B9.35C1.51AB3.07AC+7.22BC6.21A224.81B27.73C2 (5)

    3)交互作用的响应曲面分析。通过软件对实验数据进行回归分析,得到回归方程的响应曲面和等高线图,如图8~图10所示。在pH=7的情况下,考察了铁炭比和通气速率对H2S去除率的交互作用影响(见图8)。由图8可知,无论是铁炭比和通气速率如何改变,H2S去除率均随着通气速率和铁炭比的增加而呈现先增大后减小的趋势,因此,铁炭比和通气速率2个因素间的交互作用不明显。

    图 8  铁炭比和通气速率对H2S去除率交互影响的响应曲面图和等高线图
    Figure 8.  3D surface and contour of interaction between iron-carbon ratio and ventilation rate on H2S removal efficiency
    图 9  铁炭比和pH对H2S去除率交互影响的响应曲面和等高线图
    Figure 9.  3D surface and contour of interaction between iron-carbon ratio and pH on H2S removal efficiency
    图 10  通气速率和pH对H2S去除率交互影响的响应曲面和等高线图
    Figure 10.  3D surface and contour of interaction between ventilation rate and pH on H2S removal efficiency

    在通气速率为0.4 m3·h−1的情况下,考察了铁炭比和pH对H2S去除率的交互作用影响(见图9)。由图9可知,无论铁炭比如何改变,H2S去除率总是随着pH的增大而减小;无论pH如何变化,H2S去除率总是随着铁炭比的增大而呈现先增大后减小的趋势。因此,铁炭比和pH 2个因素间没有明显的交互作用。

    在铁炭比为3∶2的情况下,考察了通气速率和pH对H2S去除率的交互作用影响(见图10)。由图10可知,无论通气速率如何改变,H2S去除率都随着pH的增大而减小;无论pH如何变化,H2S去除率总是随着通气速率的增大而呈现先增大后减小的趋势。因此,通气速率和pH 2个因素间没有明显的交互作用。

    综合响应曲面图和ANOVA分析中各因素的F值(C(12.03)>B(11.05)>A(5.22))可知,影响天然气中H2S去除效果的因素依次为pH>通气速率>铁炭比。通过Design Expert软件优化获得的最佳反应条件:铁炭比为3∶2,通气速率为0.33 m3·h−1,pH为6.1。在最优的条件下,模型预测H2S去除率为92.66%,模型预测值的95%置信区间为80.17%~100%。

    在上述最佳反应条件下进行实验,结果表明H2S去除率为84.6%,其落在模型预测值的95%置信区间(80.16%~100%)内。我国大部分气田的天然气中H2S含量小于800 mg·m−3,在最佳反应条件下,即使H2S的去除率取置信区间的下限80.16%,处理后H2S剩余含量小于158.72 mg·m−3,仍然可以达到《天然气》(GB 17820-2012)[28]中三类标准。通过验证实验证明,Design Expert响应曲面法具有较好的预测效果,可以利用响应曲面法对内循环微电解处理天然气中H2S的去除率进行预测。

    1)采用内循环微电解对天然气中的H2S进行处理,单因素实验结果表明,采用内循环微电解技术处理天然气中H2S具有可行性。

    2)通过Design Expert软件中Numercal优化功能,得到H2S去除效果最优时的反应条件:通气速率为0.33 m3·h−1、铁炭比为3∶2、pH为6.1。在此条件下,H2S的平均去除率为84.6%,处理后H2S剩余含量可从800 mg·m−3降至158.72 mg·m−3,可以达到《天然气》(GB 17820-2012)中三类标准。因此,内循环微电解技术可以有效地去除天然气中的H2S。

  • 图 1  欧盟固废处理金字塔

    Figure 1.  Solid waste treatment hierarchy in Europe

    表 1  生活垃圾处理碳减排技术路径

    Table 1.  Technical paths of carbon emission reduction for municipal solid waste treatment

    生命周期过程主要技术路径参考文献
    1产生源头物尽其用、多次重复使用;少用或不用塑料袋、一次性用品;家庭厨余垃圾沥水后再投放;使用家庭厨余粉碎机[38,50,72,74]
    2收集运输优化收运(转运)系统;使用新能源汽车;分类收集有机垃圾;完善可回收物、有害垃圾等回收网点,分类回收玻璃金属塑料纸类和织物[70-72,74]
    3预处理转运站压缩减水;压榨干湿分离;人工或机械拆解、破碎、分选(分类、分质)[74-76]
    4资源利用替代原生资源,降低水耗、能耗和污染;生产高附加值再生产品[72,78]
    5生物处理分布式好氧堆肥;湿热处理,集中式厌氧消化,利用沼气发电或制备甲醇等;与剩余污泥等其他有机废物协同处理,提高沼气产率;沼渣沼液处理利用[23-25,42]
    6焚烧处理降低入炉含水率;优化工艺和设备,提高发电效率;热电联产(余热充分利用);降低能耗、二次污染控制;焚烧烟气碳捕获、碳封存[21-22,48,50]
    7综合利用制备垃圾衍生燃料(RDF);堆肥回田或改良土壤;飞灰、炉渣综合利用[22,31,79-80]
    8填埋处置避免或减少原生垃圾填埋;采用生物反应器填埋技术加速填埋场稳定;收集提纯填埋气体发电;渗滤液立体导排+渗滤液处理;采用好氧(兼氧)填埋方式、生物活性覆盖技术、改良填埋覆盖土壤、利用甲烷氧化菌复合微生物菌剂,提高日覆盖和中间覆盖材料的甲烷氧化率等碳捕集、甲烷氧化技术[18-20,31,81-83]
    生命周期过程主要技术路径参考文献
    1产生源头物尽其用、多次重复使用;少用或不用塑料袋、一次性用品;家庭厨余垃圾沥水后再投放;使用家庭厨余粉碎机[38,50,72,74]
    2收集运输优化收运(转运)系统;使用新能源汽车;分类收集有机垃圾;完善可回收物、有害垃圾等回收网点,分类回收玻璃金属塑料纸类和织物[70-72,74]
    3预处理转运站压缩减水;压榨干湿分离;人工或机械拆解、破碎、分选(分类、分质)[74-76]
    4资源利用替代原生资源,降低水耗、能耗和污染;生产高附加值再生产品[72,78]
    5生物处理分布式好氧堆肥;湿热处理,集中式厌氧消化,利用沼气发电或制备甲醇等;与剩余污泥等其他有机废物协同处理,提高沼气产率;沼渣沼液处理利用[23-25,42]
    6焚烧处理降低入炉含水率;优化工艺和设备,提高发电效率;热电联产(余热充分利用);降低能耗、二次污染控制;焚烧烟气碳捕获、碳封存[21-22,48,50]
    7综合利用制备垃圾衍生燃料(RDF);堆肥回田或改良土壤;飞灰、炉渣综合利用[22,31,79-80]
    8填埋处置避免或减少原生垃圾填埋;采用生物反应器填埋技术加速填埋场稳定;收集提纯填埋气体发电;渗滤液立体导排+渗滤液处理;采用好氧(兼氧)填埋方式、生物活性覆盖技术、改良填埋覆盖土壤、利用甲烷氧化菌复合微生物菌剂,提高日覆盖和中间覆盖材料的甲烷氧化率等碳捕集、甲烷氧化技术[18-20,31,81-83]
    下载: 导出CSV
  • [1] 联合国环境规划署. 《2019年排放差距报告》[EB/OL]. [2019-11-26].https://www.huanbao-world.com/foreign/157161.html
    [2] 麦肯锡全球研究院(MGI). Climate Risk and Response: Physical Hazards and Socioeconomic Impacts[EB/OL]. [2020-06-12].https://www.mckinsey.com.cn/应对气候变化:中国对策
    [3] 一张图看懂全球温室气体排放的全部来源, 能源占73%![EB/OL]. [2020-11-27].https://www.in-en.com/article/html/energy-2298420.shtml
    [4] 杜群. 气候变化的国际法发展: 《京都议定书》述评[J]. 环境资源法论丛, 2003: 236-257.
    [5] 李威. 从《京都议定书》到《巴黎协定》: 气候国际法的改革与发展[J]. 世界贸易组织动态与研究, 2016, 23(5): 62-73.
    [6] 中华人民共和国固体废物污染环境防治法[EB/OL]. [2021-06-04].https://m.thepaper.cn/baijiahao_12998447
    [7] 中共中央, 国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见 [EB/OL]. [2021-10-24]. http://www.gov.cn/ zhengce/2021-10/24/content_5644613.htm
    [8] 国务院. 关于印发2030年前碳达峰行动方案的通知[EB/OL]. [2021-10-24]. http://www.gov.cn/zhengce/ content/2021-10/26/ content_5644984.htm
    [9] 魏潇潇, 王小铭, 李蕾, 等. 1979~2016年中国城市生活垃圾产生和处理时空特征[J]. 中国环境科学, 2018, 38(10): 3833-3841. doi: 10.3969/j.issn.1000-6923.2018.10.030
    [10] 周传斌, 徐琬莹, 曹爱新. 城市生活垃圾代谢的研究进展[J]. 生态学报, 2014, 29(1): 33-40.
    [11] 张涛, 乐云, 黄有亮, 等. 城市垃圾处理的碳排放核算与分析——以苏州市为例. 环境污染与防治[J]. 2012(9): 102-105
    [12] 周晓萃, 徐琳瑜, 杨志峰. 城市生活垃圾处理全过程的低碳模式优化研究[J]. 环境科学学报, 2012, 32(2): 498-505.
    [13] SAUNOIS M, STAVERT A R, POULTER B, et al. The Global Methane Budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1561-1623. doi: 10.5194/essd-12-1561-2020
    [14] 科学有温度魏科. 国际气候大会(COP26)为什么会重点关注甲烷[EB/OL]. [2021-11-11].https://view.inews.qq.com/a/20211111A0552N00
    [15] CHAI X L, LOU Z Y, Shimaoka T, et al. Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill: An ecological case study of Shanghai[J]. Waste Management, 2010, 30(3): 446-451. doi: 10.1016/j.wasman.2009.09.047
    [16] 王罗春, 赵由才, 陆雍森. 垃圾填埋场稳定化及其研究现状[J]. 城市环境与城市生态, 2000, 13(5): 36-39.
    [17] 王敏, 王里奥, 刘莉. 垃圾填埋场的温室气体控制[J]. 重庆大学学报(自然科学版), 2001, 24(5): 142-144.
    [18] NIE F, ZHOU Y, ZHANG H, et al. Characteristics of CH4 and N2O emissions from municipal solid waste landfill and their influencing factors[J]. Huanjing Kexue Xuebao/Acta Scientiae Circumstantiae, 2017, 37(5): 1808-1813.
    [19] 聂发辉, 周永希, 张后虎, 等. 垃圾填埋场甲烷释放及氧化技术研究进展[J]. 环境工程技术学报, 2016, 6(2): 163-169. doi: 10.3969/j.issn.1674-991X.2016.02.024
    [20] 王晓琳, 曹爱新, 周传斌, 等. 垃圾填埋场甲烷氧化菌及甲烷减排的研究进展[J]. 生物技术通报, 2016, 32(5): 16-25.
    [21] 何品晶, 陈淼, 杨娜, 等. 我国生活垃圾焚烧发电过程中温室气体排放及影响因素——以上海某城市生活垃圾焚烧发电厂为例[J]. 中国环境科学, 2011(3): 402-407.
    [22] PAPAGEORGIOU A, BARTON J, KARAGIANNIDIS A. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: A case for England[J]. Journal of Environmental Management, 2009, 90(10): 2999-3012. doi: 10.1016/j.jenvman.2009.04.012
    [23] 杜欣, 陈婷, 李欢, 等, 2种典型餐厨垃圾资源化处理工艺的环境影响分析[J]. 环境工程学报, 2010, 4(1): 189-194
    [24] 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7): 2398-2408. doi: 10.12030/j.cjee.202102050
    [25] KHOO H H, LIM T Z, TAN R B H. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective[J]. Science of the Total Environment, 2010, 408(6): 1367-1373. doi: 10.1016/j.scitotenv.2009.10.072
    [26] 蔡博峰, 楼紫阳, 刘建国, 等. 垃圾填埋场甲烷排放和协同减排[M]. 北京: 中国环境出版集团, 2019.9
    [27] 郝千婷, 黄明祥, 包刚. 碳排放核算方法概述与比较研究[J]. 中国环境管理, 2011(4): 51-55. doi: 10.3969/j.issn.1674-6252.2011.04.012
    [28] 刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014(2): 248-258.
    [29] 卢鹏, 彭莉, 丁社光, 等. 城市生活垃圾处理处置过程的碳排放核算模型[J]. 广东化工, 2019, 46(20): 72-74.
    [30] 华佳, 柏双友, 瞿立新, 等. 城市生活垃圾处理中的碳排放及其评价模型研究[J]. 环境科学与管理, 2014, 39(11): 23-26. doi: 10.3969/j.issn.1673-1212.2014.11.007
    [31] 李欢, 金宜英, 李洋洋. 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011(2): 259-264.
    [32] 国务院发展研究中心“生态文明建设与低碳发展: 理论探索、形势研判与政策分析”课题组. 国家碳排放核算工作的现状、问题及挑战[EB/OL]. [2020-01-20]. https://www.drc.gov.cn/DocView.aspx?chnid=1&leafid=224&docid=2900150
    [33] 李文涛, 高庆先, 王立, 等. 我国城市生活垃圾处理温室气体排放特征[J]. 环境科学研究, 2015, 28(7): 1031-1038.
    [34] AMIRHOSSEIN M, MOTASEM S A, SHAMSUL R M K. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia[J]. Waste Management, 2017(70): 282-292.
    [35] 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11.
    [36] FINKBEINER M, INABA A, TAN R B H, et al. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044[J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80-85. doi: 10.1065/lca2006.02.002
    [37] 庄智. 国外碳排放核算标准现状与分析[J]. 粉煤灰, 2011, 23(4): 42-45.
    [38] ITOIZ E S, GASOL C M, FARRENY R, et al. CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries[J]. Energy Policy, 2013, 56: 623-632. doi: 10.1016/j.enpol.2013.01.027
    [39] ELDBJØRG B V, VERONICA M, MARIANNE T. A review of waste management decision support tools and their ability to assess circular biowaste management systems[J]. Sustainability, 2018, 10(10): 1-27.
    [40] WINKLER J, BILITEWSKI B. Comparative evaluation of life cycle assessment models for solid waste management[J]. Waste Management, 2007(27): 1021-1031.
    [41] 赵磊, 陈德珍, 刘光宇, 等. 垃圾热化学转化利用过程中碳排放的两种计算方法[J]. 环境科学学报, 2010, 30(8): 1634-1641.
    [42] 郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682. doi: 10.12030/j.cjee.201508159
    [43] 杜姣, 万玉秋, 张汉文. 清洁发展机制(CDM)实践及理论研究进展[J]. 环境保护科学, 2007, 33(4): 121-124. doi: 10.3969/j.issn.1004-6216.2007.04.038
    [44] 佟庆, 周胜. 固体废弃物处理领域CDM项目方法学应用分析[J]. 生态经济, 2010(6): 26-27,48.
    [45] 初金凤. 垃圾焚烧发电项目温室气体减排计算方法应用研究[D]. 河北工程大学, 2014
    [46] 闫军才, 刘谨, 钟勇, 等. 餐厨垃圾资源化处理CDM项目开发分析[J]. 环境卫生工程, 2012(1): 15-19. doi: 10.3969/j.issn.1005-8206.2012.01.005
    [47] 全国能源信息平台. CCER: 核心机制与收入测算——碳中和碳达峰带来的投资机会. [EB/OL]. [2021-04-22]. https://baijiahao.baidu.com/s?id=1697726748457252264&wfr=spider&for=pc
    [48] 杨卫华, 李静, 戴本慧. 生活垃圾焚烧发电碳排放计算方法研究[J]. 能源环境保护, 2011(7/8): 61-63.
    [49] KUMAR S, MONDAL A, GAIKWAD S, et al. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study[J]. Atmospheric Environment, 2004, 38(29): 4921-4929. doi: 10.1016/j.atmosenv.2004.05.052
    [50] 聂永丰. 低碳经济下的城市垃圾处理[J]. 建设科技, 2010(17): 68-70. doi: 10.3969/j.issn.1671-3915.2010.17.022
    [51] 任勇. 坚持“三化”原则, 聚焦减污降碳协同增效, 拓展和深化“无废城市”建设[EB/OL]. [2021-11-18]. http://www.mee.gov.cn/zcwj/zcjd/202111/t20211118_960866.shtml
    [52] GHARFALKAR M, COURT, R, CAMPBELL C, et al. Analysis of waste hierarchy in the European waste directive 2008/98/EC[J]. Waste Management, 2015, 39: 305-313. doi: 10.1016/j.wasman.2015.02.007
    [53] 杜祥琬, 刘晓龙, 葛琴, 等. 通过“无废城市”试点推动固体废物资源化利用, 建设“无废社会”战略初探[J]. 中国工程科学, 2017, 4(19): 127-131.
    [54] 陈瑛, 滕婧杰, 赵娜娜, 等. “无废城市”试点建设的内涵、目标和建设路径[J]. 环境保护, 2019(9): 21-25.
    [55] 李金惠: “无废城市”的缘起与实践[EB/OL]. [2021-01-08]. http://www.mee.gov.cn/home/ ztbd/2020/wfcsjssdgz/wfcsxwbd/ylgd/202101/t20210108_816544.shtml
    [56] 周宏春. 我国“无废城市”建设进展与对策建议[EB/OL]. [2020-12-21]. http://www.mee.gov.cn/home/ ztbd/2020/wfcsjssdgz/wfcsxwbd/ylgd/202012/t20201221_814118.shtml
    [57] 蒙天宇. “无废城市”建设的国际经验及启示[EB/OL]. [2019-03-29]. http://www.mee.gov.cn/home/ ztbd/2020/wfcsjssdgz/ bczc/wfcsgjjy/201903/t20190329_697830.shtml
    [58] 全国人大常委会. 中华人民共和国环境保护法[EB/OL]. [2014-04-25]. http://www.mee.gov.cn/ywgz/fgbz/fl/201404/t20140425_271040.shtml
    [59] 全国人大常委会. 中华人民共和国循环经济促进法[EB/OL]. [2008-08-01]. http://jjjcz.mee.gov.cn/djfg/gjflfg/fl/200808/t20080801_444387.html
    [60] 全国人大常委会. 中华人民共和国清洁生产促进法(2012年修正) [EB/OL]. [2012-02-01]. http://jjjcz.mee.gov.cn/djfg/gjflfg/fl/201202/t20120201_444442.html
    [61] 全国人大常委会. 中华人民共和国反食品浪费法[EB/OL]. [2021-04-29]. http://www.npc.gov.cn/npc/c30834/202104/83b2946e514b449ba313eb4f508c6f29.shtml
    [62] 商务部. 再生资源回收管理办法(2019修正)[EB/OL]. [2020-10-22]. http://www.zj.gov.cn/art/2020/10/22/art_1229417062_2041446.html
    [63] 国务院办公厅. 关于转发国家发展改革委住房城乡建设部生活垃圾分类制度实施方案的通知[EB/OL]. [2017-03-30]. http://www.gov.cn/zhengce/content/2017-03/30/content_5182124.htm
    [64] 国务院办公厅. 关于印发“无废城市”建设试点工作方案的通知[EB/OL]. [2019-01-23]. http://www.mee.gov.cn/zcwj/gwywj/201901/t20190123_690456.shtml
    [65] 国务院办公厅. 关于印发禁止洋垃圾入境推进固体废物进口管理制度改革实施方案的通知[EB/OL]. [2017-07-28]. http://www.mee.gov.cn/ywgz/fgbz/gz/201707/t20170728_418692.shtml
    [66] 国家发展改革委, 生态环境部. 关于进一步加强塑料污染治理的意见[EB/OL]. [2020-01-19]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk10/202001/t20200120_760495.html
    [67] 国务院. 关于加快建立健全绿色低碳循环发展经济体系的指导意见[EB/OL]. [2021-02-22]. http://www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm,2021
    [68] 国家发展改革委 住房城乡建设部指导地方推进非居民厨余垃圾处理计量收费工作[EB/OL]. [2021-07-08].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202107/t20210708_1287793.html?code=&state=123
    [69] 生态环境部, 发展改革委, 工业和信息化部, 等. 关于印发《“十四五”时期“无废城市”建设工作方案》的通知[EB/OL]. [2021-12-15]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202112/t20211215_964275.html
    [70] CALABRN P S. Greenhouse gases emission from municipal waste management: The role of separate collection[J]. Waste Management, 2009, 29(7): 2178-2187. doi: 10.1016/j.wasman.2009.02.011
    [71] COUTH R, TROIS C. Carbon emissions reduction strategies in Africa from improved waste management: A review[J]. Waste Management, 2010, 30(11): 2336-2346. doi: 10.1016/j.wasman.2010.04.013
    [72] 仲璐, 胡洋, 王璐. 城市生活垃圾的温室气体排放计算及减排思考[J]. 环境卫生工程, 2019, 27(5): 45-48.
    [73] 唐伟, 郑思伟, 何平, 等. 杭州市城市生活垃圾处理主要温室气体及VOCs排放特征[J]. 环境科学研究, 2018, 31(11): 1883-1890.
    [74] BASTIN L, LONGDEN D M. Comparing transport emissions and impacts for energy recovery from domestic waste (EfW): Centralised and distributed disposal options for two UK Counties[J]. Computers, Environment and Urban Systems, 2009, 33(6): 492-503. doi: 10.1016/j.compenvurbsys.2009.05.003
    [75] 詹咏, 黄嘉良, 罗伟, 等. 上海市试点小区湿垃圾源头减量前后垃圾处理处置全链条碳足迹分析[J]. 环境工程学报, 2020(4): 1075-1083. doi: 10.12030/j.cjee.201908144
    [76] 陈海滨, 刘金涛, 钟辉, 等. 厨余垃圾不同处理模式碳减排潜力分析[J]. 中国环境科学, 2013, 33(11): 2102-2106.
    [77] 边潇, 宫徽, 阎中, 等. 餐厨垃圾不同“收集-处理”模式的碳排放估算对比[J]. 环境工程学报, 2019(2): 449-456. doi: 10.12030/j.cjee.201808009
    [78] CHEN S S, HUANG J L, XIAO T T. Carbon emissions under different domestic waste treatment modes induced by garbage classification: Case study in pilot communities in Shanghai, China[J]. Science of the Total Environment, 2020, 717(15): 137-193.
    [79] 陈洪一, 杜奇, 黎莉, 等. 厨余垃圾水热炭化处理技术研究进展[J]. 环境卫生工程, 2021, 29(4): 64-72.
    [80] 范宇杰, 陈萍, 马文欣, 等. 城市生活垃圾焚烧炉渣作为土木工程材料的资源化应用探讨[J]. 环境与可持续发展, 2012, 37(6): 97-99. doi: 10.3969/j.issn.1673-288X.2012.06.023
    [81] 梅娟, 赵由才. 填埋场甲烷生物氧化过程及甲烷氧化菌的研究进展[J]. 生态学杂志, 2014, 33(9): 2567-2573.
    [82] 岳波, 林晔, 黄泽春, 等. 垃圾填埋场的甲烷减排及覆盖层甲烷氧化研究进展[J]. 生态环境学报, 2010, 19(8): 2010-2016. doi: 10.3969/j.issn.1674-5906.2010.08.044
    [83] 蔡博峰, 刘建国, 倪哲, 等. 中国垃圾填埋场甲烷减排关键技术的成本和潜力分析[J]. 环境工程, 2015(11): 110-114.
    [84] 曹艳乐, 杨洁, 朱阳光, 等. 生活垃圾分类管理模式的效益评估研究进展[J]. 安徽农业科学, 2014, 42(34): 12266-12269. doi: 10.3969/j.issn.0517-6611.2014.34.091
    [85] 赵薇, 孙一桢, 张文宇, 等. 基于生命周期方法的生活垃圾资源化利用系统生态效率分析[J]. 生态学报, 2016, 36(22): 7208-7216.
    [86] PAES M X, MEDEIROS G, MANCINI S D, et al. Transition towards eco-efficiency in municipal solid waste management to reduce GHG emissions: The case of Brazil[J]. Journal of Cleaner Production, 2020(263): 121370.
  • 期刊类型引用(1)

    1. 吴渴,王学中,张丹丹,朱华龙,闫永馨,李凡修,毋振海,郑振威,高祺凯. 2017~2022年亳州市PM_(2.5)与O_3复合污染演变特征及典型污染过程. 环境科学. 2024(10): 5715-5728 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501020304050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.6 %DOWNLOAD: 4.6 %HTML全文: 95.1 %HTML全文: 95.1 %摘要: 0.3 %摘要: 0.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.8 %其他: 99.8 %北京: 0.2 %北京: 0.2 %其他北京Highcharts.com
图( 1) 表( 1)
计量
  • 文章访问数:  11070
  • HTML全文浏览数:  11070
  • PDF下载数:  403
  • 施引文献:  2
出版历程
  • 收稿日期:  2021-10-08
  • 录用日期:  2022-01-12
  • 刊出日期:  2022-03-10
杨国栋, 颜枫, 王鹏举, 张作泰. 生活垃圾处理的低碳化研究进展[J]. 环境工程学报, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
引用本文: 杨国栋, 颜枫, 王鹏举, 张作泰. 生活垃圾处理的低碳化研究进展[J]. 环境工程学报, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
YANG Guodong, YAN Feng, WANG Pengju, ZHANG Zuotai. Research progress on low carbonization of municipal solid waste treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016
Citation: YANG Guodong, YAN Feng, WANG Pengju, ZHANG Zuotai. Research progress on low carbonization of municipal solid waste treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 714-722. doi: 10.12030/j.cjee.202110016

生活垃圾处理的低碳化研究进展

    通讯作者: 张作泰(1978—),男,博士,教授,E-mail:zhangzt@sustech.edu.cn
    作者简介: 杨国栋(1980—),男,博士研究生,高级工程师,ssswordman@qq.com
  • 1. 哈尔滨工业大学环境学院,哈尔滨,150001
  • 2. 南方科技大学环境科学与工程学院,深圳,518055
  • 3. 深圳市宝安区市容环境综合管理服务中心,深圳,518101
基金项目:
国家重点研发计划“固废资源化”专项(2018YFC1902900);深圳市基础研究重点项目自然科学基金(JCYJ20200109141642225)

摘要: 在“碳中和”背景下,对国内外生活垃圾处理低碳化发展的现状及研究进展进行了回顾与研究。分析了生活垃圾填埋、焚烧、堆肥处理等过程中的温室气体排放问题,并对碳排放的主要核算方法及工具进行了综述。结合“无废城市”、循环经济等先进理念,对我国生活垃圾低碳化治理的政策法规和技术路径进行了梳理。为准确核证垃圾处理过程的碳排量,应建立符合我国实际的碳排放监测、报告、核查标准体系。宜采取减量化、资源化和系统化的管理策略与技术手段,提高资源、能源的回收利用率,以促进减污降碳协同增效。各地应充分考虑其经济发展水平、垃圾产量组分和处理利用能力等,通过全生命周期的经济、社会与生态环境等多目标综合分析,采取优化组合的分类处理技术路线。

English Abstract

  • 近年来,全球温室气体排放量持续上升,2018年已达到553×108 tCO2当量(包括森林砍伐等土地利用变化产生的碳排量)[1]。根据麦肯锡《应对气候变化:中国对策》报告,2016年中国的净碳排放量达16×108 tCO2当量,约占全球的1/5[2]。而世界资源研究所2016年统计全球温室气体排放的来源显示,废物处置占3.2%(垃圾填埋场占1.9%、废水占1.3%)[3]。因此,生活垃圾处理作为影响全球气候变化的重要碳源,近年来受到越来越多的关注。1997年联合国《<气候变化框架公约>京都议定书》[4]和2015年《巴黎协定》[5]均要求或鼓励削减垃圾处理的碳排放;同时,我国不断完善环境保护、循环经济、清洁生产和节约能源等相关法律法规。2020年4月,新修订的《固体废物污染环境防治法》[6]明确推行生活垃圾分类制度。2020年9月,我国郑重宣布,将力争于2030年前实现碳达峰,2060年前实现碳中和。2021年9月,中共中央、国务院印发《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》[7],要求加快形成绿色生产生活方式,加强资源综合利用;2021年10月,国务院印发《2030年前碳达峰行动方案》[8],具体部署了推进生活垃圾减量化资源化,发挥减少资源消耗和降碳协同作用的任务要求。本综述在回顾总结生活垃圾处理过程的碳排放及其核算方法的基础上,指出了当前我国垃圾处理碳排放核算体系的有关问题,并结合国内外“无废城市”理念与探索,分析论述了生活垃圾处理低碳化发展的法规政策方向,系统性梳理了资源回收、生物质利用和焚烧填埋等3个方面的技术路径,可为有关部门决策提供参考,以助力实现碳中和的目标。

    • 生活垃圾产率及其成分因不同国家和地区的经济状况、人口数量、生活方式及垃圾管理制度等差异而不同。我国城市生活垃圾人均产生量已达1.17 kg·d−1(2016年),低于美国的2.02 kg·d−1(2014年)[9]。生活垃圾中通常包含一定量的化石碳(如塑料、橡胶、纺织品、电子废弃物以及纸张、皮革中)和可降解有机碳(DOC,如剩菜剩饭、废弃食品、果皮菜叶等中的糖类、蛋白质),而化石碳和有机碳的化学转化、生物降解以及垃圾收集压缩转运处理等过程的能源、资源(如电、煤、油、水)消耗都直接或间接的产生CH4、CO2以及较少量的N2O、NOX、CO[10-12]

    • 垃圾填埋排放的CH4量占人类活动排放总量的12%[13],是全球第三大CH4排放源,且全球变暖潜势(global warming potential,GWP)是CO2的29.8倍(100年)[14]。在填埋初期,产气主要为CO2;随着时间延长,CH4产气量也逐渐上升,通常在1~3 a后达到高峰,CH4和CO2浓度也会随着封场年数的增加而减少[15-16]。此外,渗滤液在调节池及处理过程中也会释放CH4和NO2等;同时,卫生填埋作业设备的电力和燃料的消耗会增加CO2排放量[11]。王敏等[17]认为,垃圾组成、有机质含量、含水量、温度和pH均是影响甲烷产生的重要因素;NIE等[18]发现,N2O排放通量与土壤温度呈正相关,而与土壤含水量呈负相关;聂发辉等[19]、王晓琳等[20]综述分析了甲烷好氧氧化和甲烷厌氧氧化的机理,以说明垃圾填埋场覆土具有甲烷氧化能力,从而导致甲烷释放量明显减少。

    • 垃圾燃烧或加入化石燃料助燃过程会产生NO2、CO2、CO等,而在储坑中发酵和渗滤液处理时则产生CH4、CO2等。垃圾焚烧的碳排放量与垃圾中的DOC和化石碳含量(占比)密切相关,其能否实现碳减排则取决于焚烧发电效率(EF)和本地基准的燃煤发电参照值[10-11];何品晶等[21]认为,降低入炉垃圾的含水率、提高其热值及发电量是提高垃圾焚烧厂碳汇的关键;PAPAGEORGIOU等[22]认为,通过机械-生物干燥预处理(回收材料或制备衍生燃料)、热电联产等可以提高垃圾焚烧的碳减排效益。

    • 生物处理主要分为好氧堆肥和厌氧发酵。好氧堆肥产生的温室气体来源于动力消耗和微生物分解有机物产生的CO2及少量的N2O、CH4[12,23]。例如,好氧堆肥产物用于农林种植或土壤改良,可以替代部分化肥,并因腐殖质的固碳、固氮等作用减少温室气体排放[24];垃圾厌氧发酵时会产生大量的CO2和CH4,其中CH4体积分数占40%~60%[11],如果厌氧发酵产气稳定并用于发电,则具有显著的碳减排效益[23-25]

    • 主要的碳排放核算方法可分为:实测法、质量平衡法(物料衡算法)和排放因子法(清单指南法)[26-28]。在垃圾处理中应用较多的核算指南(模型)有:IPCC(联合国政府间气候变化专门委员会)发布的国家温室气体清单指南(简称IPCC清单指南)、生命周期评价法(LCA)、清洁发展机制(CDM)、《温室气体排放企业核算与报告准则》(GHG Protocol)、上游—操作—下游(UOD)表格法等[29-31]

    • IPCC清单指南(2006年)通过对主要的碳排放源进行分类,再构建子目录,并提供了垃圾处理温室气体排放量的计算方法[32],以及DOC、DOCf(分解的可降解有机碳比例)、F(CH4在垃圾填埋气体中的比例)、t1/2(垃圾的半衰期,a−1)、K(CH4产生率)、MCF(CH4修正转化因子)等缺省值[29,31],主要用于国家、城市(地区)等层面的核算。如张涛等[11]核算得出苏州市垃圾处理的碳排放随着垃圾总量增加而提高,但因焚烧比例的提高使单位排放量有所下降;李文涛等[33]利用IPCC法核算了2011年我国城市生活垃圾处理CH4和CO2排放总量为0.77×108 t CO2当量;AMIRHOSSEIN[34]采用IPCC方法比较了马来西亚垃圾填埋、资源回收+厌氧消化与焚烧发电3种情景的碳减排效益,其中,资源回收+厌氧消化的单位净排量为−489 kg CO2当量。2019年5月,IPCC通过了《IPCC 2006年国家温室气体清单指南2019修订版》[32,35],更新补充了固废及废水处理的排放因子和相关参数,基本覆盖了所有排放源,并完整提出基于遥感测量和地面基站测量的大气浓度反演的做法[35],这有利于我国建立完善从微观(企业)到宏观(城市或区域)碳排放监测、报告、核查体系,提高“自下而上”的减排核算及验证能力。

    • LCA模型可以核算垃圾处理全过程中的碳排放,或用于计算某个项目(企业)、一个地区或者一个国家尺度的碳排放[29]。基于LCA原则,ISO(国际标准化组织)发布了ISO14040[36]、ISO14044[36]、ISO14064[37]和ISO14067[37]等标准,欧美国家开发了EASEWASTE、LCA-IWM、IWM2、ORWARE、WISARD、WRATE、CO2ZW、MSW-DST、ARES、EPIC/CSR、UMBERTO、SWOLF、WARM、WASTED等多种核算工具[38-40];国内学者也采用LCA法研究了不同垃圾处理工艺的碳排放[24,41-42],但由于原始数据的缺失、缺省值与各地实际的差异性、系统边界条件的不一致性或不确定性,都可能造成截然不同的核算结果。因此,LCA法难以作为权威的核算方法,往往需要结合IPCC国家清单数据、城市生活垃圾管理行业数据库等使用。

    • CDM法是指《<气候变化公约>京都议定书》[4]框架下的一种灵活履约机制之一,它通过核实CDM项目监测报告中的实际排放数据,然后用基准线情形下的排放量减去项目的实际排放量,并根据泄漏进行调整,得到“核证减排量”(CERs)[43]。对于垃圾处理项目,CDM执行理事会提供了一套方法学指南,如ACM0001(填埋气体回收利用项目)[43-44]、ACM0022(替代废物处理工艺)[45]和AMS-Ⅲ.AO(利用可控制的厌氧发酵回收甲烷)[46]等,而项目基准线设定是CDM法的关键核心和计算减排增量成本的基础[43-46]。2012年起,我国逐步建立了自愿减排碳信用交易市场,经过第三方核证和主管部门备案签发的核证自愿减排量CCER可以在国内市场交易,而CCER的方法多由CDM转化而来,其基本计算原则是,项目减排量=基准线减排量-项目排放量-泄漏量[47],如垃圾焚烧项目的基准线排放主要包括由项目活动替代的垃圾填埋处理产生的沼气排放。

    • 在垃圾处理碳排量的实际核算工作中,由于各地管理模式、垃圾组分、工艺参数及核算方法等不同,加之各类能源消费统计及碳排放因子测度容易出现较大偏差,故碳排放核算量差别较大。如赵磊等[39]用LCA法核算的吨垃圾焚烧处理的温室气体减排量为597~660 kgCO2当量,略低于IPCC2006指南法核算量(648~747 kgCO2当量),但与杨卫华等[48]采用CDM整合基准线和AM0025检测方法学计算的某垃圾焚烧厂平均减排量(约每吨垃圾286 kgCO2当量)有较大差距。KUMAR等[49]发现,工业元素分析所得的初始碳、化石碳和生物碳含量等是进行碳排量精确模型分析的必要参数,而我国还缺乏统一规范的、覆盖各地区和全生命周期的垃圾处理碳排量核算标准体系、工具模型及特征数据库,各地也需要加强碳排放现状调查及长期监测,尽快制定科学合理、切实可行的垃圾处理碳达峰或碳减排目标。

    • 低碳化是通过政策法规、制度改革、技术创新、节能降耗、资源循环和新能源开发等各种手段,尽量减少化石能源消耗和温室气体排放的可持续发展形态,它与减量化、资源化和无害化的原则相辅相成、相互促进,已成为生活垃圾处理的重要发展目标[50]。而且,低碳化与“无废”、循环经济的理念高度契合,建设“无废城市”、推进生活垃圾污染防治和资源循环利用,“一头连着减污,一头连着降碳”[51],也是实现低碳化发展的内在要求和主要途径。

    • 1)发达国家的低碳化管理经验。根据欧盟《废弃物框架指令》(2008)[52]的规定,固废处理优先采用预防产生、友好替代等源头减量的策略,其次鼓励物品的重复使用和材料的回收再生,再次要通过清洁高效的焚烧或制沼回收能源,将最终填埋处置量及其危害最小化,如图1所示。

      2014-2015年,欧盟正式提出了“零废物”计划和循环经济一揽子计划[53-54]。日本在2001年实施了《循环型社会形成推进基本法》[55],并出台了《资源有效利用促进法》[55]和《废弃物处理法》[55],强调废物充分减量化及资源化、建设“无废社会”。21世纪以来,旧金山、温哥华、斯德哥尔摩和新加坡等城市(国家)也提出“无废城市”[52-53];C40城市集团中的23个城市签署了《迈向零废物宣言》[56]。主要采取的政策包括:禁令(塑料、一次性物品)、绿色设计(包装)、公众教育、垃圾强制分类、按量计费(差别化收费)、生产者责任延伸(如押金返还、强制回收)、对垃圾堆肥或循环利用等给予财政补贴,或对垃圾填埋、塑料包装等增收税费等[57]

      2)我国生活垃圾低碳化管理体系还不健全。近年来,我国先后出台或修订了《环境保护法》[58]、《固体废物污染防治法》[6]、《循环经济促进法》[59]、《清洁生产促进法》[60]、《反食品浪费法》[61]、《再生资源回收管理办法》[62]等政策法规,并积极推行生活垃圾分类制度[63]、“无废城市”建设试点[64]、禁止洋垃圾入境[65]、加强塑料污染治理[66]、建立健全绿色低碳循环发展经济体系[67]、推进非居民厨余垃圾处理计量收费[68]等,部分省、市也出台了相应的地方性法规、规章或方案。特别是2016年以来,46个重点城市生活垃圾分类和11+5个“无废城市”试点积累了经验,如深圳、三亚等城市推进垃圾少排放、资源全回用和末端趋零填埋[55];2021年12月生态环境部等印发《“十四五”时期“无废城市”建设工作方案》[69],强调要求:倡导“无废”理念,深入推进生活垃圾分类工作,加快构建废旧物资循环利用体系,提升厨余垃圾资源化利用和生活垃圾焚烧能力,促进减污降碳协同增效。

      但目前,我国在生活垃圾源头减量、“两网融合”、生产者责任延伸、碳排放交易和绿色低碳金融等方面还缺乏综合性法律,现有法规的协同性、针对性和约束性不强,建议借鉴欧美日等经验,尽快出台产品包装法、固体废弃物强制回收目录、生活垃圾按量计费制度、碳排放权交易管理条例等法规,完善相关标准规范、财税金融和奖惩激励体系;限制塑料包装、一次性用品,优先采用可循环、可再生的材料(包装)并实行逆向物流强制回收;同时,通过按量计费、低碳认证、以奖代补等政策,鼓励市民(产废单位)从源头做好垃圾减量和分类。

    • 国内外对生活垃圾低碳化处理技术的研究已逐步深入到全生命周期过程。表1列举了碳减排的主要技术路径,主要包括3个方面。

      1)加大资源回收力度,促进源头减量。CALABRN[70]、COUTH[71]等认为,合理设置资源回收容器,从源头(家庭)或前端(收集点)分类回收玻璃、金属、塑料、纸类、织物等可用物质,这不仅减少了垃圾量,而且替代了产品再生产所需的部分原生材料,从而减少了化石资源能源的消耗、污染和垃圾中的化石碳含量,具有显著的碳减排效应[34,72-73]。但是,由于玻璃、塑料等附加值较低,市场动力往往不足,政府宜给予一定的补贴资金或税费减免,对资源回收处理过程的二次污染也要加以监管。此外,运输距离和运输车辆的燃料或动力消耗对碳排放影响较大[72],如BASTIN等[74]比较了英国城镇分布式处理与集中式处理2种情景,集中收运(转运)处理模式会产生更多的交通流量、燃料成本和碳排放。因此,要合理规划满足垃圾分类功能的转运站,以便短途收集与中长途转运衔接,并逐步推广使用清洁能源车辆。

      2)加强生物质的物质和能量利用。家庭厨余沥水或粉碎减量[24,42,75]、分类收集厨余(餐厨)垃圾。通过压榨脱水、湿热水解等预处理方式降低厌氧发酵的处理难度,以提高沼气、能源、油脂产率[76-78];或通过堆肥、饲料化、水热炭化等方式回收有机质[24,42,79]。陈海滨等[76]认为,通过压榨预处理可以使厨余垃圾干组分焚烧、湿组分厌氧发酵获得最大的碳减排潜力;边潇等[77]的研究表明,餐厨垃圾集中式厌氧发酵碳减排潜力是好氧堆肥的22倍,适合产量较大的城市,而分散式好氧堆肥适合在产量较小的地区推广,但应控制电耗;李欢等[24]指出,厨余垃圾处理的优先策略依次为,源头减量>饲料化>厌氧消化>好氧堆肥>混合焚烧,但对已有的焚烧设施,进炉垃圾中厨余含量在30%左右为宜;CHEN等[79]也提出,将厨余垃圾的分类收集率提高到60%以上,并不利于进一步削减碳排放。

      3)原生垃圾零填埋,控制温室气体排放。将剩余可燃垃圾焚烧[50]或通过机械生物、热处理转化为固体燃料用于发电和供热[22,72-73],并在焚烧炉渣中回收铁、铝、金、铜等金属,以及制作免烧砖、混凝土骨料或路基填充料[80]。此外,垃圾焚烧厂烟气碳捕集及封存(CCS)技术也值得探索。为减少填埋场CH4等温室气体排放,要尽量避免原生垃圾填埋,或采用生物反应器填埋或生物活性覆盖技术[19-20],以收集提纯填埋气体发电,防止沼气逸散(泄漏)或提高CH4氧化率[20, 81-83]

      相对于欧洲、日本,我国生活垃圾处理以焚烧和填埋为主[72-73]。目前还需加快完善可回收物、厨余(餐厨)垃圾的分类投放收运系统,建设分选、再生、堆肥或沼气发电等处理设施;同时,还要降低垃圾(污水、臭气)处理过程的能耗物耗和污染,以促进物质能量循环或梯级利用,提高垃圾(沼气)焚烧发电的净能量输出。

      考虑到不同城市的垃圾产量成分、处理设施建设运行情况和经济社会发展水平等,曹艳乐等[84]认为,要将生命周期评价与成本效益分析相结合,采取环境和经济综合效益更好的垃圾分类处理方式。周晓萃等[12]通过对比处理工艺的资源能源消耗、碳排放潜值与资源化率,并结合约束条件下的定量优化得到最佳的填埋、焚烧和堆肥处理比例。赵薇等[85]综合气候变化、酸化、O3层损耗、富营养化等6种生态影响以及生命周期成本分析,认为天津市采用“厨余垃圾堆肥+残余物卫生填埋”模式仍具有潜在最优生态效率。而MICHEL等[86]的研究表明,由于焚烧和机械生物处理技术在巴西的成本较高,其生态性能最低。因此,在“无废”“碳中和”背景下,各地要结合实际,开展不同处理情景下全生命周期的经济效益、环境影响、气候变化等多目标绩效评估,采取因地制宜、系统优化的技术路线。

    • 1)生活垃圾中的化石碳、可降解有机碳和氮元素是垃圾处理过程碳排放的根源,特别是垃圾填埋产气的无组织排放构成了重要的人为碳排放源。垃圾焚烧能否实现碳减排取决于焚烧发电效率和本地燃煤发电基准值;生物处理的减排效应主要基于生物质或其能量的资源化利用。

      2)垃圾处理碳排放核算方法主要有IPCC指南、LCA法和CDM法。在实际核算工作中,由于垃圾处理方式、能源消费统计及碳排放因子等参数、标准不同,故碳排放核算量可能与实际偏差较大。为更加准确、便捷地测算碳排放,我国还需建立符合国情的温室气体监测、报告、核查标准体系及工具模型。

      3)低碳化与“无废”、循环经济理念相辅相成,故需进一步完善垃圾源头减量、“两网融合”、生产者责任延伸、碳排放交易等方面的法律法规;此外,还需重点补齐可回收物和厨余垃圾分类处理短板,进一步提升焚烧产能和填埋气体利用率;为促进减污降碳协同增效,还需要开展全生命周期的多目标绩效评估和系统优化。

    参考文献 (86)

返回顶部

目录

/

返回文章
返回