[1] |
KUMAR P A, RAY M, CHAKRABORTY S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel [J]. J Hazard Mater, 2007, 143(1/2): 24-32.
|
[2] |
STEWART D I, BURKE I T, HUGHES-BERRY D V, et al. Microbially mediated chromate reduction in soil contaminated by highly alkaline leachate from chromium containing waste [J]. Ecol Eng, 2010, 36: 211-221. doi: 10.1016/j.ecoleng.2008.12.028
|
[3] |
MATERN K, WEIGAND H, SINGH A, et al. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons [J]. Environ Sci Pollut Res, 2017, 24: 3582-3592. doi: 10.1007/s11356-016-8110-2
|
[4] |
代启虎, 李冉, 葛俊苗, 等. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合 [J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
DAI Q H, LI R, GE J M, et al. Adsorption and kinetic and thermodynamic fitting of lactobacillus brevis to Cr3+ [J]. Environmental Chemistry, 2019, 38(3): 626-634(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042602
|
[5] |
ZHANG J H, ZHANG L L, ZHOU S Y. Magnetically separable attapulgite -TiO2-FexOy composites with superior activity towards photodegradation of methyl orange under visible light radiation [J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 3884-3889. doi: 10.1016/j.jiec.2013.12.094
|
[6] |
RAI D, EARY L, ZACHARA J. Environmental chemistry of chromium [J]. Sci Total Environ, 1989, 86: 15-23. doi: 10.1016/0048-9697(89)90189-7
|
[7] |
EARY L, RAI D. Chromate removal from aqueous wastes by reduction with ferrous ion [J]. Environmental Science & Technology, 1988, 22: 972-977.
|
[8] |
SASS B M, RAI D. Solubility of amorphous chromium (Ⅲ)-iron (Ⅲ) hydroxide solid solutions [J]. Inorg Chem, 1987, 26: 2228-2232. doi: 10.1021/ic00261a013
|
[9] |
高卫国, 钱林波, 韩璐, 等. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理 [J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
GAO W G, QIN L B, HAN L, et al. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism [J]. Environmental Chemistry, 2018, 37(7): 1525-1533(in Chinese). doi: 10.7524/j.issn.0254-6108.2017101302
|
[10] |
WU B, LIU C, FU C, et al. Selective separation of Cr(Ⅵ) and V(Ⅴ) from solution by simple pH controlled two-step adsorption/desorption process with ZrO2 [J]. Chem Eng J, 2019, 373: 1030-1041. doi: 10.1016/j.cej.2019.05.131
|
[11] |
SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphate, COD and Cr(Ⅵ) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study [J]. Bioresour Technol, 2011, 102: 677-682. doi: 10.1016/j.biortech.2010.08.041
|
[12] |
XIE B, SHAN C, XU Z, et al. One-step removal of Cr(Ⅵ) at alkaline pH by UV/sulfite process: Reduction to Cr(Ⅲ) and in situ Cr(Ⅲ) precipitation [J]. Chem Eng J, 2017, 308: 791-797. doi: 10.1016/j.cej.2016.09.123
|
[13] |
ZHANG J, GAO N, CHEN F, et al. Improvement of Cr (Ⅵ) photoreduction under visible-light by g-C3N4 modified by nano-network structured palygorskite [J]. Chem Eng J, 2019, 358: 398-407. doi: 10.1016/j.cej.2018.10.083
|
[14] |
GOLI E, HIEMSTRA T, RAHNEMAIE R. Interaction of boron with humic acid and natural organic matter: Experiments and modeling [J]. Chem. Geol, 2019, 515: 1-8. doi: 10.1016/j.chemgeo.2019.03.021
|
[15] |
BIJANZADEH E, NADERI R, EGAN T P. Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L. ) hybrids [J]. J. Plant Nutr, 2019, 42(13): 1483-1495. doi: 10.1080/01904167.2019.1617312
|
[16] |
GHANBARPOUR E, REZAEI M, LAWSON S. Reduction of cracking in pomegranate fruit after foliar application of humic acid, calcium-boron and kaolin during water stress [J]. Erwerbs-obstbau, 2019, 61: 29-37. doi: 10.1007/s10341-018-0386-6
|
[17] |
CHEN Q, YIN D, ZHU S, et al. Adsorption of cadmium (II) on humic acid coated titanium dioxide [J]. J. Colloid Interface Sci, 2012, 367: 241-248. doi: 10.1016/j.jcis.2011.10.005
|
[18] |
ZHANG X, ZHANG P, WU Z, et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles [J]. Colloids Surf A, 2013, 435: 85-90. doi: 10.1016/j.colsurfa.2012.12.056
|
[19] |
MACHIANI M A, REZAEI-CHIYANEH E, JAVANMARD A, et al. Evaluation of common bean (Phaseolus vulgaris L. ) seed yield and quali-quantitative production of the essential oils from fennel (Foeniculum vulgare) and dragonhead (Dracocephalum moldavica) in intercropping system under humic acid application [J]. J Cleaner Prod, 2019, 235: 112-122. doi: 10.1016/j.jclepro.2019.06.241
|
[20] |
LUO H, HE D, ZHU W, et al. Humic acid induced for mation of tobermorite upon hydrothermal treatment with municipal solid waste in cineration bottom ash and its application for efficient removal of Cu (Ⅱ) ions [J]. Waste Manage, 2019, 84: 83-90. doi: 10.1016/j.wasman.2018.11.037
|
[21] |
ZHOU L, MONREAL C M, XU S, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region [J]. Geoderma, 2019, 338: 269-280. doi: 10.1016/j.geoderma.2018.12.014
|
[22] |
LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature 2012, 483 (7388): 198−200.
|
[23] |
ARO N, PAKULA T, PENTTILÄ M. Transcriptional regulation of plant cell wall degradation by filamentous fungi [J]. FEMS Microbiol Rev, 2005, 29: 719-739. doi: 10.1016/j.femsre.2004.11.006
|
[24] |
BROOKES P C, CAYUELA M L, CONTIN M, et al. The mineralisation of fresh and humified soil organic matter by the soil microbial biomass [J]. Waste Manag, 2008, 28: 716-722. doi: 10.1016/j.wasman.2007.09.015
|
[25] |
SUTTON R, SPOSITO G. Molecular structure in soil humic substances: the new view [J]. Environ Sci Technol, 2005, 39: 9009-9015. doi: 10.1021/es050778q
|
[26] |
KÖGEL-KNABNER I. Analytical approaches for characterizing soil organic matter [J]. Org Geochem, 2000, 31: 609-625. doi: 10.1016/S0146-6380(00)00042-5
|
[27] |
SIMPSON A J, KINGERY W L, HAYES M H, et al. Molecular structures and associations of humic substances in the terrestrial environment [J]. Naturwissenschaften, 2002, 89: 84-88. doi: 10.1007/s00114-001-0293-8
|
[28] |
FAN T M, LANE A, CHEKMENEV E, et al. Synthesis and physico-chemical properties of peptides in soil humic substances [J]. J Pept Res, 2004, 63: 253-264. doi: 10.1111/j.1399-3011.2004.00142.x
|
[29] |
BURDON J. Are the traditional concepts of the structures of humic substances realistic? [J]. Soil Sci, 2001, 166: 752-769. doi: 10.1097/00010694-200111000-00004
|
[30] |
KLUČÁKOVÁ M, PEKAŘ M. Solubility and dissociation of lignitic humic acids in water suspension [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 252(2/3): 157-163.
|
[31] |
VON WANDRUSZKA R, RAGLE C, ENGEBRETSON R. The role of selected cations in the formation of pseudomicelles in aqueous humic acid [J]. Talanta, 1997, 44(5): 805-809. doi: 10.1016/S0039-9140(96)02116-9
|
[32] |
TEJEDA-AGREDANO M C, MAYER P, ORTEGA-CALVO J J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime [J]. Environ Pollut, 2014, 184: 435-442. doi: 10.1016/j.envpol.2013.09.031
|
[33] |
MIRZA M A, AGARWAL S P, RAHMAN M A, et al. Role of humic acid on oral drug delivery of an antiepileptic drug[J], Drug Dev Ind Pharm, 2011, 37(3): 310–319.
|
[34] |
MARTINI S, D'ADDARIO C, BONECHI C, et al. Increasing photostability and water-solubility of carotenoids: Synthesis and characterization of β-carotene-humic acid complexes [J]. J Photochem Photobiol B Biol, 2010, 101(3): 355-361. doi: 10.1016/j.jphotobiol.2010.08.008
|
[35] |
TAHIR M M, KHURSHID M, KHAN M Z, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils [J]. Pedosphere, 2011, 21(1): 124-131. doi: 10.1016/S1002-0160(10)60087-2
|
[36] |
YATES L M, VON WANDRUSZKA R. Decontamination of polluted water by treatment with a crude humic acid blend [J]. Environ Sci Technol, 1999, 33(12): 2076-2080. doi: 10.1021/es980408k
|
[37] |
JUNEK R, MORROW R, SCHOENHERR J I, et al. Bimodal effect of humic acids on the LPS-induced TNF-α release from differentiated U937 cells[J], Phytomedicine, 2009, 16(5): 470-476.
|
[38] |
KHIL'KO S L, EFIMOVA I V, SMIRNOVA O V. Antioxidant properties of humic acids from brown coal[J], Solid Fuel Chem, 2011, 45(6): 367-371.
|
[39] |
DE MELO B A G, MOTTA F L, SANTANA M H A. Humic acids: Structural properties and multiple functionalities for novel technological developments [J]. Materials Science and Engineering C, 2016, 62: 967-974. doi: 10.1016/j.msec.2015.12.001
|
[40] |
SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environ Sci Technol, 1998, 32(19): 2984-2989. doi: 10.1021/es980272q
|
[41] |
AESCHBACHER M, GRAF C, SCWARZENBACH R P, et al. Antioxidant properties of humic substances [J]. Environ Sci Technol, 2012, 46: 4916-4925. doi: 10.1021/es300039h
|
[42] |
VON WANDRUSZKA R. Humic acids: their detergent qualities and potential uses in pollution remediation [J]. Geochem Trans, 2000, 1: 10-15. . doi: 10.1186/1467-4866-1-10
|
[43] |
CHRISTL I, MILNE C J, KINNIBURGH D G, et al. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding [J]. Environ Sci Technol, 2001, 35(12): 2512-2517. doi: 10.1021/es0002520
|
[44] |
CHRISTL I, KRETZSCHMAR R. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding [J]. Environ Sci Technol, 2001, 35(12): 2505-2511. doi: 10.1021/es0002518
|
[45] |
LEE D G, STEWART R. Oxidation of aliphatic secondary alcohols by chromium (Ⅵ) in concentrated sulfuric acid solutions [J]. J Org Chem, 1967, 32: 2868-2871. doi: 10.1021/jo01284a047
|
[46] |
ELOVITZ M S, FISH W. Redox interactions of Cr (Ⅵ) and substituted phenols: products and mechanism [J]. Environ Sci Technol, 1995, 29: 1933-1943. doi: 10.1021/es00008a010
|
[47] |
CHEN S Y, HUANG S W, CHIANG P N, et al. Influence of chemical compositions and molecular weights of humic acids on Cr(Ⅵ) photo-reduction [J]. J Hazard Mater, 2011, 197: 337-344. doi: 10.1016/j.jhazmat.2011.09.091
|
[48] |
HUANG S W, CHIANG P N, LIU J C, et al. Chromate reduction on humic acid derived from a peat soil e exploration of the activated sites on HAs for chromate removal [J]. Chemosphere, 2012, 87: 587-594. doi: 10.1016/j.chemosphere.2012.01.010
|
[49] |
ZHAO T T, GE W Z, NIE Y X, et al. Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen: process and structure studies [J]. Fuel Process Technol, 2016, 150: 71-77. doi: 10.1016/j.fuproc.2016.05.001
|
[50] |
OHTA A, KAGI H, TSUNO H, et al. Speciation study of Cr(VI/III) reacting with humic substances and determination of local structure of Cr binding humic substances using XAFS spectroscopy [J]. Geochem J, 2012, 46: 409-420. doi: 10.2343/geochemj.2.0222
|
[51] |
OHTA A. Speciation study of Cr in a geochemical reference material sediment series using sequential extraction and XANES spectroscopy [J]. Geostand Geoanal Res, 2015, 39: 87-103. doi: 10.1111/j.1751-908X.2014.00292.x
|
[52] |
ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis [J]. Environ Pollut, 2017, 225: 86-92. doi: 10.1016/j.envpol.2017.03.047
|
[53] |
ZHANG J, YIN H L, WANG H, et al. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China [J]. Environmental Science and Pollution Research, 2018, 25(17): 1-9.
|
[54] |
ALDMOUR S T, BURKE I T, BRAY A W, et al. Abiotic reduction of Cr(Ⅵ) by humic acids derived from peat and lignite: kinetics and removal mechanism [J]. Environmental Science and Pollution Research, 2019, 26: 4717-4729. doi: 10.1007/s11356-018-3902-1
|
[55] |
HU J D, ZEVI Y, KOU X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J]. Sci Total Environ, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033
|
[56] |
AVENA M J, VERMEER A W P, KOOPAL L K. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151: 213-224.
|
[57] |
LI Y, YUE Q Y, GAO B Y, et al. Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids [J]. Colloids and Surfaces B:Biointerfaces, 2008, 65: 25-29. doi: 10.1016/j.colsurfb.2008.02.014
|
[58] |
SALMAN M, EL-ESWED B, KHALILI F. Adsorption of humic acid on bentonite [J]. Applied Clay Science, 2007, 38: 51-56. doi: 10.1016/j.clay.2007.02.011
|
[59] |
KANTAR C, BULBUL M S, KESKIN S. Role of Humic Substances on Cr(Ⅵ) Removal from Groundwater with Pyrite [J]. Water Air Soil Pollut, 2017, 228: 48-58. doi: 10.1007/s11270-016-3233-0
|
[60] |
KENDELEWICZ T, LIU P, DOYLE C S, et al. Spectroscopic study of the reaction of aqueous Cr(Ⅵ) with Fe3O4 (Ⅲ) surfaces [J]. Surf Sci, 2000, 469(2-3): 144-163. doi: 10.1016/S0039-6028(00)00808-6
|
[61] |
JIANG W J, CAI Q, XU W, et al. Cr(Ⅵ) adsorption and reduction by humic acid coated on magnetite [J]. Environ Sci Technol, 2014, 48: 8078-8085. doi: 10.1021/es405804m
|
[62] |
ZHENG Z Y, ZHENG Y, TIAN X C, et al. Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects [J]. Environmental Pollution, 2018, 241: 265-271. doi: 10.1016/j.envpol.2018.05.060
|
[63] |
YU G D, FU F L, YE C J, et al. Behaviors and fate of adsorbed Cr(Ⅵ) during Fe(Ⅱ)-induced transformation of ferrihydrite-humic acid coprecipitates [J]. Journal of Hazardous Materials, 2020: doi.
|
[64] |
LU H J, WANG J K, LI F, et al. Highly efficient and reusable montmorillonite/Fe3O4/humic acid nanocomposites for simultaneous removal of Cr(Ⅵ) and aniline [J]. Nanomaterials, 2018, 8: 537-551. doi: 10.3390/nano8070537
|
[65] |
SINGARAJ S G, MAHANTY B, BALACHANDRAN D, et al. Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles [J]. Environmental Science and Pollution Research, 2019, 26: 30044-30054. doi: 10.1007/s11356-019-06164-0
|
[66] |
NIU H, ZHANG D, ZHANG S, et al. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole [J]. J Hazard Mater, 2011, 190: 559-565. doi: 10.1016/j.jhazmat.2011.03.086
|
[67] |
HONG-BO F, XIE Q, SHUO C, et al. Interaction of humic substances and hematite: FTIR study [J]. J Environ Sci, 2005, 17: 43-47.
|
[68] |
KOESNARPADI S, SANTOSA S J, SISWANTA D, et al. Synthesis and characterization of magnetite nanoparticle coated humic acid (Fe3O4/HA) [J]. Procedia Environ Sci, 2015, 30: 103-108. doi: 10.1016/j.proenv.2015.10.018
|
[69] |
NAIYA T K, SINGHA B, DAS S K. FTIR study for the Cr(Ⅵ) removal from aqueous solution using rice waste [J]. International Conference on Chemistry and Chemical Process-IPCBEE, 2011, 10: 114-119.
|
[70] |
ZHANG T, WEI S, WATERHOUSE G I N, et al. Chromium (Ⅵ) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon [J]. Powder Technology, 2020, 360: 55-64. doi: 10.1016/j.powtec.2019.09.091
|
[71] |
ZHANG Y, LI Q, SUN L, et al. Batch adsorption and mechanism of Cr(Ⅵ) removal from aqueous solution by polyaniline/humic acid [J]. J Environ Eng, 2011, 137: 1158-1164. doi: 10.1061/(ASCE)EE.1943-7870.0000453
|