-
环境持久性自由基(EPFRs)是一类新型污染物,具有稳定性、持久性、迁移性及高反应活性等特征,能产生一定环境风险[1]。此类污染物能损伤生物DNA、引发肺部和心血管疾病,威胁人体健康,因此,成为近年来环境领域研究关注的热点[2]。EPFRs不仅存在于机体代谢过程中,也广泛存在于各种环境介质中,目前土壤、大气颗粒物、生物质炭、飞灰等介质中均含有一定量的EPFRs[3-6]。城市道路灰尘所处环境界面特殊,受人类活动影响是多种污染物的汇集场所。道路灰尘作为多种污染物载体,其中细颗粒物可能会因交通和风力的扰动作用,重新扬起再次进入大气,影响环境空气质量[7-8]。道路灰尘也常表现出对大气颗粒物的“源”效应,据报道,空气中有10%—50%的PM2.5来自地面扬尘[9]。因此,研究道路灰尘中EPFRs的污染特征及其环境风险,对城市环境评估和治理有重要的基础和实践意义。
近些年国内外学者对常见环境介质中EPFRs的污染、产生机理和环境风险等方面的研究取得了一定进展。例如,对目前研究分析的结果表明,大气颗粒物中EPFRs的含量在1.60 × 1016 spins·g−1到5.35 × 1018 spins·g−1之间[10],也有结果显示北京2016年冬季雾霾期间PM2.5中EPFRs的含量可达1.60 × 1020 spins·g−1[10]。大气颗粒物中EPFRs的检测得到的g值在2.0027至2.0048之间,根据一般判定规律可知大气颗粒物中的EPFRs为与氧原子相邻的以碳原子为中心的自由基[11]。环境介质中的EPFRs一般由前驱有机物和过渡性金属氧化物在多种环境条件共同作用下产生[12-13]。有研究显示芳香族化合物中的苯环结构可为过渡性金属提供电子,促进了以碳为中心的EPFRs的形成[14]。多环芳烃类有机污染物也会被氧化为酚类和醌类化合物,进而形成半醌自由基和苯氧自由基[14-15]。由于香烟烟雾中自由基类型与PM2.5接近,目前EPFRs的人体健康风险评价采用的方法多为当量香烟数法,即根据空气PM2.5的浓度、人体呼吸速率、PM2.5中自由基含量、香烟焦油中自由基含量和香烟焦油量等主要参数计算当量香烟数[1, 16]。当量香烟数的意义为每天从PM2.5中吸入的自由基相当于吸食香烟的数量,这种评价方法便于人们直观认识EPFRs对健康的危害,因此被广泛采用。
目前,关于EPFRs的研究仍存在不足,尤其缺少道路灰尘中EPFRs关于污染特征及健康风险评估方面的研究,致使人们对道路灰尘EPFRs的污染分布规律、形成及其对人体健康影响的认识并不清楚。因此,本研究选择中原城市群快速城镇化的周口市作为研究区域,对典型城市区域道路灰尘进行采样,并采用电子顺磁共振波谱法(EPR)检测,分析不同功能区道路灰尘中EPFRs的含量特征,根据g因子大小判定道路灰尘中的EPFRs种类。采用当量香烟数法对因吸入道路灰尘产生的健康风险进行评估。研究结果将促进人们对城市道路灰尘中EPFRs污染特征及健康风险的认识,也进一步研究城市道路灰尘中EPFRs的形成机制提供理论依据。
城市道路灰尘中环境持久性自由基污染特征及暴露评估
Pollution characteristics and human exposure assessment to environmental persistent free radicals in urban road dust
-
摘要: 环境持久性自由基(EPFRs)是一类具有一定环境风险的新型污染物,对人体健康有一定的威胁,引发了广泛关注。以中原城市群核心区快速城镇化的周口市为研究区域,采集包括一般城市道路、公园道路和居民区道路共44个样点的灰尘。研究确定了电子顺磁共振波谱法测定道路灰尘中EPFRs的优化参数,描述了道路灰尘中EPFRs污染及分布特征,并对道路灰尘EPFRs进行定量暴露评估。研究结果表明,道路灰尘中EPFRs含量为4.63×1017—6.72×1019 spins·g−1,平均含量为1.26×1019 spins·g−1,呈现出城市主干道>次干道>公园>居民区的变化特征。城市道路灰尘中EPFRs的g值范围为2.0032—2.0037,主要是以碳原子为中心及其邻近有含氧官能团的多种类混合型持久性自由基。通过建立暴露风险评估模型计算,城市道路条件下人体吸入灰尘EPFRs暴露量均高于其它功能区。儿童每人每天通过吸入灰尘进入体内的EPFRs量约相当于0.01—0.58支香烟(均值为0.1支),而对于成人此值为0.03—1.53支香烟(均值为0.3支)。研究结果为道路灰尘中EPFRs的污染研究提供基础资料,也为进一步研究道路灰尘中EPFRs形成提供理论依据。Abstract: Environmentally persistent free radicals (EPFRs) have recently aroused widespread concern as a new type of environmental risk substances due to their potential adverse health effects. In this study, Zhoukou, a rapidly developing city in the core area of Central Plains Urban Agglomeration (CPUA) was selected as the study area. A total of 44 dust samples including road, park and residential street were collected in this area. The working parameters of electron paramagnetic resonance (EPR) for EPFRs detection were presented, the pollution characteristics and distribution of EPFRs in road dust were described, and associated heath risk was evaluated. The results showed that the average concentration of EPFRs in the road dust was 1.26×1019 spins·g−1, in the range of 4.63×1017 spins·g−1 to 6.72×1019 spins·g−1, and the order of average of EPFR concentration was trunk road > sub trunk road > parkway > residential road. The g-value of EPR signal in road dust was 2.0032 to 2.0036, indicated that the EPFRs in road dust consist of carbon-centered radicals or carbon-centered radicals with nearby oxygen or halogen atoms. The calculation by using combined model showed that the EPFRs exposure via inhalation of dust in urban road was higher than that in other functional area. For the children, the amount of EPFRs inhaled in the body was equivalent to 0.01—0.58 cigarettes (on average, 0.1 cigarettes) per day, and 0.03—1.53 cigarettes (on average, 0.3 cigarettes) per day for adults. The results can provide the basic information for EPFRs in road dust and can also offer support for the further study of EPFR formation in road dust.
-
Key words:
- environmental persistent free radicals /
- road /
- dust /
- exposure /
- risk
-
表 1 暴露评估参数的取值
Table 1. The value of parameter of exposure assessment
表 2 每天吸入道路灰尘EPFRs的当量香烟数(支)
Table 2. Number of equivalent cigarettes smoked from inhaling road dust
类型
Types儿童 Children 成人 Adults 范围 Range 均值 Mean 范围 Range 均值 Mean 主干道 Trunk road 0.03—0.58 0.24 0.09—1.53 0.64 次干道 Sub trunk road 0.01—0.53 0.09 0.03—1.40 0.25 公园道路 Parkway 0.01—0.06 0.03 0.03—0.16 0.08 居民区道路 Residential road 0.004—0.008 0.006 0.01—0.02 0.016 -
[1] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5 [J]. Environmental Science & Technology, 2013, 47(15): 8172-8178. [2] VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants [J]. Environmental Science & Technology, 2018, 52(5): 2468-2481. [3] YANG L L, LIU G R, ZHENG M H, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals [J]. Environmental Science & Technology, 2017, 51(21): 12329-12336. [4] JIA H Z, ZHAO S, SHI Y F, et al. Formation of environmentally persistent free radicals during the transformation of anthracene in different soils: Roles of soil characteristics and ambient conditions [J]. Journal of Hazardous Materials, 2019, 362: 214-223. doi: 10.1016/j.jhazmat.2018.08.056 [5] JIA H Z, LI S S, WU L, et al. Cytotoxic free radicals on air-borne soot particles generated by burning wood or low-maturity coals [J]. Environmental Science & Technology, 2020, 54(9): 5608-5618. [6] ODINGA E S, WAIGI M G, GUDDA F O, et al. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars [J]. Environment International, 2020, 134: 105172. doi: 10.1016/j.envint.2019.105172 [7] JOSE J, SRIMURUGANANDAM B. Application of micro-morphology in the physical characterization of urban road dust [J]. Particuology, 2021, 54: 146-155. doi: 10.1016/j.partic.2020.05.002 [8] LIU E F, YAN T, BIRCH G, et al. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China [J]. Science of the Total Environment, 2014, 476/477: 522-531. doi: 10.1016/j.scitotenv.2014.01.055 [9] ERMOLIN M S, FEDOTOV P S, IVANEEV A I, et al. A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals [J]. Chemosphere, 2018, 210: 65-75. doi: 10.1016/j.chemosphere.2018.06.150 [10] XU M X, WU T, TANG Y T, et al. Environmentally persistent free radicals in PM2.5: A review [J]. Waste Disposal & Sustainable Energy, 2019, 1(3): 177-197. [11] PAN B, LI H, LANG D, et al. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications [J]. Environmental Pollution, 2019, 248: 320-331. doi: 10.1016/j.envpol.2019.02.032 [12] TRUONG H, LOMNICKI S, DELLINGER B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter [J]. Environmental Science & Technology, 2010, 44(6): 1933-1939. [13] GUO X W, ZHANG N, HU X, et al. Characteristics and potential inhalation exposure risks of PM2.5-bound environmental persistent free radicals in Nanjing, a mega-city in China [J]. Atmospheric Environment, 2020, 224: 117355. doi: 10.1016/j.atmosenv.2020.117355 [14] 王政, 张兴华, 张逦嘉, 等. 大气颗粒物中环境持久性自由基的电子顺磁共振检测方法 [J]. 环境化学, 2020, 39(2): 317-325. doi: 10.7524/j.issn.0254-6108.2019022703 WANG Z, ZHANG X H, ZHANG L J, et al. Detection of environmentally persistent free radicals in atmospheric particulate matter by electron paramagnetic resonance [J]. Environmental Chemistry, 2020, 39(2): 317-325(in Chinese). doi: 10.7524/j.issn.0254-6108.2019022703
[15] WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China [J]. Environmental Science & Technology, 2018, 52(3): 1054-1061. [16] XU Y, YANG L L, WANG X P, et al. Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110571. doi: 10.1016/j.ecoenv.2020.110571 [17] WANG C, HUANG Y P, ZHANG Z T, et al. Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves [J]. Environmental Pollution, 2020, 257: 113353. doi: 10.1016/j.envpol.2019.113353 [18] CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China [J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015 [19] 卢景雰. 现代电子顺磁共振波谱学及其应用[M]. 北京: 北京大学医学出版社, 2012. LU J F. Advanced electron paramagnetic resonance spectroscopy and its applications[M]. Beijing: Peking University Medical Press, 2012(in Chinese).
[20] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington, DC: U. S. Environmental Protection Agency, 2002. [21] PRYOR W A, PRIER D G, CHURCH D F. Electron-spin resonance study of mainstream and sidestream cigarette smoke: Nature of the free radicals in gas-phase smoke and in cigarette tar [J]. Environmental Health Perspectives, 1983, 47: 345-355. doi: 10.1289/ehp.8347345 [22] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 污染场地风险评估技术导则 HJ 25.3—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People’s Republic of China. Environmental Protection Standard of the People's Republic of China: Technical guidelines for risk assessment of contaminated sites. HJ 25.3—2014[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[23] 段小丽. 中国人群暴露参数手册(儿童卷)概要[M]. 北京: 中国环境出版社, 2016. DUAN X. Exposure Factors Handbook of Chinese Population[M]. Beijing: China Environmental Press, 2013 (in Chinese).
[24] SHAHAB A, ZHANG H, ULLAH H, et al. Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment [J]. Environmental Pollution, 2020, 266: 115419. doi: 10.1016/j.envpol.2020.115419 [25] MCCRACKEN J. Electron paramagnetic resonance: A practitioner's toolkit [J]. Journal of the American Chemical Society, 2009, 131(36): 13181. [26] 阮秀秀, 杜巍萌, 郭凡可, 等. 环境持久性自由基的环境化学行为 [J]. 环境化学, 2018, 37(8): 1780-1788. doi: 10.7524/j.issn.0254-6108.2017123002 RUAN X X, DU W M, GUO F K, et al. Environmental and chemical behaviors of environmental persistent free radicals [J]. Environmental Chemistry, 2018, 37(8): 1780-1788(in Chinese). doi: 10.7524/j.issn.0254-6108.2017123002
[27] 林浩, 李豪, 孙浩堯, 等. 道路沥青中长寿命自由基特征及二次生成 [J]. 中国环境科学, 2021, 41(3): 1102-1108. doi: 10.3969/j.issn.1000-6923.2021.03.012 LIN H, LI H, SUN H Y, et al. Characteristics and secondary formation of EPFRs in road asphalt [J]. China Environmental Science, 2021, 41(3): 1102-1108(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.012
[28] YANG L L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51(14): 7936-7944. [29] DELA CRUZ A L N, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site [J]. Environmental Science & Technology, 2011, 45(15): 6356-6365. [30] CIARKOWSKA K, GAMBUS F, ANTONKIEWICZ J, et al. Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland [J]. Chemosphere, 2019, 229: 214-226. doi: 10.1016/j.chemosphere.2019.04.209 [31] 向丽, 李迎霞, 史江红, 等. 北京城区道路灰尘重金属和多环芳烃污染状况探析 [J]. 环境科学, 2010, 31(1): 159-167. XIANG L, LI Y X, SHI J H, et al. Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing [J]. Environmental Science, 2010, 31(1): 159-167(in Chinese).
[32] 李琦路, 吴锦涛, 张颖, 等. 新乡市机动车排放对道路灰尘中重金属与多环芳烃污染的影响 [J]. 环境科学, 2019, 40(12): 5258-5264. LI Q L, WU J T, ZHANG Y, et al. Effects of vehicle emissions on heavy metals and polycyclic aromatic hydrocarbons pollution in road dust in Xinxiang [J]. Environmental Science, 2019, 40(12): 5258-5264(in Chinese).
[33] WANG Y Q, LI S P, WANG M M, et al. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi'an, China [J]. Science of the Total Environment, 2019, 689: 193-202. doi: 10.1016/j.scitotenv.2019.06.424 [34] LANZERSTORFER C, LOGIEWA A. The upper size limit of the dust samples in road dust heavy metal studies: Benefits of a combined sieving and air classification sample preparation procedure [J]. Environmental Pollution, 2019, 245: 1079-1085. doi: 10.1016/j.envpol.2018.10.131 [35] 冯精兰, 刘书卉, 申君慧, 等. 新乡市道路灰尘中PAHs的污染特征和来源解析 [J]. 环境化学, 2013, 32(4): 630-639. doi: 10.7524/j.issn.0254-6108.2013.04.014 FENG J L, LIU S H, SHEN J H, et al. Pollution characteristics and source appointment of polycyclic aromatic hydrocarbons(PAHs) in road dust from Xinxiang [J]. Environmental Chemistry, 2013, 32(4): 630-639(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.014