

DOI:10.7524/j.issn.0254-6108.2021061803

李凯,潘宁,梅如波,等.泰安市大气挥发性有机物污染特征及来源解析[J].环境化学,2022,41(2):482-490. LI Kai, PAN Ning, MEI Rubo, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian[J]. Environmental Chemistry, 2022, 41 (2): 482-490.

泰安市大气挥发性有机物污染特征及来源解析

凯1 潘 宁1 梅如波1 王玉军2* 李

(1.山东省泰安生态环境监测中心,泰安,271000;2.山东农业大学资源与环境学院,泰安,271000)

摘 要 2018 年夏季对泰安市城区站点的挥发性有机物 (VOCs) 进行监测,研究了其污染特征、臭氧生 成潜势 (OFP) 和特征污染物比值,利用 PMF 源解析模型对 VOCs 的来源进行了解析.结果表明,观测期 间泰安市 VOCs 体积分数平均值为 (16.57±7.99)×10⁻⁹, VOCs 中浓度占比最高的为 OVOCs(41.9%),其次为 烷烃 (30.8%)、芳香烃 (19.5%) 和烯烃 (7.8%),对 OFP 的贡献率最高的为芳香烃 (35.6%),其次为 OVOCs (35.5%)、烯烃(18.5%)和烷烃(10.5%); PMF来源解析结果显示,观测点 VOCs 最大的排放源为 LPG 和 溶剂挥发 (40.2%),其次分别为 OVOCs 源 (17.8%)、机动车排放 (17.4%)、工业排放 (11.8%)、植物源 (10.5%) 和电厂排放 (2.3%). 控制 LPG 和溶剂挥发是控制泰安市夏季 VOCs 污染的重要途径. 关键词 挥发性有机物,污染特征,臭氧生成潜势(OFP),来源解析,泰安.

Characteristics and source apportionment of ambient volatile organic compounds in Taian

LI Kai¹ $PAN Ning^1$ $MEI Rubo^1$ WANG Yujun² *

(1. Taian Eco-environmental Monitoring Center of Shandong Province, Taian, 271000, China; 2. College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China)

Ambient volatile organic compounds (VOCs) were monitored in Taian, Shandong Abstract Province, China in 2018. The VOC pollution characteristics, ozone generation potential (OFP), characteristic pollutants ratios and source apportionment conducted based on PMF were comprehensively analyzed. The results showed that the average concentration of VOCs was $(16.57\pm7.99) \times 10^{-9}$ during the observation and VOCs was dominated by OVOCs (41.9%), alkane (30.8%), aromatics (19.5%), alkene (7.8%). Aromatics, occupying 41.9%, made the greatest contribution to OFP, which were followed by OVOCs (35.5%), alkene (18.5%), alkane (10.5%). The source apportionment results of the PMF model showed six main sources of VOCs, namely LPG and solvent volatilization sources (40.2%), OVOCs sources (17.8%), motor vehicle emissions (17.4%), industrial emissions (11.8%), plant emissions (10.5%) and power plant emissions (2.3%). Overall, the concentration of ambient VOCs in Taian was strongly influenced by LPG and solvent volatilization, and the control of VOCs emitted from LPG and solvent volatilization should be strengthened to reduce the concentration of VOCs in Taian, further reducing the generation of ozone.

Keywords volatile organic compounds(VOCs), pollution characteristics, OFP, source apportionment, Taian.

²⁰²¹年6月18日收稿(Received: June 18, 2021).

^{*} 通信联系人 Corresponding author, Tel: 0538-8519726, E-mail: hjjclikai@163.com

近几年, 臭氧 (O₃) 已成为影响我国环境空气质量的重要因素, 其中京津冀及周边地区、长三角地 区以 O₃ 为首要污染物的超标天数占比已经超过 PM_{2.5}^[1-3]. 研究表明, 挥发性有机物(VOCs)可在紫外 线照射下与氮氧化物(NO_x)发生光化学反应, 产生光化学烟雾, 光化学烟雾的主要成分为 O₃^[4-5]. 因此, 作为 O₃ 重要前体物的 VOCs 到研究学者的广泛关注.

VOCs 种类繁多,不同种类的 VOCs 化学反应活性也不相同,研究 VOCs 的组成和来源特征对控制 O₃ 污染和揭示复合型大气污染的形成都具有重要意义^[6].目前国内关于 VOCs 的监测和研究主要集中在长江三角洲^[7-8]、珠江三角洲^[9-10]和京津冀^[11-12]等地区.山东半岛相关的研究较少,刘泽常等^[13]研究表明,济南市区 VOCs 的优势组分为 C3—C5 的烷烃、丙烯、顺-2-丁烯、间/对二甲苯和甲苯等,主要来源为汽车尾气、工业源和燃烧源.薛莲等^[14]发现青岛市大气 VOCs 中烯烃对臭氧的生成贡献远高于烷烃和芳香烃.张桢超^[15]发现威海市大气中,C2—C4 烯烃类、烷烃类和苯系物对臭氧的生成贡献率较高,VOCs 主要来源于机动车排放、工艺过程和溶剂使用.

泰安市地处山东省中部的泰山南麓,三面环山,属于内陆中小型城市.2016—2017年,泰安市 O3 最大 8 h 平均浓度分别为 197 μg·m⁻³ 和 210 μg·m⁻³,在全省分别排名第二位和第一位.臭氧已成为泰安 市夏、秋季节环境空气的首要污染物^[16].了解臭氧前体物 VOCs 的污染现状及来源对泰安市采取适当 措施改善空气质量具有重要意义.

本研究在泰安市城区建立一个观测站点,采用在线观测法,连续对站点大气中的 VOCs 进行监测, 分析其浓度特征,并利用特征比值和模型分析对 VOCs 进行来源解析,同时评估其臭氧生成潜势,以期 为泰安市大气环境 VOCs 和 O₃ 污染管控提供科学支撑.

1 实验与方法(Experiments and methods)

1.1 样品采集与分析

本次观测时间为 2018 年 6 月 1 日—7 月 11 日,可以反应泰安市夏季大气中 VOCs 的污染特点.监测地点位于泰安市泰山区的山东电力高等专科学校校院内 (36.18°N, 117.11°E),该观测点是泰安市的国控监测点,周边紧邻交通干线,同时分布着农贸市场、工业区、商业区和居民区,是典型的城市中心站点,观测点位置如图 1 所示.

NMHCs 的观测采用由中国科学院生态环境研究中心自主研发的 GC-FID-VOCs 在线监测仪 24 h 连续监测,采样时间分辨率为 1 h,毛细管色谱柱型号为 OV-1(30 m 柱长× 0.32 mm 直径× 1.0 µm 厚 度);采样时,通过采样泵以 50 mL·min⁻¹ 的流速将环境气体浓缩至温度为-80 ℃ 的吸附管中,然后升温 加热至 100 ℃ 进行热脱附,保持 6 min;同时以 5 mL·min⁻¹ 的 N₂ 流速将解吸的样品吹入 GC 毛细管色 谱柱中进行分离,此时将吸附管的温度升高至 220 ℃,以 60 mL·min⁻¹ 反吹 10 min 以清除残留;色谱柱 的程序升温如下:初始温度为-60 ℃,保持 3 min;以 12 ℃·min⁻¹ 升温至-20 ℃;以 6 ℃·min⁻¹ 升温至 30 ℃; 以 10 ℃·min⁻¹ 升温至 170 ℃,保持 2 min; FID 检测器的温度为 250 ℃,仪器共检测到 51 种物质,其中 包含 27 种烷烃、9 种烯烃和 15 种芳香烃^[16]. 醛酮类化合物 (OVOCs) 的观测采用涂有 2,4-二硝基苯肼 (DNPH) 衍生化试剂的硅胶小柱采集,每 2 h 采集 1 个样品,并采用高效液相色谱 (HPLC) 方法检测,共 检测出 15 种 OVOCs.

为了保证观测数据的有效性和可靠性, GC-FID-VOCs 在线监测仪每2d采用美国环保署认可的 Linde SPECTRA Environmental Gases 标准气体进行5点校准,校准时相关系数均在0.992—0.995;同时, 为了避免一些高反应性的 VOCs 物种的氧化损失,在采样吸附管的前端连接填充亚硫酸钠的捕集器, 用于去除空气中的氧化剂,每2d更换1次亚硫酸钠捕集器;高效液相色谱每2d进行曲线校准,每 20个样品分析一次校准曲线中间浓度点,每个目标化合物的测定结果与初始浓度值相对偏差≤30%^[16-17]. 除 VOCs 的观测外,同时观测环境空气中的 CO、SO₂和 NO_x等参数,监测仪器均采用赛默飞世尔科技 公司 i 系列的自动连续检测仪.

1.2 VOCs 化学活性评价

不同城市中大气 VOCs 的来源各异, VOCs 中各组分的浓度水平和化学活性也不同, 对大气 O3 生成的贡献也有差异. 臭氧生成潜势 (OFP) 是用最大增量反应活性方法评估挥发性有机化合物的光化学反应性, 并估算臭氧形成过程中单个有机化合物的贡献率¹¹⁸, 计算公式为:

$$OFP_i = [VOC_{Si}] \times MIR_i \tag{1}$$

式中, OFP_i为第 i 个 VOCs 物种的臭氧生成潜势, µg·m⁻³; [VOCs_i] 表示物种 i 的环境质量浓度, µg·m⁻³; MIR_i 为 VOCs 第 i 个物种最大增量反应中臭氧生成系数, 可在文献 [19] 中查出.

1.3 正交矩阵因子模型 (PMF) 分析

正交矩阵因子分析模型 (positive matrix factorization, PMF) 作为受体模型, 根据长时间序列的受体 化学组分数据集进行 VOCs 来源解析^[20]. PMF 计算过程中的基本公式为:

$$X_{ij} = \sum_{k=1}^{p} g_{ik} f_{kj} + e_{ij}$$
(2)

式中, *X_{ij}*为样本*i*中污染物*j*的浓度,×10⁻⁹; *p*表示污染源的数量; *g_{ik}*为第*k*个来源对第*i*个因子的贡献量,%; *f_{kj}*为第*k*个源中第*j*个组分的分布占比,%; *e_{ij}*为样本残差. PMF 模型主要是将目标函数 *Q*最小化^[21-22],目标函数 *Q*定义为:

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{e_{ij}}{u_{ij}}\right)^{2}$$
(3)

式中, n 为样本个数, m 为物种个数; u_{ij} 表示样本中物种的不确定性. 根据 PMF5.0 指导方法要求, 不确 定度的计算公式为:

unc. =
$$\begin{cases} \sqrt{(C \times \text{RSD})^2 + (0.5 \times \text{MDL})^2} & (C > \text{MDL}) \\ \frac{5}{6} \text{MDL} & (C \le \text{MDL}) \end{cases}$$
(4)

式中, unc. 表示样本中物种的不确定度; C表示样本中物种的浓度; RSD 表示相对标准偏差; MDL 表示检出限.

2 结果与讨论(Results and discussion)

2.1 大气 VOCs 的浓度水平及组成特征

观测期间采样频率为1h, VOCs浓度平均值为(16.57±7.99)×10⁻⁹(体积分数).由表1可知,观测期间 VOCs浓度水平最高的物种是甲醛(3.18±2.09)×10⁻⁹和丙酮(2.02±1.27)×10⁻⁹,其次为丙烷(1.71±1.41)×10⁻⁹、乙醛(1.39±0.61)×10⁻⁹和丁烷(0.92±0.88)×10⁻⁹.由图2可以看出,整个监测期间 VOCs四大组分浓度顺序依次为:OVOCs(41.9%)>烷烃(30.8%)>芳香烃(19.5%)>烯烃(7.8%).

Tab	ble 1 Concentrations and OFP of main VOCs species during the observation period			
序号 Serial number	平均浓度		臭氧生成潜势	
	Average cond	tentration 数值(x10 ⁻⁹)		<u>FP</u> 数值/(ug.m ⁻³)
	Species	又由(×10) Value	Species	Value
1	甲醛	3.18±2.09	甲醛	40.34±26.52
2	丙酮	2.02±1.27	间/对-二甲苯	20.51±14.96
3	丙烷	1.71±1.41	乙醛	17.87±7.90
4	乙醛	1.39±0.61	异戊二烯	15.44±14.10
5	丁烷	0.92±0.88	间二乙基苯	14.59±11.71
6	甲苯	0.88±0.67	甲苯	14.52±10.96
7	异戊烷	0.81±0.43	戊醛	12.10±8.01
8	苯乙烯	0.72±1.13	正戊烯	11.90±7.36
9	戊醛	0.62±0.41	丁醛	10.74±2.46
10	苯	0.60±0.39	间-甲基苯甲醛	10.01±7.20
11	丁醛	0.56±0.13	邻-二甲苯	8.54±8.36
12	正戊烯	0.53±0.33	1,2,4-三甲基苯	7.86±4.77
13	异丁烷	0.50±0.44	1,3,5-三甲基苯	7.77±6.62
14	异戊二烯	0.48 ± 0.44	对二乙基苯	7.76±5.27
15	丁烯醛	0.47±0.33	反-2-戊烯	6.15±3.47
16	乙苯	0.33±0.30	丙烯	5.83±5.59
17	十二烷	0.32±0.13	苯乙烯	5.77±9.12
18	戊烷	0.31±0.27	顺-2-丁烯	5.62±3.80
19	间/对-二甲苯	0.28±0.20	苯甲醛	5.28±2.75
20	丙醛	0.27±0.14	丙醛	5.02±2.57

表1 观测期间主要 VOCs 物种的浓度和 OFP 值

由于 VOCs 来源的不同和化学活性的差异,导致 VOCs 组分浓度的日变化特征也不同,分析 VOCs 浓度日变化特征是探讨其来源的重要手段之一.图 3 给出了观测站点大气中烷烃、烯烃、芳香烃 和 OVOCs 的日变化趋势.烷烃、芳香烃和 OVOCs 日变化趋势较为一致,整体呈现夜间高白天低的变 化特征;因为早晚存在较强的人类活动,如城市地区机动车尾气排放等,同时早晚大气较稳定,不利于 VOCs 的扩散;中午及下午对流强,边界层抬升,有利于污染物的扩散,同时中午和下午太阳辐射强,大 气光化学反应活性剧烈,也会消耗一定量的 VOCs,造成大气中 VOCs 的浓度下降.然而,烯烃在白天出 现了显著抬升的变化特征,这主要是来自于植物活动排放异戊二烯的重要贡献^[23-24],在白天随着太阳 辐射的增强,异戊二烯排放量明显增加,在午后达到峰值,16:00 以后由于植物活性等影响,其浓度快速 下降.

对于烷烃,由于观测站点靠近蔬菜批发市场,运输车辆工作较早,受交通早高峰影响,在06:00 出现峰值,随后太阳辐射增强,光化学反应消耗增加,浓度逐渐降低,在17:00 以后,光化学反应消耗停止并随着市内交通晚高峰到来,污染物的浓度逐渐积累.芳香烃和OVOCs 相对于烷烃和烯烃峰型规律 没那么明显,芳香烃在中午出现了浓度升高的趋势,说明芳香烃类除来源于机动车排放外,还受溶剂挥 发和化工企业排放的影响;OVOCs 夜晚浓度较高,日出后出现微弱下降,随后缓慢抬升,在正午 12:00 左右发生快速下降达到最低,而后又快速抬升一直维持到深夜,说明除来自一次排放外,二次贡献生成和区域气象因素对其也有重要影响.

2.2 大气 VOCs 臭氧生成潜势特征

环境空气中 VOCs 组分的化学反应活性不同, 对 O₃ 的形成影响也不同, 识别对大气 O₃ 贡献较大 VOCs 物种, 对于制定有效的减排控制措施意义重大^[25].由表 1 可知, 观测点观测期间甲醛 (40.34± 26.52) µg·m⁻³、间/对-二甲苯 (20.51±14.96) µg·m⁻³、乙醛 (17.87±7.90) µg·m⁻³、异戊二烯 (15.44±14.10) µg·m⁻³ 和间二乙基苯 (14.59±11.71) µg·m⁻³ 是 OFP 值最高的 5 种 VOCs 物种.由图 4 可知, 观测期间大气 VOCs 四大类别对 OFP 贡献率顺序为: 芳香烃 (35.6%) > OVOCs(35.5%) > 烯烃 (18.5%) > 烷烃 (10.5%). 烷烃 化合物 VOCs 浓度占比最高, 但化学反应活性低, 故对 OFP 的贡献较小^[26-27]; 烯烃中异戊二烯的浓度 水平较高, 且所含的碳碳双键化学反应活性强, 对 OFP 的贡献较大, 异戊二烯主要来源于植物活动排放, 说明植物源对大气中 O₃ 的生成有重要贡献^[20]; 芳香烃和 OVOCs 浓度水平和臭氧生成潜势都较高, 因此, 控制芳香烃和 OVOCs 的排放是未来控制泰安市臭氧污染的关键.

图 4 VOCs 各组分对 OFP 的贡献 Fig.4 Contribution of VOCs components to OFP

2.3 泰安市 VOCs 来源解析

2.3.1 典型物种特征比值分析

VOCs组分中,与·OH具有相似反应速率的的特征污染物之间的比值,可以反映其来源特征.戊烷 在环境中主要来源于机动车尾气、天然气排放、燃料和液体汽油挥发,正戊烷(*n*-pentane)和异戊烷(*i*pentane)具有相似的物理和化学性质,异戊烷/正戊烷的值可以初步判断其来源,当比值范围为 0.82— 0.89时,来源为天然气排放,比值范围为 2.20—3.80时,来源为机动车尾气,比值范围在 1.50—3.00 时为液态汽油排放,比值范围在 1.80—4.60时为燃料挥发,比值范围大于 4.60 时为其他源^[28].图 5(a) 分别给出了异戊烷/正戊烷不同的比值线,可知观测点异戊烷和正戊烷的比值大部分分布在 1.80—4.60之间,表明机动车尾气、液态汽油排放和燃料挥发都对其有贡献作用,而天然气排放对戊 烷的来源贡献较少,其它源对其来源也有贡献.利用特征比值法分析可以看出异戊烷和正戊烷的比值 较为分散,异戊烷和正戊烷的来源复杂,并不是单一来源,特征比值法无法很好的解析其来源.

Fig.5 Characteristic ratios of typical species

芳香烃是泰安市大气 VOCs 中对 O₃ 生成贡献最大的物种,苯 (benzene) 与甲苯 (toluene) 的比值 (B/T) 常用来判断芳香烃在环境中的来源,当苯/甲苯值不大于 0.20 时,判断其来源为工业溶剂,机动车 尾气源为 0.50—0.60, 燃煤源为 1.50—2.20, 生物质燃烧源比值约为 2.50^[29]. 由图 5(b) 分别给出了苯/甲苯的不同比值线,可以看出苯和甲苯比值分布在 0.20—2.20 之间,表明机动车尾气和燃煤源对其有贡 献作用,经线性拟合的比值为 0.56, 与机动车尾气排放比值相近,进一步表明机动车尾气排放对观测点 大气 VOCs 和 O₃ 有重要贡献. B/T 的值不只受到其来源的影响,还受到大气氧化性的影响,甲苯的光 化学反应活性要大于苯, B/T 的值相较于异戊烷/正戊烷也更为分散; 另一方面 B/T 的值受风向影响较 大,西南风向上有较高的甲苯浓度,表明污染物传输对其比值有影响.

综上,观测点位于城市中心点,VOCs的来源更为复杂,特征污染物的比值范围较为分散,简单的特征比值法无法准确的解析出污染物的来源,需要与PMF模型解析的结果进行相互印证.

2.3.2 PMF 模型解析

针对观测点的 VOCs 数据,选取了来源指示性强和监测数据相对完整 VOCs 物种输入到 PMF 模

型中,同时将观测的 CO、NO_x和 SO₂数据纳入计算,帮助识别排放源,最终共识别出 6 类因子,各类因 子的源成分谱特征如图6所示.

Fig.6 Source composition spectrum of VOCs species during observation period

第一类因子中甲醛、乙醛和丙酮等 OVOCs 所占的百分比较高,因此将此类因子归为 OVOCs 源. 第二类因子中, C2—C4 烯烃和烷烃为优势组分, C2—C4 烯烃和烷烃是 LPG 和溶剂挥发的关键物 种[12,30],因此,将此类因子归为 LPG 和溶剂挥发源. 第三类因子具有高组分的 CO 和苯,工业燃烧过程 中可排放大量的 CO, 苯也是工业燃烧过程中重要的特征指示物[31], 故将此类因子归为工业排放. 第四 类因子具有高组分的 SO₂, 电厂可排放大量的 SO₂, 因此, 将此类因子归为电厂排放. 第五类因子的优 势组分为苯系物和烷烃,根据之前特征比值分析出异戊烷、正戊烷、苯和甲苯的主要来源都有机动车 尾气排放,且C8-C10 烷烃是柴油发动机排放尾气的标志^[33],因此,将此类因子归为包括汽油车与柴 油车的机动车尾气排放.第六类因子的优势组分为异戊二烯,城市中的异戊二烯大部分来源于植物活 动排放,另外机动车尾气也会排放一部分排放,但该因子中与机动车尾气相关的其它 VOCs 物种贡献 率都不高,因此将此类因子定义为植物排放源.

图 7 为 PMF 解析出 6 类 VOCs 排放源在观测期间对 VOCs 的相对贡献结果,可以看出,观测期 间 VOCs 最大的排放源为 LPG 和溶剂挥发源 (40.2%), 其次分别为 OVOCs 源 (17.8%)、机动车排放 (17.4%)、工业排放(11.8%)、植物源(10.5%)和电厂排放(2.3%).因此,控制燃烧源和工业溶剂排放是 控制泰安市夏季 VOCs 污染的重要途径.

3 结论(Conclusion)

(1)观测期间 VOCs 浓度平均值为(16.57±7.99)×10⁻⁹,其中 OVOCs 占比最高为41.9%,烷烃占比为 30.8%,芳香烃为19.5%,烯烃为7.8%.烷烃、芳香烃和OVOCs 日变化趋势较为一致,整体呈现夜间高 白天低的变化特征,而烯烃受到植物源排放异戊二烯的影响,在白天出现了显著抬升的变化特征. VOCs 物种中平均浓度水平最高的前5种是甲醛、丙酮、丙烷、乙醛和丁烷.观测期间大气 VOCs 四大 类别对 OFP 贡献率顺序为:芳香烃 > OVOCs > 烯烃 > 烷烃,其中甲醛、间/对-二甲苯、乙醛、异戊二烯 和间二乙基苯是 OFP 水平最高的5种 VOCs 物种.

(2)观测点 VOCs 来源解析结果显示, 观测期间泰安市 VOCs 最大的排放源为 LPG 和溶剂挥发 (40.2%), 其次分别为 OVOCs 源 (17.8%)、机动车排放 (17.4%)、工业排放 (11.8%)、植物源 (10.5%) 和电 厂排放 (2.3%). 因此, 控制 LPG 和溶剂挥发是控制泰安市夏季 VOCs 和 O₃ 污染的重要途径.

参考文献 (References)

- WANG T, WEI X L, DING A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994—2007 [J]. Atmospheric Chemistry and Physics, 2009, 9(16): 6217-6227.
- [2] SUN L, XUE L K, WANG T, et al. Significant increase of summertime ozone at Mount Tai in Central Eastern China [J]. Atmospheric Chemistry and Physics, 2016, 16(16): 10637-10650.
- ZHANG Q, YUAN B, SHAO M, et al. Variations of ground-level O₃ and its precursors in Beijing in summertime between 2005 and 2011 [J]. Atmospheric Chemistry and Physics, 2014, 14(12): 6089-6101.
- [4] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638.
- [5] ZHU Y H, YANG L X, CHEN J M, et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013 [J]. Atmospheric Environment, 2016, 124: 156-165.
- [6] DENG Y Y, LI J, LI Y Q, et al. Characteristics of volatile organic compounds, NO₂, and effects on ozone formation at a site with high ozone level in Chengdu [J]. Journal of Environmental Sciences, 2019, 75: 334-345.
- [7] XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China [J]. Atmospheric Environment, 2017, 168: 112-124.
- [8] CAICJ, GENGFH, TIEXX, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China [J]. Atmospheric Environment, 2010, 44(38): 5005-5014.
- [9] 罗玮, 王伯光, 刘舒乐, 等. 广州大气挥发性有机物的臭氧生成潜势及来源研究 [J]. 环境科学与技术, 2011, 34(5): 80-86. LUO W, WANG B G, LIU S L, et al. VOC ozone formation potential and emission sources in the atmosphere of Guangzhou [J]. Environmental Science & Technology, 2011, 34(5): 80-86(in Chinese).
- [10] 邹宇,邓雪娇,王伯光,等.广州番禺大气成分站挥发性有机物的污染特征 [J].中国环境科学, 2013, 33(5): 808-813.
 ZOU Y, DENG X J, WANG B G, et al. Pollution characteristics of volatile organic compounds in Panyu composition station [J]. China Environmental Science, 2013, 33(5): 808-813(in Chinese).
- [11] LI L Y, XIE S D, ZENG L M, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China [J]. Atmospheric Environment, 2015, 113: 247-254.
- [12] WU R R, LI J, HAO Y F, et al. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China [J]. Science of the Total Environment, 2016, 560/561: 62-72.
- [13] 刘泽常,李娜,侯鲁健,等.济南市环境空气VOCs污染特征及来源识别 [J]. 中国环境监测, 2014, 30(6): 83-88. LIU Z C, LI N, HOU L J, et al. Pollution characteristics and source identification of VOCs in ambient air of Ji'nan [J]. Environmental

Monitoring in China, 2014, 30(6): 83-88(in Chinese).

- [14] 薛莲, 王静, 冯静, 等. 青岛市环境空气中VOCs的污染特征及化学反应活性 [J]. 环境监测管理与技术, 2015, 27(2): 26-30.
 XUE L, WANG J, FENG J, et al. Pollution characteristics and chemical reactivity of ambient VOCs in Qingdao [J]. The Administration and Technique of Environmental Monitoring, 2015, 27(2): 26-30(in Chinese).
- [15] 张桢超. 某典型沿海城市VOCs源清单的建立及其来源解析研究[D]. 济南: 山东师范大学, 2019. ZHANG Z C. Establishment and source analysis of VOCs source list in A typical coastal city[D]. Jinan: Shandong Normal University, 2019(in Chinese).
- [16] 李凯,刘敏,梅如波.泰安市大气臭氧污染特征及敏感性分析 [J].环境科学, 2020, 41(8): 3539-3546.
 LI K, LIU M, MEI R B. Pollution characteristics and sensitivity analysis of atmospheric ozone in Taian city [J]. Environmental Science, 2020, 41(8): 3539-3546(in Chinese).
- [17] LIU C T, MU Y J, ZHANG C L, et al. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2—C12 hydrocarbons [J]. Journal of Chromatography A, 2016, 1427: 134-141.
- [18] 杨帆. 长治市环境空气中挥发性有机物特征及来源研究[D]. 北京: 华北电力大学(北京), 2019. YANG F. Characteristics and sources apportionment of ambient volatile organic compounds in Changzhi[D]. Beijing: North China Electric Power University, 2019(in Chinese).
- [19] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds [J]. Air & Waste, 1994, 44(7): 881-899.
- [20] 任义君,马双良,王思维,等.郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析 [J].环境科学,2020,41(6): 2577-2585.

REN Y J, MA S L, WANG S W, et al. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou [J]. Environmental Science, 2020, 41(6): 2577-2585(in Chinese).

- [21] BROWN S G, FRANKEL A, HAFNER H R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization [J]. Atmospheric Environment, 2007, 41(2): 227-237.
- [22] 杨健.安阳市城区臭氧污染特征及影响因素研究[D].郑州:郑州大学,2020.
 YANG J. Study on the characteristics and influencing factors of ozone pollution in Anyang city[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese).
- [23] GAO J, ZHANG J, LI H, et al. Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account - A case study in a typical urban area in Beijing [J]. Science of the Total Environment, 2018, 628/629: 791-804.
- [24] 刘成堂. 大气中挥发性有机物的检测技术及其应用[D]. 北京: 中国科学院大学, 2016.
 LIU C T. Detection technology and application of volatile organic compounds in the atmosphere[D]. Beijing: University of Chinese Academy of Sciences, 2016(in Chinese).
- [25] 张敬巧,吴亚君,李慧,等. 廊坊开发区秋季VOCs污染特征及来源解析 [J]. 中国环境科学, 2019, 39(8): 3186-3192.
 ZHANG J Q, WU Y J, LI H, et al. Characteristics and source apportionment of ambient volatile organic compounds in autumn in Langfang development zones [J]. China Environmental Science, 2019, 39(8): 3186-3192(in Chinese).
- [26] 贾双庆,周速,程远.新乡市环境空气中挥发性有机物(VOCs)污染特征及来源解析 [J].中国环境管理干部学院学报,2019,29(3):68-71,76.
 JIA S Q, ZHOU S, CHENG Y. Characteristics and sources apportionment of volatile organic compounds(VOCs) in Xinxiang [J].
 - JIA S Q, ZHOU S, CHENG Y. Characteristics and sources apportionment of volatile organic compounds(VOCs) in XinXiang [J]. Journal of Environmental Management College of China, 2019, 29(3): 68-71,76(in Chinese).
- [27] 赵乐,刘新军,范莉茹,等. 石家庄夏季典型时段臭氧污染特征及来源解析 [J]. 中国环境监测, 2019, 35(4): 78-84.
 ZHAO L, LIU X J, FAN L R, et al. Pollution characteristic and source apportionment of VOCs during summer typical periods in Shijiazhuang [J]. Environmental Monitoring in China, 2019, 35(4): 78-84(in Chinese).
- [28] ZHENG H, KONG S F, XING X L, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year [J]. Atmospheric Chemistry and Physics, 2018, 18(7): 4567-4595.
- [29] HSIEH L T, YANG H H, CHEN H W. Ambient BTEX and MTBE in the neighborhoods of different industrial Parks in Southern Taiwan [J]. Journal of Hazardous Materials, 2006, 128(2/3): 106-115.
- [30] YAN Y L, PENG L, LI R M, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China [J]. Environmental Pollution, 2017, 223: 295-304.
- [31] 张玉欣,安俊琳,林旭,等.南京北郊冬季挥发性有机物来源解析及苯系物健康评估 [J]. 环境科学, 2017, 38(1): 1-12.
 ZHANG Y X, AN J L, LIN X, et al. Source apportionment of volatile organic compounds and health assessment of benzene series in northern suburb of Nanjing in winter [J]. Environmental Science, 2017, 38(1): 1-12(in Chinese).
- [32] FUJITA E M. Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone Study [J]. Science of the Total Environment, 2001, 276(1/2/3): 171-184.