-
稳定同位素在示踪矿物来源和揭示成矿地质环境及成矿机制等方面具有重要意义,其中硫同位素(黄铁矿物)组成在示踪成矿热流体硫的物质来源[1-2]、成矿平衡温度[3]和成矿时代的物理化条件[4]等方面起到了十分重要的作用,是最直接、最有效的指纹元素之一。同时,由于不同硫源和水循环演化时发生的地球化学过程不同,会引起δ34S值差异较大。同理,在不同分馏机制条件下,不同碳源的δ13C值也存在明显差异,其多应用于示踪碳源[5]、碳酸盐岩风化作用速率[6]、地-气界面下有机物氧化分解[7]或微生物活动产生CO2及有机油气地质[8]等方面。诚然,随着同位素分析测试技术日益成熟,同位素研究逐渐拓展到水体环境领域,特别是近年来国内外诸多学者利用34S和13C作为地表水、地下水体中含S、C元素组分来源及形态转化的指示[9-10],随着工农业发展和城市化进程的加快,人类活动(如矿产开采,农用化肥,生活污水等)的输入,也成为含硫组分和含碳组分的来源之一。由于不同来源同位素组成有着特定的“指纹”特征值,加之在形态转化过程中可能发生分馏,使得稳定硫碳同位素在示踪污染源方面的研究成为可能[11-12]。以往34S、13C同位素技术研究在地下热水环境事例众多,技术相对成熟,且主要集中指示地下热水中S、C元素来源及其水-岩作用过程,往往单独或者结合其他稳定同位素在地表水、地下水的研究[13]。结合34S、13C同位素对地表水、岩溶泉的研究也不是很多,邹君宇等[14]也利用了34S、13C同位素对于现代河流中碳-硫耦合循环进行了研究,臧红飞等[15]利用34S、13C同位素对柳林岩溶泉水的补径排区域特征及S、C元素来源进行分析。结合34S、13C同位素对中低温地下热水的研究中,肖琼等[16]运用34S、13C同位素对重庆北温泉的水-岩作用过程进行分析,Marques等[17]利用34S、13C同位素对中低温地下热水中的S、C元素来源进行了示踪。目前34S、13C同位素主要用于示踪地热水中含碳组分和含硫组分来源及其环境特征,如马致远等[18]对关中盆地地下热水赋存环境封闭性和水-岩过程进行了研究,Yang等[19]利用34S、13C同位素技术不仅对中低温地下热水中元素来源进行分析,同时探讨了其水-岩作用过程对环境的意义。
贵州息烽温泉是低温深部承压水的出露点,是著名的偏硅酸-锶、重酸钙镁及氡型地下热水。诚然,自该温泉发现以来,以往诸多学者对该区地下热水的研究主要集中于水化学环境[20]、热储温度和补给来源[21]以及水文地球化学特征及地质成[22]等方面,而对该温泉中硫、碳等元素来源、演化及热储环境和水岩作用等方面鲜有开展研究工作。
本文选取息烽温泉地下热水、地表河流、岩溶泉水为研究对象,基于水文地球化学理论,运用环境硫、碳同位素对各水体中的硫和碳元素来源、水-岩相互作用过程及热储环境进行研究,并对氡气来源进行初步探讨,为该区地热水资源开发利用和科研提供理论参考。
富氡地热水中δ34Sso42-、δ 13CDIC同位素特征及其意义—以息烽温泉为例
Characteristics of δ34Sso42- and δ13CDIC isotopes in radon-rich geothermal water and their significance— Xifeng hot spring as an example
-
摘要: 贵州息烽温泉被誉为“亚洲第一氡泉”,富含多种有益元素。选取息烽地热水和与其有关的地表径流水及岩溶泉水为研究对象,利用水文地球化学、δ34
${{{\rm{S}}_{{\rm{SO}}_4^{2 - }}}} $ 、δ13${{{\rm{C}}_{{\rm{HCO}}_3^ - }}} $ 同位素等方法对区内富氡地热水中硫、碳元素来源及水-岩作用过程进行研究。结果显示,地热水水化学类型为HCO3·SO4−Ca·Mg型,pH呈弱碱性,其阴离子主要为${{\rm{HCO}}_3^{-}} $ 和${{\rm{SO}}_4^{2-}} $ ,阳离子主要Ca2+和 Mg2+,阴离子浓度变化范围为86—191.01 mg·L−1,阳离子浓度变化范围为20.7—57.4 mg·L−1。地热水中δ13${{{\rm{C}}_{{\rm{HCO}}_3^- }}} $ 值为−4.85‰—−9.12‰,计算得出CO2的δ13${{{\rm{C}}_{{\rm{CO}}_2 }}}$ 值集中在−10.34‰—−13.99‰间,其参与水-岩反应的CO2为幔源和土壤混合成因。δ34${{{\rm{S}}_{{\rm{SO}}_4^{2 - }}}} $ 值为25.41‰—27.53‰,与区内寒武系娄山关岩组中石膏中的δ34${{{\rm{S}}_{{\rm{SO}}_4^{2 - }}}} $ 值(26.73‰—29.57‰)一致。结合地热水中的阴阳离子含量、δ34${{{\rm{S}}_{{\rm{SO}}_4^{2 - }}}} $ 值和δ13${{{\rm{C}}_{{\rm{HCO}}_3^ - }}} $ 值的分析,可以认为大气降水入渗寒武系娄山关组碳酸盐岩地层发生的水岩反应主要为石膏的溶解,其次CO2进入含水层与围岩发生水岩作用生成${{\rm{HCO}}_3^{-}} $ 。Abstract: Guizhou Xifeng hot spring is known as “the No.1 Radon spring in Asia” and is rich in various beneficial elements. A number of methodologies such as hydrogeochemical analysis and δ34${{\rm{S}}_{{\rm{SO}}_4^{2 - }}} $ , δ13${\rm{C}}_{{\rm{HCO}}_3^{-}} $ isotope are applied to reveal the source of sulfur and carbon in the radon-rich hot water, related surface water and karst spring in the area. The process of water-rock interaction is also studied. The results show that the hydro-chemical type of the geothermal water is${\rm{HCO}}_3^{-} $ ·${\rm{SO}}_4^{2 - } $ −Ca·Mg with a weakly alkaline pH. The anions are mainly${\rm{HCO}}_3^{-} $ and${\rm{SO}}_4^{2 - } $ , the cations are mainly Ca2+ and Mg2+. And the anion concentration frange rom 86—191.01 mg·L−1 while the cation concentration varie from 20.7—57.4 mg·L−1. The δ13${\rm{C}}_{{\rm{HCO}}_3^{-}} $ value in geothermal water is −4.85‰—−9.12‰, and the calculated δ13${\rm{C}}_{{\rm{CO}}_2} $ value of CO2 is between −10.34‰—−13.99‰. The CO2 involved in the water-rock interaction is caused by the mixing of mantle source and soil. The value of δ34${{\rm{S}}_{{\rm{SO}}_4^{2 - }}} $ value is 25.41‰—27.53‰, which is consistent with the δ34${{\rm{S}}_{{\rm{SO}}_4^{2 - }}} $ value (26.73‰—29.57‰) in gypsum in the Cambrian Loushan guan Formation. Combined with the analysis of the anion and cation content in the geothermal water, δ34${{\rm{S}}_{{\rm{SO}}_4^{2 - }}} $ value and δ13${\rm{C}}_{{\rm{HCO}}_3^{-}} $ value, it could be considered that, during the infiltration process of rainwater enters the carbonate formation of the Cambrian Lushanguan Formation, the water-rock reaction is mainly gypsum dissolution. Secondly, CO2 enters the aquifer and interacts with the surrounding rock to produce${\rm{HCO}}_3^{-} $ . -
表 1 研究区不同类型水化学分析结果
Table 1. Results of different types of water quality analysis in the study area.
地球化学参数
Geochemical parameter常见地球化学组分/(mg·L−1)
Common geochemical components编号 类型Type pH Ec/μS T/℃ TDS K+ Na+ Ca2+ Mg2+ HCO3− SO42− Cl− δ13CCO2/‰ δ13CDIC/‰ XF01 地表水 7.9 730.0 19.9 365 1.90 8.10 71.4 36.23 298.3 74 13.0 −21.22 −12.96 XF02 8.2 289.0 19.8 200.7 2.10 2.80 43.5 15.53 160.62 35 5.02 −20.29 −12.01 XF03 8.3 692.0 25.2 447.8 5.70 18.8 72.2 36.7 150.79 200 16.6 −19.94 −12.13 XF04 岩溶泉 7.3 657.0 16.0 371.1 2.33 4.67 83.9. 27.34 268.32 90 8.02 −20.63 −12.03 XF05 7.5 525.0 18.6 308.4 3.90 3.3 65.2 29.64 295.02 35 6.52 −20.78 −13.17 XF06 7.7 206.0 13.9 171.8 1.90 2.5 41.9 8.47 124.56 30 4.01 −22.29 −13.50 XF07 地热水 7.7 500.0 53.2 487.3 3.50 13.3 54.3 21.65 191.01 86 4.82 −10.62 −4.85 XF08 7.5 503.0 52.6 308.9 3.50 14.0 52.8 21.27 182.58 86 5.02 −14.06 −8.25 XF09 7.6 502.0 53.0 411.2 3.60 13.1 57.4 23.53 182.48 94 6.27 −14.40 −8.61 XF10 7.5 510.0 52.0 382.8 3.5 12 54.3 20.7 178.68 86 4.82 −15.09 −9.12 表 2 黔北地区寒武-上震旦系灯影岩组中石膏矿物中δ34S值统计表
Table 2. Comparison results between geothermal water and simultaneous sedimentary evaporite hot spring water in the study
编号
Number位置
Locationδ34S/‰ 编号
Number位置
Locationδ34S/‰ 编号
Number石膏矿物Gypsum mineral [35] δ34S/‰ XF07 息烽地下热水 25.41 SQ1 石阡吴家湾温泉 23.20 YS1 上震旦系灯影组 28.5—32.6 XF08 息烽温泉水 27.52 SQ2 石阡城南温泉 23.10 YS2 下寒武清虚洞组 23.7—26.03 XF09 息烽温泉水 27.53 SQ3 石阡关鱼粮温泉 26.35 YS3 中寒武系高台组 25.7—29.57 XF10 息烽温泉水 27.50 SQ4 石阡甲山镇温泉 26.27 YS4 中上寒武娄山关组 26.73—28.0 平均值 26.99 平均值[35] 24.73 -
[1] SERAFIMOVSKI T, TASEV, GORAN, et al. Sulfur isotope composition in the plesenci native sulfur mineral deposit, republic of macedonia [J]. Procedia Earth & Planetary Science, 2015, 13: 35-38. [2] HIEBERT R S, BEKKER, A, HOULE, M G, et al. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada [J]. Mineralium Deposita, 2016, 51(7): 919-935. doi: 10.1007/s00126-016-0644-1 [3] FEI G C, YU Y F, HUA K Q. Equilibrium temperature calculation of the sulfur isotope in Dongzhongla Pb-Zn deposit in Tibet [J]. Advanced Materials Research, 2015, 1092-1093: 1394-1397. doi: 10.4028/www.scientific.net/AMR.1092-1093.1394 [4] ZHU Q, XIE G, MAO J, et al. Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong district, Eastern China [J]. Journal of Asian Earth Sciences, 2015, 113: 1253-1267. doi: 10.1016/j.jseaes.2015.05.022 [5] 孙占学, 高柏, 张展适, 等. 赣南地热气体起源的同位素与地球化学证据 [J]. 地质科学, 2014, 49(3): 791-798. doi: 10.3969/j.issn.0563-5020.2014.03.007 SUN Z X, GAO B, ZHANG Z S, et al. Isotopic and geochemical evidences of geothermal gas origins in southern Fujian [J]. Chinese Journal of Geology, 2014, 49(3): 791-798(in Chinese). doi: 10.3969/j.issn.0563-5020.2014.03.007
[6] GONFIANTINI. R, ZUPPI G M. Carbon isotope exchange rate of DIC in karst groundwater [J]. Chemical Geology, 2011, 197(1): 319-336. [7] DATTA S , BISSADA A K , SOCKI R A , et al. The origin of carbon-bearing volatiles in surprise valley hot springs in the Great Basin: Carbon Isotope and water chemistry characterizations[C]// AGU Fall Meeting Abstracts, 2013. [8] 李荣西, 刘建朝, 魏刚峰, 等. 渭河盆地地热水水溶烃类天然气成因与来源研究 [J]. 天然气地球科学, 2009, 20(5): 774-780. LI R X, LIU J C, WEI G F, et al. Study on the genesis and source of geothermal water-soluble hydrocarbon natural gas in the Weihe Basin [J]. Natural Gas Geoscience, 2009, 20(5): 774-780(in Chinese).
[9] 刘颖超, 刘凯, 孙颖, 等. 良乡地热田地热水化学特征及同位素分析 [J]. 南水北调与水利科技, 2015, 5(3): 962-966. LIU Y C, LIU K, SUN Y, et al. Chemical characteristics and isotope analysis of geothermal water in Liangxiang geothermal field [J]. South-to-North Water Transfer and Water Science and Technology, 2015, 5(3): 962-966(in Chinese).
[10] ZHANG D, LIU C. A preliminary study on sulfate reduction bacteria behaviors in groundwater by sulfur and carbon isotopes: A case study in Jiaozuo City, China [J]. Ecotoxicology, 2014, 23(10): 2014-2024. doi: 10.1007/s10646-014-1330-7 [11] LIU M, GUO Q, ZHANG C, et al. Sulfur isotope geochemistry indicating the source of dissolved sulfate in Gonghe geothermal waters, Northwestern China [J]. Procedia Earth and Planetary Science, 2017, 17: 157-160. doi: 10.1016/j.proeps.2016.12.039 [12] STEFÁNSSON A, KELLER N S, ROBIN J G, et al. Multiple sulfur isotope systematics of Icelandic geothermal fluids and the source and reactions of sulfur in volcanic geothermal systems at divergent plate boundaries [J]. Geochimica Et Cosmochimica Acta, 2015, 165: 307-323. doi: 10.1016/j.gca.2015.05.045 [13] ZAMANA L V, ASKAROV S A, BORZENKO S V, et al. Isotopes of sulfide and sulfate sulfur in nitrogen hot springs of the Bauntov Group (Baikal Rift Zone) [J]. Doklady Earth Sciences, 2010, 435(1): 1515-1517. doi: 10.1134/S1028334X10110231 [14] 邹君宇, 韩贵琳. 河流中碳、硫稳定同位素的研究进展 [J]. 地球与环境, 2015, 43(1): 111-121. ZOU J Y, HAN G L. Research progress of carbon and sulfur stable isotopes in rivers [J]. Earth and Environment, 2015, 43(1): 111-121(in Chinese).
[15] 臧红飞, 贾振兴, 郑秀清, 等. 柳林泉域岩溶水水化学及碳硫同位素特征 [J]. 水电能源科学, 2013, 31(12): 28-32. ZANG H F, JIA ZHEN X, ZHENG X Q, et al. Hydrochemical and carbon and sulfur isotope characteristics of karst water in Zhelin Spring Area [J]. Hydropower Energy Science, 2013, 31(12): 28-32(in Chinese).
[16] 肖琼, 沈立成, 杨雷, 等. 重庆北温泉地热水碳硫同位素特征研究 [J]. 水文地质工程地质, 2013, 40(4): 127-133. XIAO Q, SHEN L C, YANG L, et al. Study on carbon and sulfur isotope characteristics of geothermal water in Chongqing North Hot Springs [J]. Hydrogeology and Engineering Geology, 2013, 40(4): 127-133(in Chinese).
[17] MARQUES J M, MATOS C, CARREIRA P M, et al. 2019. Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): a review and reinterpretation[J]. Sustainable Water Resources Management, 5(4): 1525-1536. [18] 马致远, 余娟, 李清, 等. 关中盆地地下热水环境同位素分布及其水文地质意义 [J]. 地球科学与环境学报, 2008, 30(4): 396-401. doi: 10.3969/j.issn.1672-6561.2008.04.011 MA Z Y, YU J, LI Q, et al. Environmental isotope distribution of underground hot water in Guanzhong Basin and its hydrogeological significance [J]. Journal of Earth Sciences and Environment, 2008, 30(4): 396-401(in Chinese). doi: 10.3969/j.issn.1672-6561.2008.04.011
[19] YANG P H. , LUO D, HONG A H, et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes [J]. J Hydrol, 2019, 579: 124116. doi: 10.1016/j.jhydrol.2019.124116 [20] 姚在永, 成忠礼, 王俊文. 息烽氡泉环境地球化学的初步研究 [J]. 地球化学, 1982(1): 76-81. YAO Z Y, CHENG Z L, WANG J W. Preliminary study on environmental geochemistry of Xifeng Spring [J]. Geochemistry, 1982(1): 76-81(in Chinese).
[21] 宋小庆, 段启杉, 孟凡涛, 等. 贵州息烽温泉地质成因分析 [J]. 地质科技情报, 2014, 33(5): 216-220. SONG X Q, DUAN Q S, MENG F T, et al. Analysis of geological origin of Guizhou Xifeng Hot Spring [J]. Geological Science And Technology, 2014, 33(5): 216-220(in Chinese).
[22] 吉勤克补子. 贵州息烽温泉水文地球化学特征及地质成因研究[D]. 成都: 成都理工大学, 2015. JIQ K B Z. Hydrogeochemical characteristics and geological genesis of the Xifeng Hot Spring in Guizhou [D]. Chengdu: Chengdu University of Technology, 2015(in Chinese).
[23] 戴传固, 王雪华, 陈建书, 等. 贵州省区域地质志[M]. 北京: 地质出版社, 2012: 556-557. DAI C G, WANG X H, CHEN J S, et al. Regional geology of Guizhou Province [M]. Geological Publishing House, 2012: 556-557(in Chinese).
[24] 贵州息烽磷矿准采标高(600m)以上井下开采与息烽温泉关系勘查论证报告[R]. 贵州省地质矿产勘查开发局114地质大队, 2015. Survey and demonstration report on the relationship between underground mining and Xiyu Hot Spring of Quasi-Phosphorus Mine in Guizhou Province[R]. Geological and Mineral Exploration and Development Bureau of Guizhou Province 114 Geology Brigade, 2015(in Chinese).
[25] 钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012. QIAN H, MA Z Y, LI P Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012(in Chinese).
[26] 李巧, 周金龙, 高业新, 等. 新疆玛纳斯河流域平原区地下水水文地球化学特征研究 [J]. 现代地质, 2015, 29(2): 238-244. LI Q, ZHOU J L, GAO Y X et al. Hydrogeochemical characteristics of groundwater in the plain area of Manas River Basin in Xinjiang [J]. Modern geology, 2015, 29(2): 238-244(in Chinese).
[27] DAS A, KRISHNASWAMI S, BHATTACHARYA S K. Carbon isotope ratio of dissolved inorganic carbon ( DIC ) in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes [J]. Earth and Planetary Science Letters, 2005, 236(1-2): 419-429. doi: 10.1016/j.jpgl.2005.05.009 [28] LI S L, LIU C Q, LI J, et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints [J]. Chemical Geology, 2010, 277(3-4): 301-309. doi: 10.1016/j.chemgeo.2010.08.013 [29] DENIES P, LANGMUIR D, HARMON R S. Stable carbon istopic ratios and the extence of a gas phase in the evolution of carbonate waters [J]. Geochimica et Cosmochimica Acta, 1974, 38: 1147-1164. doi: 10.1016/0016-7037(74)90010-6 [30] 王恒纯. 同位素水文地质学概论[M]. 北京: 地质出版社, 1991. WANG H H. Isotope of Hydrogeology [M]. Beijing: Geological Publishing House, 1991 ( in Chinese) .
[31] MOORE J G, BACHELDER J N, CUNNINGHAM C G. CO2 filed vesicles in mid -ocean basalt [J]. Journal Volcano Geothermal Reseach, 1977, 2: 309-327. doi: 10.1016/0377-0273(77)90018-X [32] 郑乐平. 黔中岩溶地区土壤CO2的稳定碳同位素组成研究 [J]. 中国科学(D辑:地球科学), 1999, 29(6): 514-515. ZHENG L P. CO2 stable carbon isotope composition of soil in karst area of central Guizhou [J]. Chinese Science (Series D:Earth Sciences), 1999, 29(6): 514-515(in Chinese).
[33] 高波. 龙子祠泉水化学组分成因及硫同位素分析[J]. 地下水, . 2017, 39(1): 15-17. GAO B. Study on chemical constituents and sulfur isotope analysis of Longzijing spring water[J]. Groundwater, 2017, 39(1): 15-17(in Chinese).
[34] WANG H C. Introduce of Isotopic hydrogeology[M]. Beijing: Geologic Publish House, 1991: 156-158. [35] 韩至钧, 金占省. 贵州省水文地质志. 第四篇热矿水[M]. 北京: 地震出版社, 1996: 252-264. HAN Z W, JIN Z S. Guizhou Province Hydrogeology. The fourth hot mineral water [M]. Beijing: Seismological Press, 1996: 252-264(in Chinese).
[36] 王淑丽, 郑绵平. 我国寒武系膏盐岩分布特征及其对找钾指示 [J]. 矿床地质, 2012(31): 487-488. WANG S L ZHENG M P. Distribution characteristics of cambrian salt rocks in China and their indicators for potassium exploration [J]. Deposit Geology, 2012(31): 487-488(in Chinese).
[37] CIOTOLI G, ETIOPE G, GUERRA M, et al. The detection of concealed faults in the Ofanto Basin using the correlation between soil -gas fracture surveys[J]. Ectonophysics, 1999, T 301: 321 -332. [38] YANG T F, CHOU C Y, CHEN C -H, et al. Exhalation of radon and its carrier gases in SW Taiwan [J]. Radiation Measurements, 2003, 36: 425-429. doi: 10.1016/S1350-4487(03)00164-1