改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升

王启镔, 李浩, 董旭, 卢伟, 汪力, 杜建丽, 李建伟, 陈磊. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
引用本文: 王启镔, 李浩, 董旭, 卢伟, 汪力, 杜建丽, 李建伟, 陈磊. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
WANG Qibin, LI Hao, DONG Xu, LU Wei, WANG Li, DU Jianli, LI Jianwei, CHEN Lei. Process optimization regulation scheme of a full-scale modified A2/O wastewater treatment plant and its improvement of simultaneous nitrogen and phosphorus removal efficiency[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
Citation: WANG Qibin, LI Hao, DONG Xu, LU Wei, WANG Li, DU Jianli, LI Jianwei, CHEN Lei. Process optimization regulation scheme of a full-scale modified A2/O wastewater treatment plant and its improvement of simultaneous nitrogen and phosphorus removal efficiency[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059

改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升

    作者简介: 王启镔(1983—),男,博士,高级工程师,wangqibin188@163.com
    通讯作者: 汪力(1977—),男,博士,高级工程师,wangli@bewg.net.cn
  • 中图分类号: X703.1

Process optimization regulation scheme of a full-scale modified A2/O wastewater treatment plant and its improvement of simultaneous nitrogen and phosphorus removal efficiency

    Corresponding author: WANG Li, wangli@bewg.net.cn
  • 摘要: 以一座处理规模为10×104 m3·d−1的市政污水处理厂为研究对象,分析了优化调控参数对系统污水处理效果的影响,并探讨了各构筑物对脱氮除磷的贡献。结果表明:在改变曝气及回流方式后,出水TN和TP同步下降;厌氧池为氮磷去除的主要场所,TN、TP在厌氧池中的削减量分别占其总削减量的70.8%和89.5%;在生物除磷实验中,厌氧段平均释磷速率(以每克VSS计)为3.35 mg ·h−1;好氧吸磷和缺氧吸磷实验证实,反硝化除磷菌(DPAO)占生物聚磷菌(PAO)的90%以上,且DPAO可在好氧段吸磷。在对工艺进行优化调控后,系统出水水质均可达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准,同时还可实现节能降耗、降低污水处理成本。本研究结果可为同类市政污水处理厂的性能提升提供参考。
  • 据中国自行车协会统计,2020年中国电动自行车产量达到4 126.1×104[1],截至2020年全社会电动自行车保有量接近3×109[2]。由于疫情的影响,外卖、快递的延展变得更加广泛,电动自行车需求量呈爆发式增长,其生产过程产生大量工业废水。其中,电泳涂装废水具有组分复杂、水质水量变化大、难降解等特点[3-5],成为高效处理电泳涂装废水的关键。

    芬顿法为通过H2O2与Fe2+在酸性条件下生成强氧化能力的·OH,进而降解废水中有机污染物,同时生成的Fe(OH)3可以通过絮凝以沉淀有机物和磷酸盐。因其不会产生二次污染,被广泛应用于工业废水处理。王小晓等[6]采用Fenton-混凝应急处理汽车涂装废水,在pH=3~5、H2O2为1.7 g·L−1、FeSO4·7H2O为1.75 g·L−1时,反应10 min后,COD、TP、SS及各种金属离子均达到一级排放标准。杨晨曦等[7]在处理涂料废水时发现,在pH=2、H2O2投量为理论投加量的1.5倍、n(H2O2/Fe2+)=8时,COD去除率可达60.12%。陈烨等[8]使用Fenton法处理汽车涂装废水时发现,在pH=4、H2O2为2.97 g·L−1n(H2O2/Fe2+)=3、反应70 min后,COD去除率为71.4%。刘强[9]的研究表明,在H2O2投量为0.6 g·L−1、FeSO4·7H2O投量为0.2 g·L−1、氧化反应60 min后,COD和SS去除率分别为90.0%和98.3%。其他研究者[10-13]采用Fenton方法处理涂装废水,也取得较好的处理效果。但因为不同的生产工艺和原料所产生各废水污染物的组分和浓度不同,以上Fenton处理涂装废水的反应条件和处理效果有差异。因此,针对某种涂装废水,需做小试研究其适宜的Fenton氧化反应条件。因实际涂装废水的水质有波动,研究Fenton氧化涂装废水的反应动力学可指导实际废水处理工程。本研究以某电动自行车生产企业的涂装废水为研究对象,探索了温度、底物对其反应动力学影响的规律,优化了Fenton处理涂装废水的工艺条件,以期为类似涂装废水的处理提供参考.

    实验原水取自江苏某电动自行车制造企业的涂装车间,该车间生产工序包括脱脂、陶化、电泳和喷涂。其中采用新型陶化工艺取代了传统的磷化工艺,具有不含Fe、Zn、Pb等重金属的优点。原水主要含有苯类、醇类和助剂等,pH=6.0~8.0,COD为1 000~1 500 mg·L−1,TP为10~15 mg·L−1,B/C比约为0.12。实验所用试剂为30%H2O2(质量分数)、NaOH、 H2SO4、七水合硫酸亚铁(FeSO4·7H2O)、聚丙烯酰胺(PAM)。

    芬顿氧化实验:取100 mL原水于若干个烧杯中,并放于恒温磁力搅拌器上,调节pH,投加H2O2和FeSO4·7H2O,以200 r·min−1进行搅拌,反应结束后将pH调至10,加入适量PAM,搅拌后静置沉淀0.5 h。每组平行实验3次。

    pH条件优化。在H2O2为0.6 g·L−1、FeSO4·7H2O为0.8 g·L−1、反应时间为2.5 h的条件下,分别在pH为1、2、3、4、5、6的条件下进行芬顿实验。

    H2O2投加量优化。在上述优化后的最佳pH、FeSO4·7H2O为3 g·L−1、反应时间为2.5 h的条件下,H2O2投加量分别为1、2、3、4、5、6 g·L−1,进行芬顿氧化实验。

    H2O2的理论投加量按式(1) [7]进行计算。

    D=C(COD)M(H2O2)M(O)=2.215C(COD) (1)

    式中:D为H2O2理论投加量,g·L−1C(COD)为耗氧有机物(以COD计)的质量浓度,g·L−1M(H2O2)为H2O2的摩尔质量,g·mol−1M(O)为O的摩尔质量,g·mol−1

    FeSO4·7H2O投加量优化:在最佳pH、最佳H2O2、氧化反应时间2.5 h的条件下,设置FeSO4·7H2O分别为1、2、3、4、5、6 g·L−1进行芬顿实验。

    氧化时间优化:在最佳pH、H2O2、FeSO4·7H2O条件下,设置氧化时间分别为30、60、90、120、150、180、210 min进行芬顿实验。

    依据Box-Benhnken实验设计原理,固定反应时间,以COD去除率为响应值,以单因素实验中pH(A)、H2O2(B)、FeSO4·7H2O(C)的最优结果为中心水平(0),结合高水平(+1)和低水平(-1),利用响应曲面法优化Fenton氧化条件,各因素水平和编码见表1

    表 1  响应面设计因素与水平
    Table 1.  Factors and levels of response surface design
    因素因素编码因素水平
    pHA−101
    H2O2/(g·L−1)B−101
    FeSO4·7H2O/(g·L−1)C−101
     | Show Table
    DownLoad: CSV

    分别以零级反应动力学(式(2))、一级反应动力学(式(3))、二级反应动力学(式(4))和三级反应动力学(式(5))对Fenton氧化有机物的降解过程进行拟合。

    Ct=C0kt (2)
    lnCtC0=kt (3)
    C1tC10=kt (4)
    12(C2tC20)=kt (5)

    式中:Ctt时刻的COD值,mg·L−1C0为原水COD值,mg·L−1k为动力学反应速率常数,min−1t为反应时间,min。

    根据Arrhenius方程,建立Fenton完全氧化最优工艺条件时的表观动力学模型,lnk与1/T之间存在线性关系,如式(5)所示。探索Fenton在15、25、35 ℃时完全氧化本涂装废水的动力学特性,获得反应速率常数的温度修正关系。

    lnk=lnA0EaRT (6)

    式中:k为速率常数,min−1A0为频率因子,min−1Ea为活化能,J·mol−1R为通用气体常数,J·(mol·K)−1T为反应绝对温度,K。

    在响应面实验得到的最优pH和n(H2O2/Fe2+)条件下,固定Fenton完全氧化反应时间,改变H2O2投加量分别为0.4、0.5、0.7、1、1.3、2、4 g·L−1,研究其对COD去除率与B/C比的影响,探索Fenton氧化作为电动自行车涂装废水预处理工艺的可能性。

    COD采用重铬酸盐法测定(HJ 828-2017);TP采用钼酸铵分光光度法测定(GB 11893-89);BOD5采用稀释培养法测定(HJ 505-2009);pH采用玻璃电极法测定(上海仪电PHS-3C)。

    1) pH条件优化。如图1所示,pH从1升至6的过程中,COD去除率先增加再降低。反应体系中过量的H+会阻碍Fe3+转变为Fe2+,抑制催化反应的氧化能力[14],因此,pH并非越低越好。当pH由1增大至3时,随着活性位点数量增加[15],反应速率大幅升高,COD去除率随之升高;当pH 3时,COD去除率达到最高。由式(7)可知,溶液中不断增加的OH会使(·OH)供应不足,且易造成Fe(OH)3铁盐沉淀,阻断链式反应,H2O2和Fe2+难以形成有效的氧化还原系统[16]。因此,在本研究中,当pH ≥ 5时,COD去除率大幅度降低。溶液中TP含量随着pH的增大而逐渐升高。这是由于当氢氧根离子含量变多时,会优先与Fe3+反应生成铁盐沉淀[17],减少了Fe3+与磷酸盐的结合量,使TP去除率下降。王小晓等[6]采用Fenton工艺应急处理某涂装废水,溶液初始pH为3~5;杨晨曦等[7]研究Fenton氧化处理涂料废水,初始pH为2;LI 等[10]研究表明在酸性条件下,Fenton可以氧化涂装废水中的有机物,但涂装废水中主要有机物组分和浓度的不同导致各研究的最优pH条件略有不同。综合COD和TP的去除效果,本研究中最优pH为3。

    图 1  pH对COD和TP去除的影响
    Figure 1.  Effect of pH on COD and TP removal
    H2O2+Fe2++H+Fe3++H2O+OH (7)

    2) H2O2投加量优化。如图2所示,H2O2投加量从1 g·L−1增加到4 g·L−1时,COD最高去除效率达77.75%。增加H2O2能分解产生更多的(·OH)量,有利于提高污染物去除率[18]。但由式(8)可知,H2O2过量会强化(·OH)与H2O2发生复合反应,造成产生的·OH湮灭,导致氧化能力下降;另一方面,过量H2O2分解的O2会携带小絮体上浮,形成浮泥[19]。TP的去除效率无较大波动,为97.50%~99.19%,TP出水浓度稳定在1 mg·L−1以下。故可由COD的去除效果判定H2O2投加量4 g·L−1为宜。由式(1)可得H2O2投加量为1.7 D。于常武等[11]的研究表明,在原水COD为3 280 mg·L−1、pH=3、n(COD/H2O2)=1∶3,即H2O2投加量为6 D时,COD去除率为86%。本研究中COD去除率虽然略低,但H2O2的相对投量比较低。

    图 2  H2O2投加量对COD和TP去除的影响
    Figure 2.  Effect of H2O2 dosage on COD and TP removal
    H2O2+OHH2O+HO2 (8)

    3) FeSO4·7H2O投加量优化。如图3所示,当催化剂Fe2+含量较少时,COD去除率不高。这是因为活性位点少,有效氧化剂(·OH)产生的速度较慢[20-21]。随着FeSO4·7H2O投加量的加大,产生更多(·OH),使体系内有机物的去除效率逐步提高。当投加量为5 g·L−1时,获得COD最高去除效率达84%。但投加量为4 g·L−1和5 g·L−1时,COD出水浓度只相差4 mg·L−1。氧化后生成的Fe3+是去除PO43-的主要物质,所以FeSO4·7H2O投加量与TP去除率的关系表现为正相关。但溶液中Fe2+过量时,会导致(·OH)不必要消耗,且Fe2+还会被氧化成有色的Fe3+,造成出水溶液偏棕黄色,增加废水的后续处理难度。综合反应效果及经济成本,FeSO4·7H2O投量4 g·L−1(H2O2/Fe2+摩尔比为8.2:1)为宜。陈烨等[8]Fenton氧化某汽车涂装废水,得到n(H2O2/Fe2+)=3时处理效果最优,COD去除率达71.4%;孙水裕等[12]在进水COD为1.5~2.5 g·L−1n(H2O2/Fe2+)=3时处理效果最优,COD去除率达75%左右;谢永华等[13]得到n(H2O2/Fe2+)=6时处理效果最优,COD去除率达到峰值53%左右。本实验得到的n(H2O2/Fe2+)=8.2,FeSO4·7H2O投药量更少且去除率更高,达80%,更具有优势。

    图 3  FeSO4·7H2O投加量对COD和TP去除的影响
    Figure 3.  Effect of FeSO4·7H2O dosage on COD and TP removal

    4)反应时间优化。如图4所示,在反应时间0~120 min内,COD去除率呈线性增长趋势,120 min时反应已基本完成,随后的COD去除率曲线逐渐趋于平缓。TP的去除率基本保持稳定,TP出水小于1 mg·L−1。当反应时间足够时,Fenton试剂与原水的分子接触碰撞概率较大,能使工艺处理效能最大化[22]。因此,确定本涂装废水的最佳氧化反应时间为120 min。

    图 4  反应时间对COD和TP去除的影响
    Figure 4.  Effect of reaction time on COD and TP removal

    当反应时间为120 min时,Fenton氧化已基本完成,TP去除率始终高于98%,因此反应时间、TP去除率不作为影响因素。仅以COD去除率为响应值Ƞ,利用响应曲面法研究pH、H2O2和FeSO4·7H2O对Fenton氧化涂装废水的影响,实验结果如表2所示。

    表 2  响应曲面法实验结果
    Table 2.  Experimental results of response surface method
    实验号A(pH)B(H2O2 /(g·L−1))C(FeSO4·7H2O /(g·L−1))COD去除率/%
    123467.54
    233372.93
    334481.65
    444374.77
    534481.19
    635576.97
    734482.26
    845473.98
    935371.74
    1044578.04
    1133569.16
    1234481.53
    1325468.82
    1434481.97
    1524573.53
    1643469.51
    1724372.16
     | Show Table
    DownLoad: CSV

    通过多元回归拟合,获得关于响应值Ƞ的回归方程(式(9))。其方差分析和显著性检验如表3所示。

    表 3  COD去除率的响应面模型方差分析极显著性检验
    Table 3.  Analysis of variance and extreme significance test of response surface model based on COD removal rate
    方差来源平方和自由度均方FP显著性
    模型422.83946.98163.020.000 1显著
    A25.70125.7089.190.000 1显著
    B19.41119.4167.340.000 1显著
    C4.6514.6516.140.005 1显著
    AB2.4012.408.340.023 4显著
    AC0.9010.903.130.120 1不显著
    BC20.25120.2570.270.000 1显著
    A2102.231102.23354.740.000 1显著
    B2197.711197.71686.040.000 1显著
    C219.78119.7868.640.000 1显著
    残差2.0270.29
    失拟1.3430.452.650.185 3不显著
    纯误差0.6840.17
    总和424.8516
     | Show Table
    DownLoad: CSV
    η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC4.93AA6.85BB2.17CC (9)

    COD去除率响应面模型P<0.000 1,有极其显著的统计学差异;而失拟项P>0.05,不显著,回归模型显著可靠。根据模型中P值的显著性分析,A、B、BC、A2、B2、C2对COD响应值的影响为极显著;C、AB为显著影响;AC无显著影响。F值可以判断实验因素对实验结果的影响程度[23-24]。本研究中,各因素对Fenton氧化电动自行车涂装废水的影响显著性为pH>H2O2>FeSO4·7H2O。

    等高线可直观呈现反应条件之间交互作用的显著情况,越倾斜椭圆状则交互作用越强烈[25]。如图5(a)所示,当固定FeSO4·7H2O浓度时,响应值随H2O2浓度的增大呈现先升高后降低的明显变化,变化梯度较大。而当H2O2浓度稳定在投量区间时,响应值随FeSO4·7H2O浓度的增大而先升高后降低,但变化幅度小于H2O2图5(b)的紧密等高线和对角线方向的斜椭圆,表明H2O2和FeSO4·7H2O的交互作用非常显著,说明对Fenton氧化过程至关重要。由图5(c)和图5(d)可见,响应值随着H2O2和pH的升高而先增加后降低,陡峭的曲面证明了H2O2和pH存在一定的交互作用,pH对H2O2生成(·OH)有很大影响。由图5(e)和图5(f)可见,FeSO4·7H2O和pH交互作用的响应面陡峭程度相比于其他2个交互作用略平缓,表3方差分析也表明两者交互作用不突出。

    图 5  COD去除率的等高线图和三维图
    Figure 5.  Contour map and 3D map of COD removal rate

    通过响应曲面法得到Fenton完全氧化本涂装废水的最优条件为pH=3.21、H2O2为4.17 g·L−1(H2O2/COD质量比为4.17∶1)、硫酸亚铁为4.29 g·L−1(H2O2/Fe2+摩尔比为8∶1)、反应时间为120 min。对该实验条件进行了验证,得到实际的COD去除率为81.32%,与模型预测值82.15%仅相差1.01%。这表明式(8)可以较好地模拟Fenton完全氧化本废水的处理效果。

    图4反映了涂装废水COD随反应时间的变化,对其进行反应动力学拟合,结果如图6所示。涂装废水的Fenton 完全氧化反应与一级反应动力学拟合度最高,可决系数为0.996,与三级反应动力学拟合度最小,可决系数为0.879。因此,Fenton完全氧化电动自行车涂装废水的反应符合一级反应动力学(式(10))。

    图 6  反应级数线性拟合回归结果
    Figure 6.  Linear fitting regression results of reaction orders
    lnCtC0=0.0139t+2.698 39×10-4 (10)

    图7(a)所示,k值随着T的增大而升高,在15、25、35 ℃时,k分别为0.013 0、0.014 2、0.014 9 min−1。这是由于温度升高可提高(·OH)与有机物的碰撞概率,从而强化氧化效果。但在15~35 ℃,COD去除率并没有得到很大提升,仅提高了7%左右,表明季节变化对Fenton去除涂装废水的COD影响并不显著,无需加热措施,可节省运行成本。

    图 7  温度对COD去除的影响以及反应速率常数与温度的关系
    Figure 7.  Effect of temperature on COD removal and correlation between reaction rate constants k and temperature

    依据图7(b)计算可得反应活化能Ea为4.76 kJ·mol−1,频率因子A0为0.10 min−1Ea较低,说明反应较易进行,且温度对反应影响不大,Fenton降解涂装废水的降解速率的温度修正根据式(11)计算。

    k=0.10exp(4.76RT) (11)

    实际电动自行车涂装废水易受车间生产线等多方面的影响,其水质水量有波动,H2O2的投加量直接关系到废水的处理成本。单一的Fenton完全氧化工艺不仅经济成本高,且不能保证所有时刻的水质指标均稳定达标排放。故在实际工程中常将Fenton氧化作为预处理工艺,与生物方法耦合。Fenton半氧化工艺在去除一部分有机物的同时,改善废水可生化性,为后续生物处理创造有利条件。

    图8可见,当pH=3.21、n(H2O2/Fe2+)=8:1、反应时间为120 min时,随着H2O2投量的增加,废水中COD去除率升高,BOD5先升高后降低,废水B/C比升高。这说明芬顿氧化可以有效去除有机物,并且可较好地改善废水的可生化性。当H2O2为0.7 g·L−1时,COD去除率为25.1%,B/C比为0.22;当H2O2为1 g·L−1时,COD值由1 290 mg·L−1降低至742 mg·L−1,COD去除率为42.5%,B/C比从0.12提高至0.35;当H2O2为1.3 g·L−1时,COD去除率为48.9%,B/C比为0.33。一般认为,B/C>0.3的废水可利用生物处理。LI等[10]利用Fenton预处理工业喷涂废水,废水B/C由0.08增加到0.25,可使后续生物法更容易降解有机物。伊学农等[26]在研究Fenton预处理对汽车零部件涂装废水处理的过程中发现,当pH=3~4、FeSO4·7H2O投加量为1.68 g·L−1、H2O2投加量为2.05 g·L−1时,COD去除率为50%,B/C比由0.18提高到0.57,完全满足后续生化处理要求。韩勇刚[27]利用Fenton氧化喷漆废水,初始COD为2 927 mg·L−1,H2O2投加量为0.25 D,H2O2/FeSO4(质量比)为1.6∶1 时,COD去除率为17%,B/C比由0.31提高到0.49。以上研究结果说明,在一定的反应条件下,Fenton处理可以提高废水的B/C值。在本研究中,为节省药剂投加量,对于COD为1 290 mg·L−1的涂装废水,在pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min,H2O2投加量为1 g·L−1,也即0.36 D(m(H2O2/COD)=0.78:1)时,经Fenton氧化后的出水可满足与生物处理耦合的要求。

    图 8  H2O2投量与COD、BOD5、B/C的关系
    Figure 8.  Effect of H2O2 dosage on COD、BOD5 and B /C

    Fenton全氧化常温降解系数k=0.014 2 min−1,H2O2投加量为1.7 D,根据式(9)可预测当pH=3.21、n(H2O2/Fe2+)=8:1、COD去除率为42.5%所需的反应时间为39 min。由2.4节可知,当pH=3.21、n(H2O2/Fe2+)=8:1、H2O2投加量为0.36 D ,COD去除率为42.5%的反应时间为120 min。虽然采用Fenton全氧化的条件进行半氧化,可使反应器体积减少67.5%,但投药量增加317%。因此,从长远看,减少投药量比减少反应体积更具经济优势。

    以实验所用废水的实际流量165 m3·d−1为例,评估Fenton全氧化处理工艺与Fenton半氧化预处理+生物处理耦合工艺的投资及运行成本。Fenton全氧化工艺的投资费用为53.5×104元,Fenton半氧化预处理+生物处理耦合工艺的投资费用为161.3×104[28]

    2种工艺的运行费用的差异主要包括电费、药剂费和污泥费,具体比较结果见表4。Fenton全氧化的总装机容量为138.24 kW,电费以0.8元计,则电费为0.76元·t−1;以COD为1 000 mg·L−1计,需688 kg·d−1 H2O2 ,707 kg·d−1 FeSO4·7H2O,药耗成本为7.94元·t−1;每2 d脱泥1次,污泥费用为3.1元·t−1。Fenton全氧化的运行费用合计为11.8元·t−1。吨水处理费用高,受水质波动影响大。

    表 4  Fenton全氧化与半氧化-生物处理运行费用比较
    Table 4.  Comparison of operation cost between Fenton alone treatment and Fenton-biological treatment 元·t−1
    处理工艺电费药剂费污泥费合计
    Fenton全氧化0.767.043.111.8
    Fenton半氧化-生物处理1.32.125.7
     | Show Table
    DownLoad: CSV

    Fenton半氧化耦合生物处理的总装机容量约为273.84 kW,则电费为1.3元·t−1;以COD为1 000 mg·L−1来计,双氧水用量165 kg·d−1,FeSO4·7H2O用量169 kg·d−1,药耗成本为2.1元·t−1;每3 d进行1次脱泥,污泥费用为2元·t−1。Fenton半氧化预处理+生物处理的运行费用合计为5.4元·t−1。日常运行费用低,工艺运行稳定,约2.8 a即可弥补投资高的不足。因此,Fenton半氧化耦合生物处理具有明显优势。

    1) Fenton完全氧化本涂装废水的最佳条件为pH=3、H2O2为4 g·L−1、FeSO4·7H2O为4 g·L−1、氧化反应时间为120 min,COD去除率达80.1%,TP去除率达98%。

    2)各因素对Fenton完全氧化涂装废水COD去除率影响的顺序为pH>H2O2>FeSO4·7H2O,H2O2与FeSO4·7H2O交互极显著,pH与H2O2交互显著,pH与FeSO4·7H2O交互不突出。最优条件为pH=3.21、m(H2O2/COD)为4.17:1、n(H2O2/Fe2+)为8:1、反应时间为120 min,η=81.72+1.79A+1.56B+0.76C+0.78AB+0.48AC+2.25BC-4.93AA-6.85BB-2.17CC,预测电动自行车涂装废水COD去除率为82.15%,实际COD去除率达81.32%,说明预测模型可靠。

    3) Fenton完全氧化电动自行车涂装废水符合一级动力学,室温(25 ℃)下降解系数k为0.014 2 min−1,反应活化能Ea为4.76 kJ·mol−1K=0.10exp(−4.76/RT)。

    4)综合经济效益和处理效果,Fenton处理电动自行车涂装废水的最佳反应条件为pH=3.21、n(H2O2/Fe2+)=8:1、反应时间120 min、H2O2投加量为理论投加量的0.36倍,在此条件下COD去除率为42.5%,B/C比可提高至0.35,可满足与生物处理耦合,更具经济优势。

  • 图 1  生化池平面布置图

    Figure 1.  Schematic diagram of the biochemical tanks

    图 2  污水处理厂优化曝气方式前后对污染物去除情况

    Figure 2.  Removal of pollutants before and after optimization of aeration in the WWTP

    图 3  生化池不同构筑物对各类污染物的去除贡献

    Figure 3.  Contribution of different structures in biochemical pond to removal of various pollutants

    图 4  厌氧状态下活性污泥释磷情况及释磷速率

    Figure 4.  Phosphorus release and release rate of activated sludge under anaerobic condition

    图 5  活性污泥在好氧及缺氧状态下的吸磷速率

    Figure 5.  Phosphorus uptake rate of activated sludge under aerobic and anoxic conditions

    表 1  设计进出水水质

    Table 1.  Design values of influent and effluent qualities

    取样点COD/(mg·L−1)BOD5/(mg·L−1)SS/(mg·L−1)NH+4-N/(mg·L−1)TP/(mg·L−1)TN/(mg·L−1)pH
    进水≤250≤150≤250≤30≤4≤406~9
    出水≤50≤10≤10≤5≤0.5≤156~9
    取样点COD/(mg·L−1)BOD5/(mg·L−1)SS/(mg·L−1)NH+4-N/(mg·L−1)TP/(mg·L−1)TN/(mg·L−1)pH
    进水≤250≤150≤250≤30≤4≤406~9
    出水≤50≤10≤10≤5≤0.5≤156~9
    下载: 导出CSV

    表 2  污水处理厂进水水质

    Table 2.  Influent quality of the WWTP

    统计值COD/ (mg·L−1)TP/ (mg·L−1)TN/ (mg·L−1)NH+4-N / (mg·L−1)C/NC/PpH
    最小值740.511.89.72.512.67
    最大值67914.388.943.215128.38.4
    平均值281533.926.18.667.67.5
      注:C/N为COD/TN;C/P为COD/TP。
    统计值COD/ (mg·L−1)TP/ (mg·L−1)TN/ (mg·L−1)NH+4-N / (mg·L−1)C/NC/PpH
    最小值740.511.89.72.512.67
    最大值67914.388.943.215128.38.4
    平均值281533.926.18.667.67.5
      注:C/N为COD/TN;C/P为COD/TP。
    下载: 导出CSV
  • [1] TANG J, WANG X C, HU Y, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2019, 271: 125-135. doi: 10.1016/j.biortech.2018.09.087
    [2] 王佳, 荣宏伟, 肖冠勋, 等. 深圳某水质净化厂A/A/O 微曝氧化沟深度脱氮除磷工艺效果分析[J]. 环境工程学报, 2020, 14(10): 2837-2842. doi: 10.12030/j.cjee.201911183
    [3] CAO G. , WANG S, PENG Y, et al. Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater[J]. Bioresource Technology, 2013, 128: 604-611. doi: 10.1016/j.biortech.2012.09.078
    [4] ZHU Z, CHEN W, TAO T, et al. A novel AAO-SBSPR process based on phosphorus mass balance for nutrient removal and phosphorus recovery from municipal wastewater[J]. Water Research, 2018, 144: 763-773. doi: 10.1016/j.watres.2018.08.058
    [5] 王启镔, 宫徽, 朱越, 等. SBR运行模式对市政污水脱氮除磷性能的影响分析[J]. 环境科学学报, 2020, 40(04): 1167-1173.
    [6] 华光辉, 张波. 城市污水生物除磷脱氮工艺中的矛盾关系及对策[J]. 给水排水, 2000, 26(12) 12: 1-4.
    [7] 冯云刚, 刘新安, 高荣宁, 等. UCT工艺在西安鱼化污水处理厂的设计应用与调试[J]. 中国给水排水, 2019, 35(24): 66-69.
    [8] 王攀, 彭党聪. 预缺氧池配水比对Johannesburg工艺脱氮除磷效果的影响[J]. 环境工程学报, 2015, 9(4): 1645-1650. doi: 10.12030/j.cjee.20150420
    [9] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12-15. doi: 10.3969/j.issn.1002-8471.2018.06.003
    [10] WANG Q, CHEN Q, CHEN J. Optimizing external carbon source addition in domestics wastewater treatment based on online sensoring data and a numerical model[J]. Water Science and Technology, 2017, 75(11): 2716-2725. doi: 10.2166/wst.2017.128
    [11] 赵伟华, 郑姝卉, 王凯. 污水反硝化除磷技术的机理与工艺研究进展[J]. 水处理技术, 2020, 46(7): 1-5.
    [12] 潘婷, 张淼, 范亚骏, 等. 基于碳源优化的反硝化除磷及微生物特性[J]. 中国环境科学, 2020, 40(7): 2901-2908. doi: 10.3969/j.issn.1000-6923.2020.07.013
    [13] 李微, 高明杰, 曾飞, 等. 温度和碳源对短程反硝化除磷效果的影响[J]. 水处理技术, 2020, 46(8): 55-59.
    [14] WANG Q, CHEN Q. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39: 175-183. doi: 10.1016/j.jes.2015.10.012
    [15] HENZE M, van LOOSDRECHT M, EKAMA G A et al. Biological wastewater treatment: principles, modelling and design[M]. London: IWA publishing, 2008.
    [16] 崔有为, 金常林, 王好韩, 等. 碳源对O/A-F/F模式积累内源聚合物及反硝化的影响[J]. 环境科学, 2019, 40(1): 336-342.
    [17] 刘建广, 付昆明, 杨义飞, 等. 不同电子受体对反硝化除磷菌缺氧吸磷的影响[J]. 环境科学, 2007, 28(7): 1472-1476. doi: 10.3321/j.issn:0250-3301.2007.07.011
    [18] HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7
    [19] RONG Y, LIU X, WEN L, et al. Advanced nutrient removal in a continuous A 2 /O process based on partial nitrification-anammox and denitrifying phosphorus removal[J]. Journal of Water Process Engineering, 2020, 36: 101245. doi: 10.1016/j.jwpe.2020.101245
    [20] 王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080
  • 加载中
图( 5) 表( 2)
计量
  • 文章访问数:  10349
  • HTML全文浏览数:  10349
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-01-09
  • 录用日期:  2021-07-07
  • 刊出日期:  2022-02-10
王启镔, 李浩, 董旭, 卢伟, 汪力, 杜建丽, 李建伟, 陈磊. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
引用本文: 王启镔, 李浩, 董旭, 卢伟, 汪力, 杜建丽, 李建伟, 陈磊. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
WANG Qibin, LI Hao, DONG Xu, LU Wei, WANG Li, DU Jianli, LI Jianwei, CHEN Lei. Process optimization regulation scheme of a full-scale modified A2/O wastewater treatment plant and its improvement of simultaneous nitrogen and phosphorus removal efficiency[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059
Citation: WANG Qibin, LI Hao, DONG Xu, LU Wei, WANG Li, DU Jianli, LI Jianwei, CHEN Lei. Process optimization regulation scheme of a full-scale modified A2/O wastewater treatment plant and its improvement of simultaneous nitrogen and phosphorus removal efficiency[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059

改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升

    通讯作者: 汪力(1977—),男,博士,高级工程师,wangli@bewg.net.cn
    作者简介: 王启镔(1983—),男,博士,高级工程师,wangqibin188@163.com
  • 北控水务(中国)投资有限公司,北京 100102

摘要: 以一座处理规模为10×104 m3·d−1的市政污水处理厂为研究对象,分析了优化调控参数对系统污水处理效果的影响,并探讨了各构筑物对脱氮除磷的贡献。结果表明:在改变曝气及回流方式后,出水TN和TP同步下降;厌氧池为氮磷去除的主要场所,TN、TP在厌氧池中的削减量分别占其总削减量的70.8%和89.5%;在生物除磷实验中,厌氧段平均释磷速率(以每克VSS计)为3.35 mg ·h−1;好氧吸磷和缺氧吸磷实验证实,反硝化除磷菌(DPAO)占生物聚磷菌(PAO)的90%以上,且DPAO可在好氧段吸磷。在对工艺进行优化调控后,系统出水水质均可达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准,同时还可实现节能降耗、降低污水处理成本。本研究结果可为同类市政污水处理厂的性能提升提供参考。

English Abstract

  • 为防止自然水体出现富营养化现象,我国提高了污水处理厂氮磷排放标准[1-2]。排放标准的提高即对传统脱氮除磷工艺的处理效率提出了更高要求。生物脱氮工艺包括硝化和反硝化2个阶段:氨氧化菌和亚硝酸菌先后将氨氮氧化为亚硝态氮及硝态氮;反硝化细菌利用有机碳提供电子供体将硝态氮还原为氮气,从水中溢出以实现脱氮[3]。污水中的磷则通过消化污泥和水两条路线实现去除或回收,而从水线中去除或回收磷更为稳定,也更为经济[4-5]

    在传统活性污泥法系统中,生物脱氮和生物除磷在污泥龄、碳源、硝酸盐的存在与转化等方面存在一定矛盾[6],且实现生物脱氮除磷的效率普遍较低。在常规 A2/O 工艺中,污水依次通过厌氧池、缺氧池和好氧池,而回流污泥会将一部分硝酸盐带回厌氧区,硝酸盐的存在使得反硝化菌优先争夺了进水的碳源,因而严重影响了聚磷菌(phosphorus accumulating bacteria,PAO)的释磷效率,进而影响系统除磷效率[7-8]。我国污水处理厂的进水普遍呈现C/N、C/P均较低的状态,80%以上的进水BOD5/TN小于3.6,BOD5/TP平均为27,生物脱氮除磷的效果不甚理想[9]。因此,为提高脱氮除磷效率,确保出水氮磷指标达标,往往需要投加药剂[10],这使得污水处理厂处理成本增加。

    污水处理厂是个复杂系统,涉及诸多影响污水处理效率及运行成本的不可控因素(如水质、水温等),以及可控因素(曝气量、加药量、污泥浓度等)。在污水处理厂运行中,应充分发挥可控因素的主导作用,挖掘工艺潜力,促进优势菌种代谢活力,以提升污染物去除效率并降低处理成本。反硝化除磷菌(denitrifying phosphorus accumulating bacteria,DPAO)具有“一碳两用”的“技能”,能节省碳源、减少污泥产量,因而一直是研究热点[11-13]。在实际运行中,应注重工艺优化调控对DPAO的影响,发挥其重要作用,进而促进活性污泥系统同步脱氮除磷效率的提升及系统运行管理的优化。

    本研究以我国西南地区某污水处理厂(处理规模为10×104 m3·d−1)为例,对污水处理工艺进行优化调控,考察调控措施对系统运行性能的影响,解析优化后系统同步脱氮除磷的过程,并探讨工艺优化后的运行特点,以期为提高同类污水处理厂的运行效率提供参考。

    • 本案例位于我国西南地区某市,该污水处理厂的设计规模为10×104 m3·d−1,主要处理生活污水及少量工业废水,采用改良型A2/O微孔曝气Carrousel氧化沟工艺。工程分2期建设,每期的处理规模均为5×104 m3·d−1。一期工程的生化池分2组,分别为1#池和2#池;二期工程的生化池分2组,分别为3#池和4#池。这两期工程的构筑物参数基本一致,生化池的布置如图1所示。

    • 该污水处理厂的工艺优化调控内容主要体现在生化池运行方式方面。生化池的池型具有完全混合及推流模式的特点,活性污泥浓度变化系数小,进水迅速被稀释,系统的抗冲击负荷能力较强。预缺氧、厌氧、缺氧、好氧段的水力停留时间(HRT)分别为0.5、1.3、1.8和5.6 h。设计污泥龄为10~15 d,污泥外回流比为100%。通过闸板阀可调节进入预缺氧池和厌氧池的污泥量;混合液回流量采用闸板控制,利用好氧区已有水下推流器将混合液送至缺氧区或厌氧区,可省去常规的内回流泵,起到节省电耗的作用。

      优化调控包括2个方面:1)通过关闭部分曝气立管阀门,减少曝气量,调节系统供氧量;2)通过调整闸板开合,改变回流方式,充分发挥反硝化除磷菌的作用。

    • 该污水处理厂设计进出水水质如表1所示。各项出水指标均达到GB18918-2002《城镇污水处理厂污染物排放标准》一级A标排放标准。该污水处理厂的实际进水水质如表2所示。进水水质各指标的波动较大,COD、TP、TN等指标最大值远超设计进水指标,某些指标最大值甚至超过平均值的2倍。

    • 1)生物释磷过程。取外回流污泥淘洗3遍,稀释3倍后取均匀混合污泥检测混合液悬浮固体浓度(MLSS)、污泥挥发性悬浮固体浓度(MLVSS)等指标;再投加乙酸钠(以COD计,质量浓度约为200 mg·L−1)并对污泥进行搅拌;分别在反应时间为15、30、60、90和120 min时进行取样;过滤样品并测定其中的正磷酸盐质量浓度和COD。实验温度控制在(25±1)℃

      2)好氧吸磷和缺氧吸磷过程。参照上述步骤使污泥保持在厌氧条件;为去除PO34-P和剩余部分碳源,再将释磷后的污泥淘洗2遍;加入磷酸二氢钠,控制磷酸盐质量浓度为20 mg·L−1;将污泥分为2份,对其中1个容器进行曝气(溶解氧的质量浓度大于3 mg·L−1),在另一容器中加入过量硝酸盐(硝态氮的质量分数约7 mg·g−1,以每克MLSS计)并搅拌;在反应时间分别为15、30、60和120 min时,过滤2个容器中的样品并测定滤液中的正磷酸盐质量浓度。实验温度控制在(25±1)℃。

    • COD、PO34-P、TP、NH+4-N和TN等水质指标,以及MLSS、MLVSS等污泥指标均按《水和废水检测分析方法》(第4版)测定。采用质量平衡分析法分析构筑物对污染物去除的贡献[14]。基于物料守恒原理,根据每组池中流入/流出的水量及相应污染物质量浓度,算出污染物的削减量,即可计算该构筑物对去除某污染物的贡献率。以缺氧池为例,具体计算方程如式(1)所示。

      式中:△Aan,C,N,P指缺氧池内污染物的削减容量,kg·d−1Q0Qr 分别指进水流量及内回流量,m3·d−1Cr 指内回流硝化液中污染物的浓度,g·m−3CinfCeff分别指构筑物进水及出水的污染物浓度, g·m−3;C、N、P分别指COD、TN及TP。预缺氧池、厌氧池及好氧池对污染物的削减量亦可参照式(1)计算。

    • 每组生化池好氧区均设有16根曝气管,每根曝气管通过阀门调整开度。对好氧区曝气系统进行优化,关闭好氧区后端5根曝气管的阀门,平均曝气量由8 800 m3·h−1降至7 000 m3·h−1,好氧区末端的平均DO从2.5 mg·L−1降至低于1.0 mg·L−1。在搅拌器及水流的推动下,混合液中的溶解氧继续往好氧区后端较快流动。尽管部分曝气管被关闭,但从溶解氧数值上来看,系统仍处于好氧状态,故好氧段的HRT并未缩短。虽然进水COD波动较大(80~526 mg·L−1),但是出水COD十分稳定,始终低于30 mg·L−1(见图2(a)),说明进水COD的波动对出水影响很小。如图2(b)所示,系统对NH+4-N的处理较稳定,出水NH+4-N始终低于5 mg·L−1,大多数情况NH+4-N均小于1 mg·L−1。上述结果表明,尽管曝气量的下降抑制了系统的硝化效果,使得出水NH+4-N时有上升,但是系统的硝化效果仍能使出水NH+4-N达标,说明调控前系统存在过曝情况。 进水TN(见图2(c))及TP(见图2(d))波动较大,而出水TN和TP在调控前后变化较明显。调控前,污水处理厂出水平均TN为9.1 mg·L−1。经过优化曝气系统后,出水TN平均值降至7.0 mg·L−1,出水TP平均值为0.21 mg·L−1,2种指标均更稳定。

      以上数据表明,该污水处理厂的出水COD、NH+4-N、 TN、TP指标均可达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准(COD < 50 mg·L−1NH+4-N <5 mg·L−1,TN<15 mg·L−1,TP<0.5 mg·L−1)。优化曝气系统后,曝气量减少了20%,在出水水质指标达标的前提下,节能效果显著。随着缺氧区溶解氧由0.7 mg·L−1降至0.3 mg·L−1,厌氧区溶解氧由0.3 mg·L−1降至0.1 mg·L−1,故在好氧池能与进水耗氧污染物(以COD计)反应的溶解氧大量减少,进而可提高进水碳源利用率。在PAO的代谢过程中,有3种起重要作用的化合物:聚磷酸盐、糖元质、聚-β-羟丁酸(PHB)。过量曝气发生时,PAO在快速氧化完PHB之后会氧化糖元质,使得PAO在厌氧条件下吸收易降解有机物的能力降低,因而会对生物吸磷产生不利影响[15]。另外,内源聚合物的积累对反硝化脱氮有重要作用,过量曝气会使PAO快速氧化完并会消耗内源聚合物[16],进而影响脱氮效率。因此,控制适宜的曝气量除了可促进生物脱氮除磷,还可降低曝气能耗。

    • 采用质量守恒分析方法研究不同生化池对污染物去除量的贡献,可为污水处理过程的控制提供参考。如图3所示,COD的去除主要发生在预缺氧池,占总去除量的68.9%,其主要作用为异养菌对有机物的吸收、活性污泥对有机物的吸附等;而23.0%的COD在厌氧池被去除。在预缺氧池中,有明显的释磷现象发生。预缺氧池出水磷含量为进水的3.7倍,表明生物释磷效果良好。在HRT为0.5 h时,预缺氧段不仅能去除外回流液中的硝态氮,其生物释磷作用也很明显,说明反硝化菌和PAO在该池段内具有较高的反应速率。在厌氧池中,89.5%的TP被去除,70.8%的TN被去除。开启闸板阀2#(见图1)后,污泥通过内回流进入厌氧区,带入大量的硝酸盐,产生了明显的反硝化现象。

      综上所述,厌氧池为脱氮除磷的主要场所,对氮磷的去除贡献均超过70%。同时,这表明在厌氧池内发生了明显的反硝化除磷现象,实现了“一碳两用”,节约了碳源,也节约了好氧吸磷所需要的曝气量。

    • 取外回流污泥,分析了厌氧状态下其释磷情况及释磷速率,结果如图4所示。投加过量乙酸钠后,反应进行至15 min时,水中磷的质量浓度快速升至6.1 mg·L−1,相应的释磷速率(以每克 VSS降解的磷质量浓度计,下同)达到8.7 mg·h−1。随后,尽管释放的磷酸根不断增多,但是释磷速率呈下降趋势。反应进行至120 min时,污泥中磷酸根达到18.7 mg·L−1,平均释磷速率为3.35 mg·h−1。此时的释磷速率较快,表明活性污泥中PAO量多。

      将释磷后的污泥清洗2遍,再进行吸磷实验,结果如图5所示。吸磷在2种状态下进行:曝气状态(好氧)和硝酸盐状态(缺氧)。最初的15 min,好氧和缺氧状态的吸磷速率(以每克VSS吸收的磷质量浓度计,下同)分别达到6.9和5.0 mg·h−1,好氧吸磷速率明显快于缺氧吸磷速率。这是由于在吸磷过程中,起始阶段的PAO体内有充足聚羟基脂肪酸酯(polyhydroxyalkanoates,PHAs),分子氧更易被PAO利用,故吸磷速率较高。在没有分子氧的环境中,DPAO迫切需要利用硝酸盐氧化细胞内贮存的PHAs,进行呼吸作用实现能量储存,并从环境中实现对磷的吸收,从而达到同步反硝化和超量吸磷的效果,最终达到提升脱氮除磷效率的目的。反应进行至120 min时,活性污泥在好氧及缺氧状态下的吸磷速率相差不大,此时磷的削减量分别为11.51 mg、10.75 mg。该结果表明,PAO可在好氧或缺氧状态下吸磷,且在好氧状态下吸磷效果更佳,证实PAO中90%以上为DPAO。这2种吸磷过程均存在过量吸磷和微生物合成作用消耗磷的情况,但由于停留时间较短,污泥产量较少,可忽略微生物合成作用,所以可推断大多数磷酸盐是被PAO所吸收去除。因此,可利用该方法来估算微生物菌DPAO在PAO中的占比。

      反应进行至120 min时,缺氧状态下微生物吸收的磷酸盐及去除的硝酸盐分别为10.75 mg、7.92 mg,其比例(△PO34-P/△NO3-N)为1.36。刘建广等[17]的研究表明,缺氧阶段每消耗1 mg NO3-N吸收约1 mg PO34-P,故系统中足量的硝酸盐可促进缺氧吸磷的发生。在实验过程中,若混合液中残留氧气较多,将导致△PO34-P/△NO3-N大于1。这是由于氧气的存在会促进磷的吸收。HU等[18]研究了厌氧/缺氧(A/A)条件下驯化污泥中微生物以NO3N、NO2N、O2 3种物质为电子受体的反硝化除磷作用,发现只有少数微生物仅以O2为电子受体,大部分PAO能以NO3N、NO2N、O2为电子受体,超过PAO总量的50%,故可充分利用PAO进行反硝化除磷。 RONG等[19]发现,当SBR反应器在低溶解氧((1±0.3) mg·L−1)的短好氧阶段,系统可实现硝化、内源反硝化、反硝化除磷和好氧吸磷的同步进行,从而可节省约65%的曝气能耗。微生物群落分析还表明,DPAO能同时参与脱氮除磷过程[20]。综上所述,精确管控溶解氧浓度对实现反硝化除磷十分重要。

    • 1)减少曝气量实现节能降耗并提高反硝化除磷效率。生化池为完全混合式池型,泥水混合液在厌氧池、缺氧池、好氧池内可形成大循环。其中,好氧池末端的混合液部分流入二沉池,其余进入缺氧池;缺氧池的混合液部分进入好氧池,其余进入厌氧池。当好氧池后端的曝气阀门关闭后,系统供氧量减少,使得好氧池末端的溶解氧较低(低于1 mg·L−1),而进入缺氧池和厌氧池的溶解氧大大减少为反硝化除磷过程提供了更适宜的环境。根据沿程数据,缺氧池出水COD已达排放标准,故好氧段主要任务是削减氨氮。因此,精确管控溶解氧指标可在实现节能降耗的同时,提高系统的反硝化除磷效率。

      2)改变回流方式提升了系统生化处理效率。约50%的外回流污泥进入预缺氧池中,利用进水中的有机质作为电子供体将外回流液中的硝态氮经反硝化去除,进水中多余的碳源则用于生物释磷,含有磷酸根的混合液进入厌氧池;同时,厌氧池和缺氧池间的闸板阀打开后,在水流的作用下含有硝酸盐的混合液进入厌氧池。此时,厌氧池中的硝酸盐、磷酸根及DPAO为反硝化除磷反应提供了有利条件,并强化了生物脱氮除磷效果。与传统的厌氧池生物释磷作用不同,由于进水中易降解的有机质已被PAO利用,故无法继续释磷,因此,本案例中厌氧池成为脱氮除磷的主要场所。

      3)完全混合式池型内部的混合结构可保证系统的抗负荷冲击能力。完全混合式池型能保持池内各点水质和微生物均匀混合,且当污水与回流污泥进入生化池后,立即同池内原有混合液充分混合。整个系统的循环比约为50~70倍,这意味着系统进水水质、水量出现波动,甚至水质超标时,污染物被快速稀释或降解,出水水质依然稳定达标,整体抗负荷冲击能力极强。

    • 1)预缺氧段反硝化菌和PAO具有较高的反应速率,能去除外回流液中的硝态氮,生物释磷作用也很明显。厌氧池是氮磷去除的主要场所,反硝化除磷效果显著,总氮、总磷在厌氧池的削减量分别占其总削减量的70.8%和89.5%。

      2)系统中存在反硝化除磷现象。好氧吸磷和缺氧吸磷实验证实,PAO中90%以上为DPAO。DPAO亦可在好氧段吸磷。

      3)完全混合式池型系统具有很强的缓冲能力和污染物处理能力,即使偶尔进水超标,系统对污染物的去除效果仍较理想,出水水质能稳定达标。

      4)改良型A2/O工艺曝气系统优化后有利于PAO、DPAO和反硝化菌的生长,提高了上述优势菌的生存竞争能力和协同效应,强化了生物脱氮除磷效果,适合直接应用于低C/N污水的处理。

    参考文献 (20)

返回顶部

目录

/

返回文章
返回