-
由于自然过程(风化作用和生化作用)以及在世界范围内许多工业和制造过程中的使用不断增加,水生生态系统中的铬污染已成为一个突出问题,对生态环境和人类健康构成严重威胁。铬以Cr(Ⅲ)和Cr(Ⅵ)的形式存在于环境中,虽然Cr(Ⅲ)是人体必需的微量营养素,但Cr(Ⅵ)在水介质中可高度溶解,具有急性毒性、致突变性和致癌性,Cr(Ⅵ)的毒性是Cr(Ⅲ)的500倍[1]。
铬在制造和工业使用时,由于贮存和泄漏处理不当,导致多次被释放到环境中,造成地下水和土壤的污染。自然过程也会导致地下水中铬的浓度升高,例如,超镁铁质岩石可能具有较高的铬含量,其主要存在于母体矿物中的Cr(Ⅲ)中,但在风化过程中被四价锰氧化物氧化为Cr(Ⅵ)。尽管Cr(Ⅵ)的释放可能来自许多环节,但对环境危害最大的是铬铁矿加工残渣的处置不当。与铬铁矿加工残渣接触的水pH >12,并且水中的Cr(Ⅵ)浓度可超过1mmol·L−1[2-3]。当这种水不可避免地从废物堆中逸出到地球圈,会产生Cr(Ⅵ)羽流,其中pH值从高碱性值向天然土壤pH值变化。在水体环境中,Cr(Ⅵ)通常以可溶阴离子基团形式存在,如
${\rm{CrO}}_4^{2 - } $ 、${\rm{HCrO}}_4^ - $ 和$ {\rm{C}}{{\rm{r}}_2}{\rm{O}}_7^{2 - }$ ,最终通过生物富集作用进入人体,严重影响人类健康[4]。当pH <2 时,溶液中的Cr(Ⅵ)主要是以${\rm{C}}{{\rm{r}}_2}{\rm{O}}_7^{2 - } $ 形式存在,当pH值在5—6之间时,Cr(Ⅵ)存在形式是${\rm{C}}{{\rm{r}}_2}{\rm{O}}_7^{2 - } $ 、${\rm{HCrO}}_4^ - $ ,当pH >7 时,Cr(Ⅵ)主要以${\rm{CrO}}_4^{2 - } $ 形式存在[5]。由于其毒性和潜在的迁移性,Cr(Ⅵ)释放到生态系统引起普遍关注。在氧化环境中,Cr(Ⅵ)与铁和氧化铝矿物的表面发生络合反应进而去除酸性溶液中的Cr(Ⅵ) [6];但是,在中性和碱性环境下,由于在矿物表面存在净负表面电荷,因此土壤矿物对Cr(Ⅵ)的吸附通常较弱。铬在还原性土壤环境中的流动性比较低,因为水中的Fe(Ⅱ)和含Fe(Ⅱ)的矿物质以及具有还原性的硫化合物可以将Cr(Ⅵ)迅速还原为Cr(Ⅲ)。一旦还原,Cr(Ⅲ)在周围环境条件下将以Cr(OH)3的形式沉淀,或者当被Fe(Ⅱ)还原时以(CrxFe1−x)(OH)3的形式沉淀(式1,2)[7-8]。当前对环境中铬污染的处理,通常包括将Cr(Ⅵ)还原为Cr(Ⅲ),如传统的化学还原工艺[9],生物学方法以及其它一些先进的工艺,例如,吸附[10]、生物修复[11]、化学沉淀[12]和光催化还原[13]等。上述技术方法尽管在Cr(Ⅵ)还原方面具有很高的效率,但仍具有各种缺点,例如对化学药品和能量的大量需求,大量污泥的产生以及高昂的运行成本。HA是一种通过微生物的分解和转化植物残留物而累积起来的高分子有机物质[14],具有生物化学稳定性高、表面积大、结构复杂、带有多种活性官能团等特点。它在全球总计达数万亿吨,通常存在于河流,湖泊,海洋,土壤和煤矿中。HA广泛应用于农业,林业,畜牧业和化学工业等领域[15-16],多项研究已将HA用作污染物的吸附剂[17-18]。尽管HA的存在会污染地下水和地表水,但其优点胜于其用于处理工业废水的缺点,并且可以在后续深加工中将其完全清洗。此外,HA表面富含官能团,包括羧基、羟基和羰基[19]。这些基团可用于与阳离子物质进行离子交换、吸附、络合和螯合[20-22]。目前国内外对利用HA去除水体和土壤中铬离子的研究尤为重视。
本文旨在系统地阐述HA的结构特征和与Cr(Ⅵ)的作用机理,分析了矿物质和纳米复合材料去除Cr(Ⅵ)的过程中HA的影响,总结了仍然存在的局限性和尚待解决的问题,以便为HA处理含Cr(Ⅵ)废水的应用提供未来展望。
腐植酸对环境中Cr(Ⅵ)去除机理探究及展望
Research and perspect on the removal mechanism of humic acid to Cr(Ⅵ) in the environment
-
摘要: 铬是地下水中的主要污染物之一,尤其是六价
${\rm{CrO}}_4^{2 - } $ ,$ {\rm{HCrO}}_4^ - $ 和${\rm{C}}{{\rm{r}}_2}{\rm{O}}_7^{2 - }$ 。由于其高迁移率、生物毒性以及潜在的对人类的致癌性,对人体健康和生态系统构成威胁。腐植酸(HA)具有特殊的物理化学性质,能与Cr(Ⅵ)发生吸附、离子交换和络合等作用,能有效迁移和转化环境中的Cr(Ⅵ)。HA与环境中Cr(Ⅵ)的结合机制已经有相关研究,但对于HA微观结构特点尚不清晰。因此,本文系统地阐述了HA的结构特征和与Cr(Ⅵ)的作用机理,分析了矿物质和纳米复合材料去除Cr(Ⅵ)的过程中HA的影响。总结了仍然存在的局限性和尚待解决的问题,并对HA处理含Cr(Ⅵ)废水的未来应用进行了展望。Abstract: Chromium is one of the main pollutants in groundwater, especially${\rm{CrO}}_4^{2 - } $ ,${\rm{HCrO}}_4^ - $ and${\rm{C}}{{\rm{r}}_2}{\rm{O}}_7^{2 - } $ . Due to its high mobility, biological toxicity and potential carcinogenicity to human beings, it poses a threat to human health and ecosystem. Humic acid (HA) has special physical and chemical properties, which can adsorb, exchange and complexate with Cr(Ⅵ), and and can be used to effectively transport and transform Cr(Ⅵ) in the environment. The binding mechanism of HA with Cr(Ⅵ) in the environment has been studied, but the microstructure of HA is still unclear. Therefore, the structural characteristics of HA and its interaction mechanism with Cr(Ⅵ) were systematically described, the effects of HA on Cr(Ⅵ) removal by minerals and nanocomposites were analyzed. The limitations and problems to be solved were summarized, and the future application of HA in Cr(Ⅵ) - containing wastewater treatment was prospected.-
Key words:
- humic acid /
- Cr(Ⅵ) /
- minerals /
- nanocomposites
-
-
[1] KUMAR P A, RAY M, CHAKRABORTY S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel [J]. J Hazard Mater, 2007, 143(1/2): 24-32. [2] STEWART D I, BURKE I T, HUGHES-BERRY D V, et al. Microbially mediated chromate reduction in soil contaminated by highly alkaline leachate from chromium containing waste [J]. Ecol Eng, 2010, 36: 211-221. doi: 10.1016/j.ecoleng.2008.12.028 [3] MATERN K, WEIGAND H, SINGH A, et al. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons [J]. Environ Sci Pollut Res, 2017, 24: 3582-3592. doi: 10.1007/s11356-016-8110-2 [4] 代启虎, 李冉, 葛俊苗, 等. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合 [J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602 DAI Q H, LI R, GE J M, et al. Adsorption and kinetic and thermodynamic fitting of lactobacillus brevis to Cr3+ [J]. Environmental Chemistry, 2019, 38(3): 626-634(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042602
[5] ZHANG J H, ZHANG L L, ZHOU S Y. Magnetically separable attapulgite -TiO2-FexOy composites with superior activity towards photodegradation of methyl orange under visible light radiation [J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 3884-3889. doi: 10.1016/j.jiec.2013.12.094 [6] RAI D, EARY L, ZACHARA J. Environmental chemistry of chromium [J]. Sci Total Environ, 1989, 86: 15-23. doi: 10.1016/0048-9697(89)90189-7 [7] EARY L, RAI D. Chromate removal from aqueous wastes by reduction with ferrous ion [J]. Environmental Science & Technology, 1988, 22: 972-977. [8] SASS B M, RAI D. Solubility of amorphous chromium (Ⅲ)-iron (Ⅲ) hydroxide solid solutions [J]. Inorg Chem, 1987, 26: 2228-2232. doi: 10.1021/ic00261a013 [9] 高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302 GAO W G, QIN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
[10] WU B, LIU C, FU C, et al. Selective separation of Cr(Ⅵ) and V(Ⅴ) from solution by simple pH controlled two-step adsorption/desorption process with ZrO2 [J]. Chem Eng J, 2019, 373: 1030-1041. doi: 10.1016/j.cej.2019.05.131 [11] SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphate, COD and Cr(Ⅵ) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study [J]. Bioresour Technol, 2011, 102: 677-682. doi: 10.1016/j.biortech.2010.08.041 [12] XIE B, SHAN C, XU Z, et al. One-step removal of Cr(Ⅵ) at alkaline pH by UV/sulfite process: Reduction to Cr(Ⅲ) and in situ Cr(Ⅲ) precipitation [J]. Chem Eng J, 2017, 308: 791-797. doi: 10.1016/j.cej.2016.09.123 [13] ZHANG J, GAO N, CHEN F, et al. Improvement of Cr (Ⅵ) photoreduction under visible-light by g-C3N4 modified by nano-network structured palygorskite [J]. Chem Eng J, 2019, 358: 398-407. doi: 10.1016/j.cej.2018.10.083 [14] GOLI E, HIEMSTRA T, RAHNEMAIE R. Interaction of boron with humic acid and natural organic matter: Experiments and modeling [J]. Chem. Geol, 2019, 515: 1-8. doi: 10.1016/j.chemgeo.2019.03.021 [15] BIJANZADEH E, NADERI R, EGAN T P. Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L. ) hybrids [J]. J. Plant Nutr, 2019, 42(13): 1483-1495. doi: 10.1080/01904167.2019.1617312 [16] GHANBARPOUR E, REZAEI M, LAWSON S. Reduction of cracking in pomegranate fruit after foliar application of humic acid, calcium-boron and kaolin during water stress [J]. Erwerbs-obstbau, 2019, 61: 29-37. doi: 10.1007/s10341-018-0386-6 [17] CHEN Q, YIN D, ZHU S, et al. Adsorption of cadmium (II) on humic acid coated titanium dioxide [J]. J. Colloid Interface Sci, 2012, 367: 241-248. doi: 10.1016/j.jcis.2011.10.005 [18] ZHANG X, ZHANG P, WU Z, et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles [J]. Colloids Surf A, 2013, 435: 85-90. doi: 10.1016/j.colsurfa.2012.12.056 [19] MACHIANI M A, REZAEI-CHIYANEH E, JAVANMARD A, et al. Evaluation of common bean (Phaseolus vulgaris L. ) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare) and dragonhead (Dracocephalum moldavica) in intercropping system under humic acid application [J]. J Cleaner Prod, 2019, 235: 112-122. doi: 10.1016/j.jclepro.2019.06.241 [20] LUO H, HE D, ZHU W, et al. Humic acid induced for mation of tobermorite upon hydrothermal treatment with municipal solid waste in cineration bottom ash and its application for efficient removal of Cu (Ⅱ) ions [J]. Waste Manage, 2019, 84: 83-90. doi: 10.1016/j.wasman.2018.11.037 [21] ZHOU L, MONREAL C M, XU S, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region [J]. Geoderma, 2019, 338: 269-280. doi: 10.1016/j.geoderma.2018.12.014 [22] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature 2012, 483 (7388): 198−200. [23] ARO N, PAKULA T, PENTTILÄ M. Transcriptional regulation of plant cell wall degradation by filamentous fungi [J]. FEMS Microbiol Rev, 2005, 29: 719-739. doi: 10.1016/j.femsre.2004.11.006 [24] BROOKES P C, CAYUELA M L, CONTIN M, et al. The mineralisation of fresh and humified soil organic matter by the soil microbial biomass [J]. Waste Manag, 2008, 28: 716-722. doi: 10.1016/j.wasman.2007.09.015 [25] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: the new view [J]. Environ Sci Technol, 2005, 39: 9009-9015. doi: 10.1021/es050778q [26] KÖGEL-KNABNER I. Analytical approaches for characterizing soil organic matter [J]. Org Geochem, 2000, 31: 609-625. doi: 10.1016/S0146-6380(00)00042-5 [27] SIMPSON A J, KINGERY W L, HAYES M H, et al. Molecular structures and associations of humic substances in the terrestrial environment [J]. Naturwissenschaften, 2002, 89: 84-88. doi: 10.1007/s00114-001-0293-8 [28] FAN T M, LANE A, CHEKMENEV E, et al. Synthesis and physico-chemical properties of peptides in soil humic substances [J]. J Pept Res, 2004, 63: 253-264. doi: 10.1111/j.1399-3011.2004.00142.x [29] BURDON J. Are the traditional concepts of the structures of humic substances realistic? [J]. Soil Sci, 2001, 166: 752-769. doi: 10.1097/00010694-200111000-00004 [30] KLUČÁKOVÁ M, PEKAŘ M. Solubility and dissociation of lignitic humic acids in water suspension [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 252(2/3): 157-163. [31] VON WANDRUSZKA R, RAGLE C, ENGEBRETSON R. The role of selected cations in the formation of pseudomicelles in aqueous humic acid [J]. Talanta, 1997, 44(5): 805-809. doi: 10.1016/S0039-9140(96)02116-9 [32] TEJEDA-AGREDANO M C, MAYER P, ORTEGA-CALVO J J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime [J]. Environ Pollut, 2014, 184: 435-442. doi: 10.1016/j.envpol.2013.09.031 [33] MIRZA M A, AGARWAL S P, RAHMAN M A, et al. Role of humic acid on oral drug delivery of an antiepileptic drug[J], Drug Dev Ind Pharm, 2011, 37(3): 310–319. [34] MARTINI S, D'ADDARIO C, BONECHI C, et al. Increasing photostability and water-solubility of carotenoids: Synthesis and characterization of β-carotene-humic acid complexes [J]. J Photochem Photobiol B Biol, 2010, 101(3): 355-361. doi: 10.1016/j.jphotobiol.2010.08.008 [35] TAHIR M M, KHURSHID M, KHAN M Z, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils [J]. Pedosphere, 2011, 21(1): 124-131. doi: 10.1016/S1002-0160(10)60087-2 [36] YATES L M, VON WANDRUSZKA R. Decontamination of polluted water by treatment with a crude humic acid blend [J]. Environ Sci Technol, 1999, 33(12): 2076-2080. doi: 10.1021/es980408k [37] JUNEK R, MORROW R, SCHOENHERR J I, et al. Bimodal effect of humic acids on the LPS-induced TNF-α release from differentiated U937 cells[J], Phytomedicine, 2009, 16(5): 470-476. [38] KHIL'KO S L, EFIMOVA I V, SMIRNOVA O V. Antioxidant properties of humic acids from brown coal[J], Solid Fuel Chem, 2011, 45(6): 367-371. [39] DE MELO B A G, MOTTA F L, SANTANA M H A. Humic acids: Structural properties and multiple functionalities for novel technological developments [J]. Materials Science and Engineering C, 2016, 62: 967-974. doi: 10.1016/j.msec.2015.12.001 [40] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environ Sci Technol, 1998, 32(19): 2984-2989. doi: 10.1021/es980272q [41] AESCHBACHER M, GRAF C, SCWARZENBACH R P, et al. Antioxidant properties of humic substances [J]. Environ Sci Technol, 2012, 46: 4916-4925. doi: 10.1021/es300039h [42] VON WANDRUSZKA R. Humic acids: their detergent qualities and potential uses in pollution remediation [J]. Geochem Trans, 2000, 1: 10-15. . doi: 10.1186/1467-4866-1-10 [43] CHRISTL I, MILNE C J, KINNIBURGH D G, et al. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding [J]. Environ Sci Technol, 2001, 35(12): 2512-2517. doi: 10.1021/es0002520 [44] CHRISTL I, KRETZSCHMAR R. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding [J]. Environ Sci Technol, 2001, 35(12): 2505-2511. doi: 10.1021/es0002518 [45] LEE D G, STEWART R. Oxidation of aliphatic secondary alcohols by chromium (Ⅵ) in concentrated sulfuric acid solutions [J]. J Org Chem, 1967, 32: 2868-2871. doi: 10.1021/jo01284a047 [46] ELOVITZ M S, FISH W. Redox interactions of Cr (Ⅵ) and substituted phenols: products and mechanism [J]. Environ Sci Technol, 1995, 29: 1933-1943. doi: 10.1021/es00008a010 [47] CHEN S Y, HUANG S W, CHIANG P N, et al. Influence of chemical compositions and molecular weights of humic acids on Cr(Ⅵ) photo-reduction [J]. J Hazard Mater, 2011, 197: 337-344. doi: 10.1016/j.jhazmat.2011.09.091 [48] HUANG S W, CHIANG P N, LIU J C, et al. Chromate reduction on humic acid derived from a peat soil e exploration of the activated sites on HAs for chromate removal [J]. Chemosphere, 2012, 87: 587-594. doi: 10.1016/j.chemosphere.2012.01.010 [49] ZHAO T T, GE W Z, NIE Y X, et al. Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen: process and structure studies [J]. Fuel Process Technol, 2016, 150: 71-77. doi: 10.1016/j.fuproc.2016.05.001 [50] OHTA A, KAGI H, TSUNO H, et al. Speciation study of Cr(VI/III) reacting with humic substances and determination of local structure of Cr binding humic substances using XAFS spectroscopy [J]. Geochem J, 2012, 46: 409-420. doi: 10.2343/geochemj.2.0222 [51] OHTA A. Speciation study of Cr in a geochemical reference material sediment series using sequential extraction and XANES spectroscopy [J]. Geostand Geoanal Res, 2015, 39: 87-103. doi: 10.1111/j.1751-908X.2014.00292.x [52] ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis [J]. Environ Pollut, 2017, 225: 86-92. doi: 10.1016/j.envpol.2017.03.047 [53] ZHANG J, YIN H L, WANG H, et al. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China [J]. Environmental Science and Pollution Research, 2018, 25(17): 1-9. [54] ALDMOUR S T, BURKE I T, BRAY A W, et al. Abiotic reduction of Cr(Ⅵ) by humic acids derived from peat and lignite: kinetics and removal mechanism [J]. Environmental Science and Pollution Research, 2019, 26: 4717-4729. doi: 10.1007/s11356-018-3902-1 [55] HU J D, ZEVI Y, KOU X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J]. Sci Total Environ, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033 [56] AVENA M J, VERMEER A W P, KOOPAL L K. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151: 213-224. [57] LI Y, YUE Q Y, GAO B Y, et al. Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids [J]. Colloids and Surfaces B:Biointerfaces, 2008, 65: 25-29. doi: 10.1016/j.colsurfb.2008.02.014 [58] SALMAN M, EL-ESWED B, KHALILI F. Adsorption of humic acid on bentonite [J]. Applied Clay Science, 2007, 38: 51-56. doi: 10.1016/j.clay.2007.02.011 [59] KANTAR C, BULBUL M S, KESKIN S. Role of Humic Substances on Cr(Ⅵ) Removal from Groundwater with Pyrite [J]. Water Air Soil Pollut, 2017, 228: 48-58. doi: 10.1007/s11270-016-3233-0 [60] KENDELEWICZ T, LIU P, DOYLE C S, et al. Spectroscopic study of the reaction of aqueous Cr(Ⅵ) with Fe3O4 (Ⅲ) surfaces [J]. Surf Sci, 2000, 469(2-3): 144-163. doi: 10.1016/S0039-6028(00)00808-6 [61] JIANG W J, CAI Q, XU W, et al. Cr(Ⅵ) adsorption and reduction by humic acid coated on magnetite [J]. Environ Sci Technol, 2014, 48: 8078-8085. doi: 10.1021/es405804m [62] ZHENG Z Y, ZHENG Y, TIAN X C, et al. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects [J]. Environmental Pollution, 2018, 241: 265-271. doi: 10.1016/j.envpol.2018.05.060 [63] YU G D, FU F L, YE C J, et al. Behaviors and fate of adsorbed Cr(Ⅵ) during Fe(Ⅱ)-induced transformation of ferrihydrite-humic acid coprecipitates [J]. Journal of Hazardous Materials, 2020: doi. [64] LU H J, WANG J K, LI F, et al. Highly efficient and reusable montmorillonite/Fe3O4/humic acid nanocomposites for simultaneous removal of Cr(Ⅵ) and aniline [J]. Nanomaterials, 2018, 8: 537-551. doi: 10.3390/nano8070537 [65] SINGARAJ S G, MAHANTY B, BALACHANDRAN D, et al. Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles [J]. Environmental Science and Pollution Research, 2019, 26: 30044-30054. doi: 10.1007/s11356-019-06164-0 [66] NIU H, ZHANG D, ZHANG S, et al. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole [J]. J Hazard Mater, 2011, 190: 559-565. doi: 10.1016/j.jhazmat.2011.03.086 [67] HONG-BO F, XIE Q, SHUO C, et al. Interaction of humic substances and hematite: FTIR study [J]. J Environ Sci, 2005, 17: 43-47. [68] KOESNARPADI S, SANTOSA S J, SISWANTA D, et al. Synthesis and characterization of magnetite nanoparticle coated humic acid (Fe3O4/HA) [J]. Procedia Environ Sci, 2015, 30: 103-108. doi: 10.1016/j.proenv.2015.10.018 [69] NAIYA T K, SINGHA B, DAS S K. FTIR study for the Cr(Ⅵ) removal from aqueous solution using rice waste [J]. International Conference on Chemistry and Chemical Process-IPCBEE, 2011, 10: 114-119. [70] ZHANG T, WEI S, WATERHOUSE G I N, et al. Chromium (Ⅵ) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon [J]. Powder Technology, 2020, 360: 55-64. doi: 10.1016/j.powtec.2019.09.091 [71] ZHANG Y, LI Q, SUN L, et al. Batch adsorption and mechanism of Cr(Ⅵ) removal from aqueous solution by polyaniline/humic acid [J]. J Environ Eng, 2011, 137: 1158-1164. doi: 10.1061/(ASCE)EE.1943-7870.0000453