-
近几年,臭氧(O3)已成为影响我国环境空气质量的重要因素,其中京津冀及周边地区、长三角地区以O3为首要污染物的超标天数占比已经超过PM2.5[1-3]。研究表明,挥发性有机物(VOCs)可在紫外线照射下与氮氧化物(NOx)发生光化学反应,产生光化学烟雾,光化学烟雾的主要成分为O3[4-5]。因此,作为O3重要前体物的VOCs到研究学者的广泛关注。
VOCs种类繁多,不同种类的VOCs化学反应活性也不相同,研究VOCs的组成和来源特征对控制O3污染和揭示复合型大气污染的形成都具有重要意义[6]。目前国内关于VOCs的监测和研究主要集中在长江三角洲[7-8]、珠江三角洲[9-10]和京津冀[11-12]等地区。山东半岛相关的研究较少,刘泽常等[13]研究表明,济南市区VOCs的优势组分为C3—C5的烷烃、丙烯、顺-2-丁烯、间/对二甲苯和甲苯等,主要来源为汽车尾气、工业源和燃烧源。薛莲等[14]发现青岛市大气VOCs中烯烃对臭氧的生成贡献远高于烷烃和芳香烃。张桢超[15]发现威海市大气中,C2—C4烯烃类、烷烃类和苯系物对臭氧的生成贡献率较高,VOCs主要来源于机动车排放、工艺过程和溶剂使用。
泰安市地处山东省中部的泰山南麓,三面环山,属于内陆中小型城市。2016—2017年,泰安市O3最大8 h平均浓度分别为197 μg·m−3和210 μg·m−3,在全省分别排名第二位和第一位。臭氧已成为泰安市夏、秋季节环境空气的首要污染物[16]。了解臭氧前体物VOCs的污染现状及来源对泰安市采取适当措施改善空气质量具有重要意义。
本研究在泰安市城区建立一个观测站点,采用在线观测法,连续对站点大气中的VOCs进行监测,分析其浓度特征,并利用特征比值和模型分析对VOCs进行来源解析,同时评估其臭氧生成潜势,以期为泰安市大气环境VOCs和O3污染管控提供科学支撑。
泰安市大气挥发性有机物污染特征及来源解析
Characteristics and source apportionment of ambient volatile organic compounds in Taian
-
摘要: 2018年夏季对泰安市城区站点的挥发性有机物(VOCs)进行监测,研究了其污染特征、臭氧生成潜势(OFP)和特征污染物比值,利用PMF源解析模型对VOCs的来源进行了解析。结果表明,观测期间泰安市VOCs体积分数平均值为(16.57±7.99)×10−9,VOCs中浓度占比最高的为OVOCs(41.9%),其次为烷烃(30.8%)、芳香烃(19.5%)和烯烃(7.8%),对OFP的贡献率最高的为芳香烃(35.6%),其次为OVOCs(35.5%)、烯烃(18.5%)和烷烃(10.5%);PMF来源解析结果显示,观测点VOCs最大的排放源为LPG和溶剂挥发(40.2%),其次分别为OVOCs源(17.8%)、机动车排放(17.4%)、工业排放(11.8%)、植物源(10.5%)和电厂排放(2.3%)。控制LPG和溶剂挥发是控制泰安市夏季VOCs污染的重要途径。
-
关键词:
- 挥发性有机物 /
- 污染特征 /
- 臭氧生成潜势(OFP) /
- 来源解析 /
- 泰安
Abstract: Ambient volatile organic compounds (VOCs) were monitored in Taian, Shandong Province, China in 2018. The VOC pollution characteristics, ozone generation potential (OFP), characteristic pollutants ratios and source apportionment conducted based on PMF were comprehensively analyzed. The results showed that the average concentration of VOCs was (16.57±7.99) ×10−9 during the observation and VOCs was dominated by OVOCs (41.9%), alkane (30.8%), aromatics (19.5%), alkene (7.8%). Aromatics, occupying 41.9%, made the greatest contribution to OFP, which were followed by OVOCs (35.5%), alkene (18.5%), alkane (10.5%). The source apportionment results of the PMF model showed six main sources of VOCs, namely LPG and solvent volatilization sources (40.2%), OVOCs sources (17.8%), motor vehicle emissions (17.4%), industrial emissions (11.8%), plant emissions (10.5%) and power plant emissions (2.3%). Overall, the concentration of ambient VOCs in Taian was strongly influenced by LPG and solvent volatilization, and the control of VOCs emitted from LPG and solvent volatilization should be strengthened to reduce the concentration of VOCs in Taian, further reducing the generation of ozone.-
Key words:
- volatile organic compounds(VOCs) /
- pollution characteristics /
- OFP /
- source apportionment /
- Taian
-
表 1 观测期间主要VOCs物种的浓度和OFP值
Table 1. Concentrations and OFP of main VOCs species during the observation period
序号
Serial number平均浓度
Average concentration臭氧生成潜势
OFP组分
Species数值(×10−9)
Value组分
Species数值/(μg·m−3)
Value1 甲醛 3.18±2.09 甲醛 40.34±26.52 2 丙酮 2.02±1.27 间/对-二甲苯 20.51±14.96 3 丙烷 1.71±1.41 乙醛 17.87±7.90 4 乙醛 1.39±0.61 异戊二烯 15.44±14.10 5 丁烷 0.92±0.88 间二乙基苯 14.59±11.71 6 甲苯 0.88±0.67 甲苯 14.52±10.96 7 异戊烷 0.81±0.43 戊醛 12.10±8.01 8 苯乙烯 0.72±1.13 正戊烯 11.90±7.36 9 戊醛 0.62±0.41 丁醛 10.74±2.46 10 苯 0.60±0.39 间-甲基苯甲醛 10.01±7.20 11 丁醛 0.56±0.13 邻-二甲苯 8.54±8.36 12 正戊烯 0.53±0.33 1,2,4-三甲基苯 7.86±4.77 13 异丁烷 0.50±0.44 1,3,5-三甲基苯 7.77±6.62 14 异戊二烯 0.48±0.44 对二乙基苯 7.76±5.27 15 丁烯醛 0.47±0.33 反-2-戊烯 6.15±3.47 16 乙苯 0.33±0.30 丙烯 5.83±5.59 17 十二烷 0.32±0.13 苯乙烯 5.77±9.12 18 戊烷 0.31±0.27 顺-2-丁烯 5.62±3.80 19 间/对-二甲苯 0.28±0.20 苯甲醛 5.28±2.75 20 丙醛 0.27±0.14 丙醛 5.02±2.57 -
[1] WANG T, WEI X L, DING A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994—2007 [J]. Atmospheric Chemistry and Physics, 2009, 9(16): 6217-6227. doi: 10.5194/acp-9-6217-2009 [2] SUN L, XUE L K, WANG T, et al. Significant increase of summertime ozone at Mount Tai in Central Eastern China [J]. Atmospheric Chemistry and Physics, 2016, 16(16): 10637-10650. doi: 10.5194/acp-16-10637-2016 [3] ZHANG Q, YUAN B, SHAO M, et al. Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011 [J]. Atmospheric Chemistry and Physics, 2014, 14(12): 6089-6101. doi: 10.5194/acp-14-6089-2014 [4] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420 [5] ZHU Y H, YANG L X, CHEN J M, et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013 [J]. Atmospheric Environment, 2016, 124: 156-165. doi: 10.1016/j.atmosenv.2015.08.097 [6] DENG Y Y, LI J, LI Y Q, et al. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu [J]. Journal of Environmental Sciences, 2019, 75: 334-345. doi: 10.1016/j.jes.2018.05.004 [7] XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China [J]. Atmospheric Environment, 2017, 168: 112-124. doi: 10.1016/j.atmosenv.2017.08.035 [8] CAI C J, GENG F H, TIE X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China [J]. Atmospheric Environment, 2010, 44(38): 5005-5014. doi: 10.1016/j.atmosenv.2010.07.059 [9] 罗玮, 王伯光, 刘舒乐, 等. 广州大气挥发性有机物的臭氧生成潜势及来源研究 [J]. 环境科学与技术, 2011, 34(5): 80-86. doi: 10.3969/j.issn.1003-6504.2011.05.019 LUO W, WANG B G, LIU S L, et al. VOC ozone formation potential and emission sources in the atmosphere of Guangzhou [J]. Environmental Science & Technology, 2011, 34(5): 80-86(in Chinese). doi: 10.3969/j.issn.1003-6504.2011.05.019
[10] 邹宇, 邓雪娇, 王伯光, 等. 广州番禺大气成分站挥发性有机物的污染特征 [J]. 中国环境科学, 2013, 33(5): 808-813. doi: 10.3969/j.issn.1000-6923.2013.05.006 ZOU Y, DENG X J, WANG B G, et al. Pollution characteristics of volatile organic compounds in Panyu composition station [J]. China Environmental Science, 2013, 33(5): 808-813(in Chinese). doi: 10.3969/j.issn.1000-6923.2013.05.006
[11] LI L Y, XIE S D, ZENG L M, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China [J]. Atmospheric Environment, 2015, 113: 247-254. doi: 10.1016/j.atmosenv.2015.05.021 [12] WU R R, LI J, HAO Y F, et al. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China [J]. Science of the Total Environment, 2016, 560/561: 62-72. doi: 10.1016/j.scitotenv.2016.04.030 [13] 刘泽常, 李娜, 侯鲁健, 等. 济南市环境空气VOCs污染特征及来源识别 [J]. 中国环境监测, 2014, 30(6): 83-88. doi: 10.3969/j.issn.1002-6002.2014.06.014 LIU Z C, LI N, HOU L J, et al. Pollution characteristics and source identification of VOCs in ambient air of Ji'nan [J]. Environmental Monitoring in China, 2014, 30(6): 83-88(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.06.014
[14] 薛莲, 王静, 冯静, 等. 青岛市环境空气中VOCs的污染特征及化学反应活性 [J]. 环境监测管理与技术, 2015, 27(2): 26-30. doi: 10.3969/j.issn.1006-2009.2015.02.007 XUE L, WANG J, FENG J, et al. Pollution characteristics and chemical reactivity of ambient VOCs in Qingdao [J]. The Administration and Technique of Environmental Monitoring, 2015, 27(2): 26-30(in Chinese). doi: 10.3969/j.issn.1006-2009.2015.02.007
[15] 张桢超. 某典型沿海城市VOCs源清单的建立及其来源解析研究[D]. 济南: 山东师范大学, 2019. ZHANG Z C. Establishment and source analysis of VOCs source list in A typical coastal city[D]. Jinan: Shandong Normal University, 2019(in Chinese).
[16] 李凯, 刘敏, 梅如波. 泰安市大气臭氧污染特征及敏感性分析 [J]. 环境科学, 2020, 41(8): 3539-3546. LI K, LIU M, MEI R B. Pollution characteristics and sensitivity analysis of atmospheric ozone in Taian city [J]. Environmental Science, 2020, 41(8): 3539-3546(in Chinese).
[17] LIU C T, MU Y J, ZHANG C L, et al. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2—C12 hydrocarbons [J]. Journal of Chromatography A, 2016, 1427: 134-141. doi: 10.1016/j.chroma.2015.11.060 [18] 杨帆. 长治市环境空气中挥发性有机物特征及来源研究[D]. 北京: 华北电力大学(北京), 2019. YANG F. Characteristics and sources apportionment of ambient volatile organic compounds in Changzhi[D]. Beijing: North China Electric Power University, 2019(in Chinese).
[19] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds [J]. Air & Waste, 1994, 44(7): 881-899. [20] 任义君, 马双良, 王思维, 等. 郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析 [J]. 环境科学, 2020, 41(6): 2577-2585. REN Y J, MA S L, WANG S W, et al. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou [J]. Environmental Science, 2020, 41(6): 2577-2585(in Chinese).
[21] BROWN S G, FRANKEL A, HAFNER H R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization [J]. Atmospheric Environment, 2007, 41(2): 227-237. doi: 10.1016/j.atmosenv.2006.08.021 [22] 杨健. 安阳市城区臭氧污染特征及影响因素研究[D]. 郑州: 郑州大学, 2020. YANG J. Study on the characteristics and influencing factors of ozone pollution in Anyang city[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese).
[23] GAO J, ZHANG J, LI H, et al. Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account - A case study in a typical urban area in Beijing [J]. Science of the Total Environment, 2018, 628/629: 791-804. doi: 10.1016/j.scitotenv.2018.01.175 [24] 刘成堂. 大气中挥发性有机物的检测技术及其应用[D]. 北京: 中国科学院大学, 2016. LIU C T. Detection technology and application of volatile organic compounds in the atmosphere[D]. Beijing: University of Chinese Academy of Sciences, 2016(in Chinese).
[25] 张敬巧, 吴亚君, 李慧, 等. 廊坊开发区秋季VOCs污染特征及来源解析 [J]. 中国环境科学, 2019, 39(8): 3186-3192. doi: 10.3969/j.issn.1000-6923.2019.08.007 ZHANG J Q, WU Y J, LI H, et al. Characteristics and source apportionment of ambient volatile organic compounds in autumn in Langfang development zones [J]. China Environmental Science, 2019, 39(8): 3186-3192(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.08.007
[26] 贾双庆, 周速, 程远. 新乡市环境空气中挥发性有机物(VOCs)污染特征及来源解析 [J]. 中国环境管理干部学院学报, 2019, 29(3): 68-71,76. JIA S Q, ZHOU S, CHENG Y. Characteristics and sources apportionment of volatile organic compounds(VOCs) in Xinxiang [J]. Journal of Environmental Management College of China, 2019, 29(3): 68-71,76(in Chinese).
[27] 赵乐, 刘新军, 范莉茹, 等. 石家庄夏季典型时段臭氧污染特征及来源解析 [J]. 中国环境监测, 2019, 35(4): 78-84. ZHAO L, LIU X J, FAN L R, et al. Pollution characteristic and source apportionment of VOCs during summer typical periods in Shijiazhuang [J]. Environmental Monitoring in China, 2019, 35(4): 78-84(in Chinese).
[28] ZHENG H, KONG S F, XING X L, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year [J]. Atmospheric Chemistry and Physics, 2018, 18(7): 4567-4595. doi: 10.5194/acp-18-4567-2018 [29] HSIEH L T, YANG H H, CHEN H W. Ambient BTEX and MTBE in the neighborhoods of different industrial Parks in Southern Taiwan [J]. Journal of Hazardous Materials, 2006, 128(2/3): 106-115. [30] YAN Y L, PENG L, LI R M, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China [J]. Environmental Pollution, 2017, 223: 295-304. doi: 10.1016/j.envpol.2017.01.026 [31] 张玉欣, 安俊琳, 林旭, 等. 南京北郊冬季挥发性有机物来源解析及苯系物健康评估 [J]. 环境科学, 2017, 38(1): 1-12. doi: 10.21608/jes.2017.19095 ZHANG Y X, AN J L, LIN X, et al. Source apportionment of volatile organic compounds and health assessment of benzene series in northern suburb of Nanjing in winter [J]. Environmental Science, 2017, 38(1): 1-12(in Chinese). doi: 10.21608/jes.2017.19095
[32] FUJITA E M. Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone Study [J]. Science of the Total Environment, 2001, 276(1/2/3): 171-184.